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Abstract
Breast cancer cells develop resistance to endocrine therapies by shifting between estrogen receptor
(ER)-regulated and growth factor receptor (GFR)-regulated survival signaling pathways. To study
this switch, we propose a mathematical model of crosstalk between these pathways. The model
explains why MCF7 sub-clones transfected with HER2 or EGFR show three GFR-distribution
patterns, and why the bimodal distribution pattern can be reversibly modulated by estrogen. The
model illustrates how transient overexpression of ER activates GFR signaling and promotes
estrogen-independent growth. Understanding this survival-signaling switch can help in the design
of future therapies to overcome resistance in breast cancer.
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1. Introduction
Mammalian cells can switch between different signaling pathways to achieve distinct
physiological goals in response to environmental stimuli, as exemplified by immune cell
differentiation [1]. This plasticity is important for normal cells to differentiate properly and
to survive in stressful environments. In cancer cells, this plasticity often results in drug
resistance including acquired resistance to anti-estrogenic drugs.

The estrogen receptor (ER) and growth factor receptor (GFR) pathways are major drivers of
survival and proliferation in 85% of breast tumors [2,3]. In clinical practice, expression of
ERa (the most prevalent of two ER genes) and HER2 (a major GFR and member of the
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EGFR superfamily) are validated biomarkers used to determine treatment strategies for
individual patients [4]. Approximately 70% of breast cancers express ERα [5], and various
endocrine therapies have been developed to interfere with ER action [5]. Antagonizing GFR
pathways (e.g., using trastuzumab) in HER2+ breast cancer also improves disease-free and
overall survival for breast cancer patients [6]. However, the ultimate efficacy of therapies
targeting individual pathways is not satisfactory. For example, tamoxifen successfully
reduces by one-third the annual death rate from breast cancer, but one-third of tamoxifen-
treated women develop recurrent disease within 15 years [5]. Resistance to anti-estrogens or
GFR pathway antagonists also develops in human breast cancer cell lines [7–9].

We have used mathematical modeling guided by experimental observations to explore the
mechanism underlying acquired resistance to endocrine therapies as driven by the ER–GFR
switch. Acquired resistance could arise by activation of a compensatory escape pathway
when the normal driver pathway is inhibited [3], the so-called ‘hybrid-car’ model of breast
cancer [10]. Since breast cancer cells can switch reversibly and robustly between ER and
GFR pathways for proliferation and survival [3,10], blocking either the ER or GFR pathway
will usually result in activation of the other, allowing some cells to survive and eventually
resume proliferation. Evidence for a close regulatory relationship between ER and GFR
signaling includes the reciprocal expression of ER and GFR in most breast cancers [11], and
activation of GFR pathway components (HER2, EGFR, MAPK, PI3K, AKT, mTOR, NFjB
etc.) as compensatory responses to anti-estrogens [5,12–14]. Interestingly, these
compensatory processes are reversible after withdrawing the endocrine treatment [15].
Moreover, recent evidence indicates that ER negative (ER–) breast cancer cells may develop
resistance to GFR pathway antagonists by restoring the ER pathway and hence becoming
responsive to anti-estrogens [16,17].

