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Abstract
Background—Simultaneous contribution of hundreds of electrocardiographic biomarkers to
prediction of long-term mortality in post-menopausal women with clinically normal resting
electrocardiograms (ECGs) is unknown.

Methods and Results—We analyzed ECGs and all-cause mortality in 33,144 women enrolled
in Women’s Health Initiative trials, who were without baseline cardiovascular disease or cancer,
and had normal ECGs by Minnesota and Novacode criteria. Four hundred and seventy seven ECG
biomarkers, encompassing global and individual ECG findings, were measured using computer
algorithms. During a median follow-up of 8.1 years (range for survivors 0.5–11.2 years), 1,229
women died. For analyses cohort was randomly split into derivation (n=22,096, deaths=819) and
validation (n=11,048, deaths=410) subsets. ECG biomarkers, demographic, and clinical
characteristics were simultaneously analyzed using both traditional Cox regression and Random
Survival Forest (RSF), a novel algorithmic machine-learning approach. Regression modeling
failed to converge. RSF variable selection yielded 20 variables that were independently predictive
of long-term mortality, 14 of which were ECG biomarkers related to autonomic tone, atrial
conduction, and ventricular depolarization and repolarization.

Conclusions—We identified 14 ECG biomarkers from amongst hundreds that were associated
with long-term prognosis using a novel random forest variable selection methodology. These were
related to autonomic tone, atrial conduction, ventricular depolarization, and ventricular
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repolarization. Quantitative ECG biomarkers have prognostic importance, and may be markers of
subclinical disease in apparently healthy post-menopausal women.
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Introduction
Amongst post-menopausal women quantitative electrocardiographic (ECG) biomarkers have
a prognostic value.1–4 Prior studies focused on single ECG measures such as QRS width,5

small groups of measures such as ventricular repolarization abnormalities,1, 2 or categories
of findings such as minor and major ECG abnormalities3. Modern digital ECG software has
the ability to abstract hundreds of quantitative measures from a standard 12-lead ECG. To
date there have been no studies exploring the prognostic value of such a large number of
ECG measures in a non-parsimonious manner.

Risk stratification based on utilization of hundreds of quantitative ECG biomarkers presents
several unique challenges, which make use of traditional regression methods difficult. First,
ECG measures are highly correlated, making their simultaneous use in a regression model
problematic. Second, ECG measures may have nonlinear effects that require complex
transformations. Third, manual identification of two-way and three-way interactions among
hundreds of variables is challenging. Fourth, regression models with hundreds of variables
may be overfit, consequently performing poorly in testing scenarios. Random Forest (RF)
methodology, a non-parametric decision tree based approach, has been proposed as a
cutting-edge analytical method to address these issues.6–8 Recently, RF methodology has
been extended to deal with time-to-event data, an approach termed Random Survival Forests
(RSF).8

The objective of this study was to evaluate the prognostic importance of quantitative
electrocardiographic biomarkers in post-menopausal women without known cardiovascular
disease or cancer, who had normal baseline resting ECGs, utilizing a data-rich model. We
studied women with normal ECGs as they have been shown to have a lesser risk of mortality
compared to those with major or minor ECG abnormalities3. We used RSF methodology to
classify women into subgroups of risk, and to identify clinical and ECG predictors of
mortality. With this approach numerous decision trees were developed, and then used to: (1)
identify the most important predictors (i.e., variable selection), and (2) construct risk
stratification models.

Methods
Study population

The Women’s Health Initiative (WHI) Clinical Trial (http://www.whiscience.org/about/)
enrolled 68,132 post-menopausal women (Supplementary Material Figure 1) between the
ages of 50 and 79, into randomized trials testing three prevention strategies (hormone
therapy, dietary modification, or calcium/vitamin D). Eligible women had a choice of
enrolling into one, two, or all three components. At baseline demographic and clinical
characteristics, physical measures, and a standard 12-lead ECG were collected. Exclusion
criteria were component specific, and were related to competing risks, safety reasons, and
adherence or retention reasons.9

We focused only on those women who had a baseline ECG available, of good quality, and
without arm lead reversal. We excluded women who had any minor or major ECG
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abnormalities3 according to Minnesota10, 11 or Novacode12 criteria. The remaining 35,774
women had ECGs with sinus rhythm, normal AV conduction, no evidence of old myocardial
infarction as suggested by Q-waves, normal QRS duration, normal ventricular
repolarization, no left atrial enlargement, no right ventricular hypertrophy, no right atrial
enlargement, and no fascicular block.

