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Medical imaging has become an absolutely essential diagnostic tool for clinical practices; at present, pathologies can be detected
with an earliness never before known. Its use has not only been relegated to the field of radiology but also, increasingly, to computer-
based imaging processes prior to surgery. Motion analysis, in particular, plays an important role in analyzing activities or behaviors
of live objects in medicine.This short paper presents several low-cost hardware implementation approaches for the new generation
of tablets and/or smartphones for estimating motion compensation and segmentation in medical images. These systems have been
optimized for breast cancer diagnosis using magnetic resonance imaging technology with several advantages over traditional X-
ray mammography, for example, obtaining patient information during a short period. This paper also addresses the challenge of
offering a medical tool that runs on widespread portable devices, both on tablets and/or smartphones to aid in patient diagnostics.

1. Introduction

Medical imaging [1] as a diagnostic technique in medicine
requires complex image analysis of image sequences obtained
by a plethora of variety, such as ECG, X-ray,MRI, ultrasound,
CT, and so forth. Magnetic resonance imaging (MRI) [2]
technology is one of the most promising tools over other
methods, like conventional X-ray mammography, regarding
breast cancer diagnosis. Nowadays, X-ray images still have a
higher spatial resolution than MR images, but this technique
has the advantages of producing natural tridimensional
images and being able to noninvasively monitor the contrast
agent concentration in the depicted tissue over time.

On other hand, motion estimation is still an open
problem with important applications to medical imaging.
Attending to the estimation of a pixelmotion inside the image
sequence, there are many models and algorithms that could
be classified as belonging to the matching domain approx-
imations [3], energy models [4], and gradient models [5].
Related to this last family, different studies [6–8] show that
this represents an admissible choice for keeping a tolerable
trade-off between accuracy and computing resources. For

designing systems operating efficiently,many challengesmust
be dealt with, such as robustness, static patterns, illumination
changes, different kinds of noise, contrast invariance, and so
forth.

Regarding the hardware platform used, the portable
industry in recent years has dramatically increased the
importance of the processing hardware elements.The iPhone
3GS offeredmore than twice the performance of the first- and
second-generation iPhones. As the market becomes more
demanding, many processor manufactures have specialized
in using smartphones for its own solutions, such as Cortex
A8, Snapdragon, ARM11, Tegra, Armada, OMAP, and more.
Nowadays, device manufacturers boast about their phones’
computer-like capabilities, from desktop-like Internet brows-
ing to HD video playback and, of course, enough computing
capability to face up scientific processing [9, 10].

The ARM instruction set has become the reference archi-
tecture in low-power devices, so there aremany general CPUs
able to run compatible ARM code; this fact creates tendency
lines in reference processors that fit with these instruction
sets, and so the companies produce the chipset following the
ARMdirectives. Some companies, such as Texas Instruments,
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Samsung, and Nvidia, adopt the ARMCPU reference design,
whereas others, like Qualcomm andMarvell, license only the
instruction set and create their own processors to fit them.

The popularity of laptops overtook desktop PCs some
time ago; mobile devices are currently among the most
ubiquitous devices around. Mobile devices are now emerging
in two directions: on one hand, they are pushing upward into
the territory of Intel Atom-powered netbooks; on the other
hand, they are trickling downwards in price, replacing high-
end feature phones near the $100 mark.

More than 2 billion ARM chips [11] are shipped every
year, beating Intel’s Atom devices. The role of GPUs (Graphic
Processing Units) is to provide hardware acceleration for
tridimensional graphics applications like games, CAD, and
so forth. However, in recent years, their role has also become
responsible for drawing the main user interface for desktop
Operating Systems (OS). On most modern smartphone
platforms (iPhone OS, Android, and Palm WebOS, with
Windows Mobile as an exception), the OS’s user interface
itself is composited, meaning it is rendered by the GPU [12].
This makes the interface feel a lot smoother than it would
if it were displayed calculations on the already resource-
constrained CPU.

Regarding the motion estimation for embedded systems,
there are other gradient optical flow models implemented in
hardware; some belong to the Lucas and Kanade algorithm
[13, 14], and some belong to Horn and Schunk approxima-
tions [15, 16].

It is worth paying attention to previous implementa-
tions [17–19] of the sophisticated and complex Multichannel
Gradient Model (McGM) algorithm [20]; this bioinspired
algorithm is required to deal with many challenges, such
as robustness, static patterns, illumination changes, different
kinds of noise, contrast invariance, and so forth. Also the
McGM is able to detect correct motion related to optical
illusions or avoid operations like matrix inverse or iterative
methods that are not biologically justified [15]. We must
carefully select a model that carries out these kinds of
requirements.There are many implementations for this algo-
rithm [17–19], although we will focus on the Carma board-
based [21] implementation. Despite this system’s ability to
manage complex situations better than others algorithms in
real environments [20, 22–25] and mimic some behaviors
of mammals [22, 25], its computational complexity is high
and still not appropriate for the kind of microprocessors
considered.