ER and GFR are sometimes positively associated in breast cancers [18,19]. Whether ER and
GFR are negatively or positively correlated depends on how ER is activated. ER can be
activated either by binding to 17β-estradiol (E2, the primary estrogen present in breast
tumors) to form an active E2:ER complex, or by phosphorylation (ER-P) by various kinases
(e.g., ERK and AKT) at multiple sites [5,20,21]. E2:ER has an inhibitory effect on GFR. E2
withdrawal can release the inhibition of ER on GFR expression and NFjB activity [22–26],
consistent with the fact that E2:ER binds the promoter region of GFR genes (e.g., HER2 and
EGFR) and acts as a repressor [27,28]. However, E2-independent ER-P is positively
associated with GFR, and it can up-regulate certain ligands (e.g., TGFα, EGF and
amphiregulin) of the GFR signaling network, which in turn activate the kinases that
phosphorylate more ER [29–31]. This auto-activation loop has been implicated in
tamoxifen-resistance [31,32]. NFκB, a major integrator of the GFR signaling network, is
involved with E2:ER in a mutual-inhibition feedback loop [24,33]. NFκB also controls the
expression of a broad spectrum of genes regulating important cellular behaviors including
cell differentiation [34,35]. In particular, NFκB activates the transcription factor TWIST and
represses the expression of E-cadherin, which in turn enhances the epithelial–mesenchymal
transition (EMT) in breast cancer [36]. EMT is associated with a de-differentiation process
whereby epithelial-like breast cancer cells increase their ‘stemness’ and undergo a
phenotypic transition from HER2– to HER2+ [37]. EMT in breast cancer cells is likely due
to genome-scale epigenetic reprogramming, including the promoter activity of HER2 [38].
Epigenetic changes such as methylation or acetylation can occur during differentiation or
de-differentiation and are often reversible [36–38].

While the crosstalk between ER and GFR pathways in breast cancer, especially in MCF7
cells, has been widely studied [5,13,20,22,31,39,40], a comprehensive, dynamic view of
ER–GFR crosstalk is still lacking. Previously, we proposed a simplified model that could
account for the effects of E2 withdrawal on the bimodal distribution of GFR (HER2 or
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EGFR) in MCF7 cells [41]. However, this model combined all components of the GFR
pathway into one variable and required an unreasonably slow rate constant to fit the
experimental data. A more realistic model would allow the GFR pathway to exhibit both
rapid (e.g., post-translational modifications of GFR proteins) and slow modifications (e.g.,
epigenetic modifications of GFR promoters). Moreover, a recent report indicates that
transient ER overexpression can robustly activate E2-independent growth of MCF7 cells
[42], suggesting further modifications to achieve a more realistic model.

Here we present a new model to explore the mathematical characteristics of the ER–GFR
switch that is a central determinant of breast cancer cell fate in response to endocrine
therapies. The model explains many aspects of the available experimental data
(Supplementary document, Fig. S1–S4), for example: (1) in sub-clones of MCF7 cells
transfected with GFR (HER2 or EGFR), there are three different distribution patterns of
GFR [43,44] (Fig. S1), (2) for sub-clones with a bimodal distribution of GFR, the
distribution can be reversibly manipulated by varying E2 levels [43,44] (Fig. S2), (3)
whereas E2 withdrawal in GFR-transfected MCF7 cells switches on GFR expression within
weeks, E2 addition takes months to switch off expression [43,44] (Fig. S2), (4) E2
withdrawal can up-regulate GFR expression within 5 weeks in GFR-transfected MCF7 cells,
but fails to do so in wild type MCF7 cells [43,44] (Fig. S3), and (5) transient ER
overexpression in MCF7 cells can switch on the GFR pathway and promote E2-independent
growth [42] (Fig. S4). The model provides a new tool to understand and evaluate these
intriguing experimental observations, and it may help in finding new strategies to overcome
anti-estrogen resistance in breast cancer.

2. Materials and methods
We postulate a highly condensed model of the interaction between ER and GFR (Fig. 1A
and Supplementary documents). The protein level of GFR is down-regulated by E2:ER
complex [27,28]. After E2 withdrawal, GFR is released from inhibition and its downstream
kinases phosphorylate ER to an E2-independent form, ER-P [5,20,21]. ER-P can activate
and stabilize the GFR pathway, creating a positive feedback loop [29–31]. In addition, GFR
further activates transcription factors such as NFκB, promoting a series of epigenetic
changes contributing to increased GFR expression and establishing another positive
feedback loop [34,35]. For simplicity, we combine the epigenetic factors contributing to
GFR expression into the quantity ‘EPI’. ‘E2ER’ and ‘ERP’ are used to represent [E2:ER]
and [ER-P]. The wiring diagram in Fig. 1A was translated into ordinary differential
equations (ODEs) by a formalism that allows us to capture complex dependencies in a
simple manner [45] for simulation and analysis. We used the program XPP-AUT, available
freely at http://www.math.pitt.edu/~bard/xpp/xpp.html, to simulate the model and to draw
bifurcation diagrams. The ensemble stochastic simulations were performed with Matlab
Version 7.9.0. A detailed version of materials and methods is provided in the Supplementary
document.