We further excluded 2,510 women who had suspected or known cardiovascular disease
(history of angina, prior percutaneous coronary intervention, prior coronary artery bypass
grafting, peripheral arterial disease, prior carotid endarterectomy, aortic aneurysm, or
stroke), or a history of cancer (breast, ovarian, colon, cervical, liver, lung, brain, bone, or
stomach cancer; or leukemia, lymphoma, or Hodgkin’s disease). Finally, 120 women had
missing outcome values and were excluded. This resulted in 33,144 women without known
cardiovascular disease or cancer, with normal baseline 12-lead ECGs who were analyzed.

Electrocardiographic Analysis
Standard 12-lead ECGs were recorded at baseline using standardized procedures.1, 3, 13

These ECGs were processed at a central laboratory (EPICORE Center, University of
Alberta, Alberta, Edmonton, and later at EPICARE in Wake Forest University, Winston-
Salem, NC) and classified by Minnesota code and Novacode criteria, with use of Marquette
12-SL program, 2001 version (General Electric, Menomonee Falls, Wisconsin).1, 2 Software
also abstracted continuous duration and voltage measures by lead for the median beats in
each lead, all of which were recorded simultaneously for 10 seconds.

Four hundred and seventy seven ECG measures abstracted by the Marquette program were
studied, encompassing both global and individual ECG measures. Global measures
included: ventricular rate, median PR duration, median QT duration, median QTc interval,
median P-wave axis, median QRS axis, and median T-wave axis. Two measures of ultra-
short heart rate variability were studied: standard deviation of the mean value of RR
intervals over 10 second recording (SDNN), and the square root of the mean value of the
squares of the differences between all adjacent RR intervals (RMS-SD).

The Marquette program assigned biphasic (i.e., first inflection above or below baseline, and
second inflection in opposite polarity) P waves and T waves two sets of variables, where the
second set of variables was termed “prime”. This is different and should not be confused
with the term “prime” used in clinical ECG interpretation which refers to wave notching.

Individual ECG measures are as follows:

• P wave measures included: P wave and P prime wave amplitudes, intrinsicoid times
(i.e., time from onset to peak), durations, and areas in all 12-leads.

• Q wave measures included: Q wave amplitudes, intrinsicoid times, durations, and
areas in all 12-leads.

• R wave measures included: R wave and R prime wave amplitudes, intrinsicoid
times, durations, and areas in all 12-leads.

• S wave measures included: S wave and S prime wave amplitudes, intrinsicoid
times, durations, and areas in all 12-leads.

• QRS complex measures included: QRS intrinsicoid times (time from onset of QRS
complex to middle of QRS complex) in all 12-leads.

• ST segment measures included: beginning of ST segment amplitudes (at J point),
middle of ST segment amplitudes (at J + 1/16 average RR interval), end of ST
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segment amplitudes (at J point + 1/8 average RR interval), and ST segment
amplitudes at J point + 60 msec in all 12-leads.

• T wave measures included: T wave and T prime wave amplitudes, intrinsicoid
times, and areas in all 12-leads. Amplitudes were recorded to the nearest 100th of a
millivolt and times recorded to the nearest millisecond.

Outcome
All-cause mortality, a clinically relevant and unbiased end-point,14 was recorded centrally
by the WHI Clinical Coordinating Center.15

Statistical Analysis
Random Survival Forests—Random survival forest (RSF) analysis8 was employed
using all-cause mortality for the outcome. Candidate predictor variables included all 477
ECG measures described above in addition to 22 baseline demographic and clinical
predictors (Table 1).

Derivation and validation subsets—Two-thirds of the women were randomly selected
for primary analysis (derivation cohort, n = 22,096, deaths=819) and the remainder were
selected for external validation (validation cohort, n = 11,048, deaths=410). When randomly
selecting the derivation and validation cohorts we stratified according to event type (death or
censoring) to ensure a similar event rate in both cohorts. The mortality rates in these cohorts
were similar (Supplementary Material Figure 2).