Under the assumptions mentioned above, in this paper
we present a tool to aid medical diagnosis developed ad
hoc for mobile devices like tablets and/or smartphones. Not
only has their acceptance and reduced price driven diffusion
but their ever-increasing performance computations offer the
opportunity to use them in tasks such as medical diagnosis.
This paper studies the feasibility of using this modern
technology in a medical scenario, where medical images are
processed to aid in medical decisions.

The present paper is organized as follows. First, the
stages of the Lucas and Kanade model and Otsu’s method
basic equations for segmentation based on histogram are
explained very briefly. After that, the basic equations for

Otsu’s method are explained. Next, the implementation is
analyzed using two kinds of microprocessors—an Intel Atom
and an ARM processor from the Nvidia Carma board.
Several comparisons are performed using existing optical
flow implementations in other embedded devices commonly
used formobile platforms.Additionally, output images for the
final segmented system are shown. Finally, quality results and
associated costs are presented for the hardware.

2. Optical Flow Gradient-Based
Computation and Segmentation

2.1. Optical Flow Estimation and Lucas and Kanade. Assum-
ing that an object moves relative to an imaging device, its 2-
dimensional projection usually moves within the projected
image. The projection of the 3-dimensional relative motion
vectors onto the 2-dimensional detector yields a projected
motion field often called the “image flow” or “motion field.”
Unfortunately, it is impossible to access the velocity field
directly, since optical sensors collect luminance distributions
and no speeds. However, it is feasible to compute the motion
of local regions of the luminance distribution, and it is this
motion field that is referred to as optical flow. The optical
flow provides an approximation to the velocity field, but
it is uncommonly equal. There are a number of problems
to overcome in order to compute the optical flow from
the changes in the luminance distribution. First, we can
only calculate the motion of patterns, not isolated points, in
the luminance distribution. This means that the luminance
information must be combined in some way over a finite
spatial neighborhood around each point, where we want to
measure motion.The so-called aperture problem arises when
we try and measure the two components of image velocity
using a neighborhood that does not keep enough luminance
structure [26–28].

In such situations, we are unable to constrain the mea-
surement to a single solution (Figure 1). Increasing the size of
the neighborhood permits us to constrain the measurement,
but collecting information over a large region increases
the likelihood of pooling over motion boundaries and over
smoothing the results, which has been referred to as the
general aperture problem [29].Themotion algorithms seek to
recover the optical flow field that is the best approximation to
the projected velocity field. However, using this information
to draw conclusions about the 3-dimensional environment is
a difficult process.

The estimation of the velocity field using optical flow is
an ill-posed problem, since there are an infinite number of
velocity fields that can cause the observed changes in the
luminance distribution. Additionally, there are an infinite
number of 3-dimensional motions in the real world that
could yield a particular velocity field. External knowledge
about the behavior of objects in the real world, such as
rigid body motion constraints, are required in order to make
use of optical flow. Despite the problems, the optical flow
information is a rich array of vectors that has both local
and global properties [30]. The optical flow field can thus be
subjected to many higher-level interpretations [31, 32].
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Figure 1: The aperture problem.There are infinite solutions for this
problem.

The Lucas and Kanade method [33] is a well-known
algorithm, and we have applied the original description of
the model [34] while adding several variations to improve
the viability of the hardware implementation. We present a
simplified scheme of the algorithm, as follows.

The Lucas andKanademodel computes optical flowusing
a gradient technique [35] that makes use of space-temporal
derivative filters. The model comes from the basic intensity
conservation over the time (1), where 𝑥, 𝑦, and 𝑡 are the
coordinates of the sequence. Developing the expression (1),
we reach expression (2),
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The Lucas and Kanademodel assumes that the motion vector
really does not change in the studied vicinity 𝑉. Considering
the error to minimize the motion constraint expression (2):
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Solving 𝜕𝐸/𝜕𝑢(𝑡) = 0; 𝜕𝐸/𝜕V(𝑡) = 0 and grouping them all
together, we find an algebraic system expressed by (4), which
means the LMS estimation of the optical flow in the centered
pixel of the vicinity 𝑉. The symbol ̂ denotes the estimator
of the corresponding magnitude. The resulting optical flow
estimated is dense:
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So the final notation is
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The subindex in the equationmeans the derivatives computed
by separable filtering (Gaussian derivatives or Gabor func-
tion).