Forest analysis—Using the derivation cohort, an RSF of 1000 trees was constructed, each
tree from an independent and unique bootstrap sample of the data (Figure 1A). At each node
of the tree, we randomly selected a subset of candidate variables (Figure 1B). For example,
the variable occupying the level 0 branch/node was chosen through a “competition” of 22
randomly selected variables; the number of variables randomly selected is the square root of
the number of total candidate variables (in this case the square root of 499 ≈ 22). For each
of the 22 variables, we split the bootstrap sample into two groups, constructed Kaplan-meier
survival curves, and calculated a log-rank statistic. The variable whose split yielded the
highest log-rank value “won the competition”, and was thus chosen to occupy the node. We
split categorical variables according to their natural categories, and continuous variables at
10 randomly selected cut points.

For each subsequent node of the tree we repeated the same process: random selection of
candidate variables, splitting of each variable with construction of survival plots and
calculation of log-rank statistic, and selection of the best splitting variable. The process
continued down each branch of the tree until we reached a unique subset which contained no
fewer than 3 deaths8, i.e., a terminal node. This approach yielded extensively grown trees on
average having 143 terminal nodes, where each terminal node included a group of women
having similar characteristics and survival outcomes.

Maximal subtrees for identification of predictive variables—As we have described
elsewhere16, the most important variables for prediction were identified as those that most
frequently split nodes nearest to the trunks of the trees (i.e., the root node). Figure 2
demonstrates a random tree with color coding of “maximal subtrees”. A maximal subtree for
a variable v is the largest subtree whose lowest branch is split using v (i.e., no other parent
branches of the subtree are split using v). There may be no maximal subtree, or there may be
several. The shortest distance from the tree trunk to the root of a maximal subtree of v is the
minimal depth of v. For example in Figure 2, income splits the tree trunk and has a minimal
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depth of zero, while age occupies the root of two yellow subtrees with minimal depths of 3
and 6 respectively. The most predictive variables are those whose minimal depth (averaged
over the forest) is smaller than a threshold value determined under the null hypothesis that a
variable is unrelated to the survival distribution.16 For variables like age, in which there are
more than one maximal subtrees, we used only the lowest value of minimal depth for
calculating average minimal depth across the forest. We have previously shown that this
variable approach successfully identifies the strongest predictors with no loss of overall
model accuracy due to excessive parsimony.16

Construction of prediction models—We constructed 8 different prediction models
using the derivation cohort: (Model 1) RSF using all 499 demographic, clinical, and ECG
variables, (Model 2) Cox regression using all 499 variables, (Model 3) I1-penalized Cox
regression using all 499 variables, (Model 4) AIC-penalized Cox regression. (Model 5) RSF
using the 20 variables identified by the maximal subtree algorithm, (Model 6) Cox
regression using the 20 variables identified by the maximal subtree algorithm, (Model 7) I1-
penalized Cox regression using the top 100 RSF variables with lasso parameter selected by
10-fold cross-validation, and (Model 8) AIC-penalized Cox regression using the top 50 RSF
variables.

The choices of 100 variables for Model 7, and 50 variables for Model 8, were arbitrary but
necessary in order for these penalized Cox regression methods to converge.

Validation of prediction models—Predictive accuracy for all models was assessed
using Harrell’s concordance index, both internally (using OOB cross-validation in the
derivation cohort) and externally (using the validation cohort).

We assessed the individual predictiveness of the top variables identified by the maximal
subtrees algorithm by constructing a sequence of nested models and then calculating
measures of discrimination (Harrell’s concordance index) and calibration (Continuous
Ranked Probability Score (CRPS)17), defined as the area under the prediction error curve
using the Brier score) for each. Values were calculated using OOB cross-validation.

We investigated interactions amongst our top 20 variables using linkage hierarchical
clustering anaylsis. Specifics regarding methods and results can be found in Supplementary
Material.

Missing data imputation—Data was missing on 32 of the 499 variables, although very
few of these data were missing (maximum amount missing for a variable: 14.3%; average
missed per variable: 1.5%). Missing data was imputed using the forest method8 such that
imputed data was not guided by outcomes (i.e., survival behavior of patients did not bias
imputation).

Computational methods—Data assembly was performed with SAS version 9.1.3 (SAS
Institute Inc., Cary, NC). Analyses were performed using R version 2.7.2 (www.r-
project.org), using the publically available randomSurvivalForest library18, 19 written by two
of the authors (H.I., U.B.K.). I1-penalization was performed using the coxnet function in the
glmnet library (http://cran.r-project.org/web/packages/glmnet/), and AIC penalization and
fitting was performed using stepAIC from the MASS library (http://cran.r-project.org/web/
packages/MASS/).
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Results
Characteristics and outcomes

Table 1 shows the baseline characteristics of the derivation and validation cohorts. Global
ECG measures are shown in Table 2, and all other individual ECG measures are shown in
Table 3.