2.1.1. Segmentation by Histogram Using the Otsu Method. The
OtsuMethod [36, 37] applies an automatic threshold in order
to efficiently segment the image; it is based on a discriminant
criterion to optimize the function of separation of obtained
classes in gray levels. We describe very briefly the method
used: if supposing every pixel forms an image represented
by gray levels [1, 2, . . . , 𝐿], the number of the pixels at level
𝐼 is denoted by 𝑛

𝑖
and the total number of pixels by 𝑁.
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The gray-level histogram is normalized regarding a probabil-
ity distribution expression:
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In this step, we are ready to define the following relation for
the choice of 𝑘 and the variance based on first-order statistics
(class means) as
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The optimal threshold 𝑘∗ that maximizes 𝜎2
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is selected by

a sequential search using the cumulative quantities expressed
in (6) and (7)
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3. System Implemented

3.1. Patients and MR Imaging. Breast MRI was performed on
patients with indeterminate mammographic breast lesions.
All patients were consecutively selected after clinical exami-
nation,mammography in standard projections (craniocaudal
and oblique mediolateral projections), and ultrasound. Only
lesions classified BIRADS 3 and 4 in mammography were
selected. In addition, at least 1 of the following criteria had
to be present: nonpalpable lesion, previous surgery with
extensive scarring, and location difficult for biopsy (e.g.,
close to chest wall). Histologic findings were malignant in
14 and benign in 17 lesions. Lesion size was derived from
mammography images. Mean size of malignant lesions was
1.2 cm (median = 1.0 cm, range = 0.4–3.5 cm); mean size
of benign lesions was 1.1 cm (median = 0.9 cm, range =
0.3−3.0 cm).

MRI was performed with a 1.5 T system (Magnetom
Vision, Siemens, Erlangen, Germany) equipped with a ded-
icated surface coil to enable simultaneous imaging of both

Motion

+

+

segmentation

Merge

Output

images

compensation

Figure 2: Scheme of the implemented system.

breasts. The patients were placed in a prone position.
Transversal imageswere acquiredwith a STIR (short TI inver-
sion recovery) sequence (TR = 5600ms, TE = 60ms, FA =
90∘, TI = 150ms, with a matrix size of 256 × 256 pixels, sliced
4mm thick).

Then, a dynamic T1 weighted gradient echo sequence
using a 3D FLASH (fast low-angle shot pulse sequence) was
performed (TR = 12ms, TE = 5ms, FA = 25∘) in transversal
slice orientation with a matrix size of 256 × 256 pixels and an
effective slice thickness of 4mm. FA (FlipAngle), STIR (Short
Tau Inversion Recovery), TE (Echo Time), and TR (Pulse
Repetition Interval) are abbreviations for MRI modalities.
The dynamic study consisted of 6 measurements with an
interval of 83 s. The first frame was acquired before injection
of paramagnetic contrast agent (gadopentetate dimeglumine,
0.1mmol/kg body weight, MagnevistTM, Schering, Berlin,
Germany) immediately followed by the 5 other measure-
ments.

3.2. Scheme of the System. Figure 2 shows the algorithm
implemented in the embedded system. In the first stage, dense
motion is estimated, and the zone corresponding to the range
of motion is determined, segmented, and valued using the
histogram-based system. It is important to note that this
system is adjustable and configurable since the segmented
motion values can fit the diagnostic needs, as determined for
each individual case. The first system used here was designed
using the Carma platform [38] from the SECO company [21],
which integrates an Nvidia Tegra CPU with 3 Quad-Core
ARMCortex-A9 CPUs.The second is based on an Intel Atom
(2x Intel(R) Atom (TM) CPUD510). In Figure 3, prototyping
boards that contain the processors to be programmed are
shown.

4. Results

In this section, results are shown in the boards based on
ARM and ATOM. First we discuss the results in terms
of performance (execution time) in both boards and then
evaluate the visual results obtained in the proposed medical
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(a) (b)

Figure 3: Scheme of the low-cost system implemented at different commercial microprocessors.

aid system.Wehave chosen two systems that incorporate low-
power processors which are the base of many mobile devices.
Additionally, we have measured how much is affecting the
attentionwindowedmotion-zone to bemonitored depending
on the specific medical diagnostic to be computed.

As we can see in Tables 1 and 2, the performance in
terms of seconds/slides (breast cancer stimuli is 256 × 256

and its brain fMRI counterpart is 95 × 69) and final power
consumption for both input-stimuli are shown. The results
observed demonstrate that system implementation is totally
competitive in terms of response time and completely feasible
as a tool for medical help. Table 1 reflects the execution times
observed in the sequential application (one processor Atom
versus one ARM) and the best configuration obtained in
terms of performance (best computing times) corresponding
to the exploitation of parallelism with the use of multiple
processors. The exploitation of several processors is per-
formed by means of task-level parallelism. Parallelization
scheme is based on the uniform distribution of the compu-
tational workload among the available processors by means
of OpenMP programming paradigm. Accelerations achieved
range between 2.2x and 3.3x times faster. For the fMRI brain
test, task-level parallelism reports are hardly beneficial; this
fact is motivated by the granularity of the problem and the
lack of parallelism available to be exploited. The degree of
parallelism available in the test considered (lower andmiddle
ranges) makes it unsuitable for the exploitation of additional
hardware such as GPU as in the Carma board (the cost of
startup, exchange information does not outweigh the benefits
that could be achieved in accelerator or GPU). This table
also includes a comparison of consumption (peak energy
demand) in both systems, so in global terms, we can conclude
that a mobile system based on ARM processor reports better
performance rates with less power requirements. We would
like to highlight that every stage belonging to the system
has been designed as customizable, scalable, and modular,
containing this system a processing scheme belonging to the
most gradient-based optical flow models. As a conclusion,
we can affirm that the platforms considered are feasible to
process at high scale motion and segmentation attending to
the performance obtained at different scale levels.

From the standpoint of the system usefulness and visual
results provided, they are also showing some screenshots of

Table 1: Summary of the final performance (in seconds/slide) for
both processors considered and three different motion attention
zone selected. (Window) for breast cancer stimuli.

Breast cancer stimuli

Performance (secs/slide) ARM v7 Intel
ATOM Final density

Window size = 5
1 CPU 1,22 0,35 100,00%
Best config. 0,75 0,16

Window size = 7
1 CPU 2,12 0,61 100,00%
Best config. 1,18 0,24

Window size = 9
1 CPU 3,36 0,92 100,00%
Best config. 1,85 0,28

Power consumption 8W 13W

Table 2: Summary of the final performance (in seconds/slide) for
both processors considered and three different motion attention
zone selected. (Window) for fMRI Brain Stimuli.

fMRI brain

Performance (secs/slide) ARM v7 Intel
ATOM Final density

Window size = 5 0,02 0,02 100,00%
Window size = 7 0,04 0,01 100,00%
Window size = 9 0,06 0,01 100,00%
Power consumption 8W 13W

the medical analysis generated in a mobile device. Figure 4
shows a collection of slides from the MRI breast cancer
test described in Section 3. The output image displayed
on the mobile device is colored for the sake of clarity in
recognition, meaning clear-red zones high motion density.
Meanwhile Figure 5 illustrates the motion vector map of one
slide; Figure 6 addresses a zoom for motion estimation +
segmentation output image, where it is possible to recognize
the flow vectors corresponding to the adjustable window
motion attention zone at different scales in the upper-right
and -left part of the image. Additionally, Figure 7 shows
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(a) slide = 1 (b) slide = 5 (c) slide = 10

(d) slide = 15 (e) slide = 20 (f) slide = 25

(g) slide = 30 (h) slide = 35 (i) slide = 40

(j) slide = 45 (k) slide = 50 (l) slide = 55

Figure 4: Twelve different slides from the MRI image described in Section 3. The image output from the system is colored for the sake of
clarity in recognition. White zones mean high motion density.

Figure 5: Scheme for motion vector map of one slide.
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Figure 6: Zoom performed in the output image. Flow vectors corresponding to the adjustable window motion attention zone are shown at
different scales in the upper-right and -left part of the image.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m) (n) (o)

(p)

Figure 7: Scheme of the brain image fMRI and motion segmented using the Lucas and Kanade and the Otsu methods.
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a collection of the brain image fMRI test displayed on a tablet
where motion segmentation have been performed using the
Lucas and Kanade and the Otsu methods.

5. Conclusion

This work describes the implementation of a low-cost hybrid
system specially designed for mobile devices in medical
scenarios where medical images are processed to aid in
medical diagnoses and decisions. This system is specifically
tuned for breast MRI based on dense motion estimation
and segmentation, which can aid specialists in providing
rapid attention to breast motion; the present platform can
be used as a starting point for motion compensation. The
technology can also be utilized for medical diagnosis for
remote medicine. These algorithms have been implemented
using the same processors as those used in mobile devices,
such as tablets, smartphones, and so on.

Our results have shown that the algorithm is able to
detect and visualize motion artifacts with high accuracy. We
are currently improving the system with the hierarchical
multiscale optical flow algorithm, and we will evaluate the
achieved motion correction based on receiver operating
characteristic (ROC) over different embedded GPUs in order
to export that to mobile devices as well.
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