During a median follow-up time of 8.1 years (range for survivors 0.5–11.2 years), 1,229
women (3.7%) died. Causes of death included cardiovascular diseases (n=251, 20%), cancer
(n=664, 54%), homicide/suicide (n=13, 1%), accident/injury (n=42, 3%), other/unknown
(n=259, 21%).

Identification of predictors
In the derivation cohort using all demographic, clinical, and ECG predictors, the 20
variables identified by RSF that were most predictive of long-term all-cause mortality
(Figure 3) were the following:

• ECG variables representing autonomic tone

○ Ventricular variability (SDNN, RMS-SD)

○ Ventricular rate

• ECG variables representing atrial conduction

○ P wave durations (P wave intrinsicoid duration in leads V3 and V4, P
wave duration in lead V2)

○ P wave areas (P wave area in lead V2)

○ P wave amplitude (P wave amplitude in lead I)

○ P wave axis (median of all leads)

• ECG variables representing ventricular depolarization and repolarization

○ QT duration (median of all leads)

• ECG variables representing ventricular repolarization

○ T wave areas (T wave area in lead I, T wave area in lead aVL)

○ T wave amplitude (T wave amplitude in lead I)

○ T wave axis (median in all leads)

• Traditional variables

○ Age

○ Waist-to-hip ratio

○ Smoking

○ Income

○ Systolic blood pressure

○ Body mass index
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External validation
We used the validation subset (n=11,048) to externally validate eight RSF and Cox
prediction models (Table 4). The Cox regression models (Models 2–4) utilizing all 499
variables did not converge. The RSF and Cox regression models constructed with covariates
selected by various variable selection methods demonstrated similar discriminative accuracy
in the derivation and validation datasets. Hazard ratios and 95% confidence intervals derived
from Cox model (Model 6) are shown in Supplementary Material Table 1.

We assessed the individual contribution of 20 variables (6 demographic / clinical variables,
and 14 ECG variables) selected by RSF variable selection method to discrimination (c-
index) and calibration (CRPS) in sequential nested RSF models, where the first model
utilized only age, the second age and waist-to-hip ratio, the third age, waist-to-hip ratio, and
smoking, and so forth. Figure 4 shows that these performance measures stabilized in the
range of 15–20 variables, near the size of the model identified by the primary analysis
(Figure 3, Table 4).

Discussion
Among 33,144 post-menopausal women without known cardiovascular disease or cancer,
with normal resting electrocardiograms by Minnesota and Novacode criteria, we found that
20 variables were independently predictive of long-term mortality, 14 of which were
electrocardiographic biomarkers representing autonomic tone (ventricular rate and
variability), atrial conduction (P wave durations and areas), ventricular depolarization (QT
duration), and ventricular repolarization (T wave axis, amplitude, and areas). Selected plots
demonstrating adjusted predicted survival for an ECG biomarker from each one of these
four categories are shown in Figure 5 (all others shown in as Supplementary Material Figure
3). Further, we found that parsimonious prediction models incorporating these ECG
measures, along with demographic and clinical characteristics selected by an RSF variable
selection procedure, yielded better predictive accuracy than non-parsimonious RSF model
using all variables (Table 4). Lastly, parsimonious RSF model populated by RSF variable
selection procedure was sparser (i.e., containing less covariates) than parsimonious
regression models populated by various other variable selection approaches, but performed
similarly well in terms of prediction (Table 4). While other investigators have reported on
the predictive utility of ECG findings in women1–3, we are the first to use an algorithmic
approach to simultaneously assess hundreds of digitally measured ECG variables without
the bias of pre-selection.

Utilizing hundreds of electrocardiographic measures for prediction modeling presents a
unique challenge. Many of these variables are highly correlated, may have complex
interactions that are difficult to detect, and may have non-linear associations with outcome.
Traditional regression and variable selection methods perform poorly under these types of
conditions, and tend to produce biased results.6 Our findings confirm these challenges.
When we attempted to employ standard Cox modeling we were unable to generate models
that converged (Table 4). Additionally, for the penalized Cox regression modeling (Model 7
and Model 8), it was necessary to restrict the selection of the model variables in an arbitrary
manner in order for these methods to converge. To address these challenges we used RSF
methodology both for risk modeling and variable selection.

Machine learning, the scientific discipline from which RSF methodology is derived, is a
field concerned with the design and development of algorithms that allow computers to
change behavior based on data.20 This approach assumes that “nature produces data in a
black box whose insides are complex, mysterious, and at least, partly unknowable.” 6 As
such, instead of attempting to model data from the black box (i.e., traditional regression),

Gorodeski et al. Page 7

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2014 January 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



machine learning is concerned with iterative algorithms such as RSF that are intensely
focused on prediction.

Unlike classification and regression trees (CART) where only a single tree is constructed,
RSF uses a large number of survival trees for prediction and variable selection.8 Growing
extensive trees with hundreds of decision branches is a general principle of RF
methodology.7 Doing so yields trees with low bias (i.e., prediction models that better
estimate the predictor being estimated). To ensure low variance (i.e., amount of variation
within predicted results), trees must be decorrelated. This is accomplished by introducing
two forms of randomization when growing a tree (Figure 1). First, trees are grown using
independent bootstrap samples of data. Second, each tree is grown by randomly selecting a
subset of candidate variables for splitting at each node. Employing this two-stage
randomization yields stable and accurate inference and resolves the instability of CART.21

RF has been shown to be accurate, and comparable to state-of-the-art predictors such as
bagging22, boosting23, and support vector machines24. Further, RF has been shown to be
highly effective in problems involving large numbers of correlated variables.7, 16, 25–27

Examples in the literature include genetics28, 29, environmental science30, and
rheumatology31.

We believe that RSF analysis may have potential future applications in clinical practice.
RSF prediction model can be stored as an object in the statistical software, and then be used
at a later time on external datasets. This is possible because the random seed chain used to
generate the original model is stored. Thus once a model is generated, it can be used
repeatedly on test data sets and will yield identical results if repeated on the same data set.
Further, if the original data is used on the restored model, the results will be identical to that
of the original analysis. Moreover, this applies even when the training and/or test data have
missing values because we also store the seed chain used to impute missing data values.
Thus when the model is restored the seed chain used to impute data is re-initialized and the
original forest and its imputation mechanism are reproduced exactly as before. These
properties may allow RSF to be used as a prediction tool in clinical settings. It is
technologically feasible to create web-based or even hand-held RSF "calculators" that could
be used in practice.

Our study has several important limitations. First, the WHI clinical trials enrolled mostly
white, highly-educated women, and may therefore have limited generalizability. Second,
many of the clinical variables were by self-report, and data regarding standard blood
biomarkers were lacking. Lastly, we did not have an external dataset (replication cohort)
with which to validate our prediction models, although we attempted to do so by setting a
portion of our data aside for validation. We are not aware of a similar cohort of post-
menopausal women with detailed ECG data to allow such replicaton/validation. It is
possible that several other NHLBI cohorts, including the Framingham Heart Study, may
soon digitize ECG data and make it available to investigators.

In summary, we found that electrocardiographic biomarkers representing autonomic tone,
atrial conduction, and ventricular depolarization and repolarization were independently
predictive of long-term mortality in post-menopausal women who had no known
cardiovascular disease or cancer, and had normal ECGs by standard clinical criteria. These
findings suggest that further research will be necessary to identify underlying
pathophysiological mechanisms and potential therapeutic implications. Additionally, we
introduced RSF, a machine learning approach to data analysis, which may be of utility in
other complex data problems in cardiovascular medicine.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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What is Known

• Prior studies demonstrated that amongst post-menopausal women single ECG
measures, or small groups of ECG measures, are prognostic of long-term
mortality.

• Simultaneous contribution of hundreds of ECG measures to prediction of
mortality in this population has not been studied.

What the Study Adds

• We use random survival forests, a novel “machine learning” statistical approach,
to demonstrate that amongst apparently healthy post-menopausal women with
clinically normal ECGs, ECG biomarkers related to autonomic tone, atrial
conduction, and ventricular depolarization and repolarization have long-term
prognostic significance.
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Figure 1.
Approach to constructing a Random Survival Forest. (A.) One thousand bootstrap samples
of women were derived from full cohort, and (B.) each sample was then used to construct a
unique and independent decision tree.
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Figure 2.
Example of one decision tree from forest. Depth of a branch (node) is indicated by numbers
0–10. Highlighted are maximal subtrees (i.e., largest subtree whose lowest branch is split
using variable of interest) for the variables income (blue), and age (yellow). Income has one
maximal subtree at minimal depth 0. Age has two maximal subtrees at minimal depths 3 and
6.
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Figure 3.
Minimal depth (variable importance) for (A.) all variables averaged out from all trees in
forest (1,000 trees), and (B.) zoomed in on top 20 variables. Dashed blue line is threshold
for filtering variables: variables to left of line are predictive. On y-axis is ranking of
variables where age is most predictive, then waist-to-hip ratio, and so forth.
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Figure 4.
Measures of (A.) discrimination and (B.) calibration using validation cohort for nested
models with variables ordered by increasing minimal depth for top 20 variables. First model
included top variable (age), second model included top two variables (age and waist-to-hip
ratio), third model included top three variables (age, waist-to-hip ratio, and smoking), and so
forth.
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Figure 5.
Adjusted-predicted survival (%) at 5, 8, and 10 years for (A.) ventricular rate, (B.) P-wave
duration (lead V2), (C.) T-wave amplitude (lead I), and (D.) QT duration (median of all
leads).
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Table 1

Baseline Characteristics

Derivation
(n=22,096)

Validation
(n=11,048)

Age, y 61 (50–79) 61 (50–79)

Ethnicity

  White 18,395 (83%) 9,172 (83%)

  Black 1,792 (8%) 925 (8%)

  Hispanic 975 (4%) 511 (5%)

  American Indian 94 (0%) 31 (0%)

  Asian/Pacific Islander 541 (2%) 270 (2%)

  Unknown 299 (1%) 139 (1%)

Smoking

  Never smoked 11,436 (52%) 5,738 (52%)

  Past smoker 9,018 (41%) 4,463 (40%)

  Current smoker 1,642 (7%) 847 (8%)

Hypertension 5,715 (26%) 2,839 (26%)

Treated Diabetes 628 (3%) 344 (3%)

Systolic Blood Pressure, mmHg 124 (113 to 135) 124 (113 to 135)

Diastolic Blood Pressure, mmHg 75 (70 to 81) 75 (70 to 81)

Body Mass Index, kg/m2 27.5 (24.3 to 31.3) 27.4 (24.4 to 31.5)

Statin Use 1,116 (5%) 538 (5%)

Other Antihyperlipidemic Medication Use 1,304 (6%) 634 (6%)

Aspirin Use 4,013 (18%) 1,987 (18%)

Bilateral Oophorectomy 3,370 (17%) 1936 (18%)

Hysterectomy 8,430 (38%) 4,308 (39%)

Waist-to-Hip Ratio 0.80 (0.76 to 0.85) 0.80 (0.76 to 0.85)

Pregnancy

  Never Pregnant 1864 (8%) 929 (8%)

  1 1,534 (7%) 751 (7%)

  2–4 13,129 (59%) 6,550 (59%)

  5+ 5,569 (25%) 2,818 (26%)

HRT Usage Status

  Never Used 10,210 (46%) 5,089 (46%)

  Past User 3,763 (17%) 1,810 (16%)

  Current User 8,123 (37%) 4,149 (38%)

Income

  Less than $10,000 807 (4%) 373 (3%)

  $10,000 to $19,999 2,285 (10%) 1,206 (11%)

  $20,000 to $34,999 4,997 (23%) 2,446 (22%)
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Derivation
(n=22,096)

Validation
(n=11,048)

  $35,000 to $49,999 5,198 (24%) 2,575 (23%)

  $50,000 to $74,999 4,410 (20%) 2,233 (20%)

  $75,000 to $99,999 2,023 (9%) 1,012 (9%)

  $100,000 to $149,999 1,288 (6%) 639 (6%)

  $150,000 or more 623 (3%) 285 (3%)

  Unknown 465 (2%) 279 (3%)

Alcoholic Drinks Per Week 0.4 (0-2.7) 0.4 (0–2.7)

Marital Status

  Never Married 908 (4%) 463 (4%)

  Divorced / Separated 3490 (16%) 1,813 (16%)

  Widowed 3270 (15%) 1,685 (15%)

  Presently married / Living as married 14428 (65%) 7,087 (64%)

Medical Insurance 20,716 (94%) 10,372 (94%)

Education

  0–8 Years 293 (1%) 158 (1%)

  Some high school 715 (3%) 342 (3%)

  High School Diploma / GED 3,958 (18%) 1,871 (17%)

  School After High School 8,714 (39%) 4,283 (39%)

  College Degree Or Higher 8,416 (38%) 4,394 (40%)

Continuous variables are medians (25th to 75th percentile), except for age which is median (range)
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Table 2

Global ECG measures

Derivation
(n=22,096)

Validation
(n=11,048)

Ventricular rate (beats per minute) 65 (59, 71) 65 (59, 71)

Median PR duration (ms) 158 (144, 172) 156 (144, 172)

Median QT duration (ms) 400 (382, 418) 400 (382, 418)

Median QTc interval (ms) 413 (406, 423) 413 (406, 423)

Median P wave axis (degrees) 54 (42, 65) 55 (42, 65)

Median QRS axis (degrees) 27 (8, 48) 27 (8, 48)

Median T wave axis (degrees) 40 (28, 51) 40 (28, 51)

SDNN (ms) 16 (11, 25) 17 (11, 25)

RMS-SD (ms) 17 (11, 26) 17 (11, 26)

Variables are medians (25th to 75th percentile)
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Table 4

C-index values

# variables in
model

Derivation Cohort Validation Cohort

n
Deaths

22,097
819 (3.7%)

11,048
410 (3.7%)

Prediction models utilizing all covariates

  Model 1 RSF 499 0.6815 0.6710

  Model 2 Cox 499 Did not converge

  Model 3 I1-penalized Cox 499 Did not converge

  Model 4 AIC-penalized Cox 499 Did not converge

Prediction models utilizing covariates selected by variable selection methods

  Model 5 RSF 20 0.6992 0.6934

  Model 6 Cox 20 0.6954 0.6975

  Model 7 I1-penalized Cox 59 0.7003 0.6978

  Model 8 AIC-penalized Cox 22 0.7005 0.6980

Models 1–4 utilize all 499 demographic, clinical, and ECG variables available.

Models 5–6 utilize 20 variables selected by RSF variable selection method (Demographic/clinical: age, waist-to-hip ratio, smoking, income,
systolic blood pressure, body mass index. ECG: SDNN, ventricular rate, T-wave area (lead I), P-wave intrinsicoid duration (leads V3, V4), P-wave
duration (lead V2), T-wave amplitude (lead I), RMS-SD, T-wave axis, P-wave axis, P-wave amplitude (lead I), T-wave area (lead aVL), QT
duration, P-wave area (lead V2))

Model 7 utilizes 59 variables selected by lasso approach from top 100 RSF variables (Demographic/clinical: age, waist-to-hip ratio, smoking,
systolic blood pressure, income, body mass index, hypertension, education, diastolic blood pressure, marital status, alcoholic drinks per week,
treated diabetes. ECG: SDNN, P-wave intrinsicoid duration (leads I, aVL, V2, V4, V5, V6), ventricular rate, P-wave duration (leads I, aVL, V2,
V3, V6), RMS-SD, T-wave axis, P-wave axis, R-wave duration (leads aVF, V1, V4), P-wave area (leads I, V1), QRS intrinsicoid duration (lead I),
T-wave intrinsicoid duration (leads I, III, aVL), P-wave amplitude (leads I, aVL, V5), T-wave area (leads aVR, V3), R-wave amplitude (leads II,
V1, V5, V6), R-wave intrinsicoid duration (leads II, aVF, V1, V3, V4), P’-wave area (lead V1), R-wave area (leads III, aVL, V3, V6), T-wave
amplitude (lead V1), QTc duration, P’-wave amplitude (lead V2))

Model 8 utilizes 22 variables selected by AIC stepwise approach from top 50 RSF variables (Demographic/clinical: age, waist-to-hip ratio,
smoking, systolic blood pressure, income, body mass index, hypertension, education, marital status. ECG: ventricular rate, P-wave duration (lead
V2), T-wave axis, P-wave axis, R-wave duration (lead V4), P-wave area (lead I), P’-wave intrinsicoid duration (lead aVL), QRS intrinsicoid
duration (lead I), T-wave area (leads aVR, aVL), P-wave amplitude (lead I), R-wave intrinsicoid duration (lead aVF), R-wave area (lead V5))
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