3. Results
3.1. Bifurcation analysis of the survival-signaling switch

The nullclines of our system of equations (Eq. S1 and S2) are plotted in Fig. 1B. The
intersections of these two curves correspond to steady states of the model. The number of
steady states is controlled by the value of E2 level. When E2 = 1, there is one stable steady
state corresponding to low GFR and low EPI (GFR–/EPI–). When E2 is reduced below 0.65,
there are three steady states, two of which are stable and a third which is unstable. The stable
steady states have GFR and EPI levels that are either both low (GFR–/EPI–) or both high
(GFR+/EPI+). Fig. 1C illustrates how the steady states of the system change with E2. The
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system has three steady states in the range of 0 < E2 < 0.65 and only one stable steady state
when E2 > 0.65. However, E2 is not the only parameter that influences the system's
bistability. GFRover, which represents the influence of additional GFR genes transfected
into MCF7 cells, can also be used as a bifurcation parameter. Fig. 2A shows that when E2 is
held constant at E2 = 1 the system is bistable only when 3.2 < GFRover < 12.8. We will
show how this bistable survival-signaling switch can explain the results of several important
experiments that are difficult to understand without a model.

3.2. Three distribution patterns of GFR
Liu et al. transfected HER2 cDNA into MCF7 cells and created multiple stable sub-clones,
which were further screened for HER2 protein expression levels using flow cytometry.
Interestingly, three HER2 distribution patterns were observed in the sub-clones they selected
[43]: (1) a single peak of cells with elevated HER2 protein (MB4 in Fig. 2B), (2) a single
peak of cells with low HER2 protein, identical to control MCF7 cells (MB5 in Fig. 2B), and
(3) a bimodal (two-peaked) distribution of HER2 (MB7 in Fig. 2B). Southern blotting was
used to confirm that, within a sub-clone, all cells had the same number of integrated HER2
copies; hence, the bimodal distribution did not result from varying genetic conditions.
Similar results in MCF7 cells transfected with EGFR have been reported [44], but a
satisfactory explanation for these observations is lacking.

The major difference between these sub-clones could be that during transfection different
numbers of HER2 or EGFR genes were integrated into the individual cells that formed the
sub-clones. In our model, we use GFRover to denote the amount of transfected GFR and
have shown that the system is bistable only when GFRover is within a specific range (Fig.
2A). When very few GFR gene copies are integrated into the cell (e.g., GFRover = 2), the
system has only one stable steady state at low GFR expression, while integration of a high
number of copies (e.g., GFRover = 14) results in only one stable steady state at high GFR
expression. However, integration of an intermediate number of copies (e.g., GFRover = 8)
creates a system with two stable steady states (either high or low GFR expression). To
model distribution patterns of GFR in a population of cells, we performed 500 stochastic
simulations (see Fig. 2C), starting from random initial conditions, of four month duration for
each of three different cases (GFRover = 2, 8 and 14). The results of these simulations
clearly replicate the experimental observations. When GFRover = 2, there is only one peak
of cells at a low GFR level, corresponding to MB5 in Fig. 2B. When GFRover = 14, there is
only one peak of cells at a high GFR level, corresponding to MB4 in Fig. 2B. And when
GFRover = 8, two peaks of cells (bimodal distribution) coexist, corresponding to MB7 in
Fig. 2B. (We note that the number of GFR gene copies actually transfected in the
experiments is unknown and so the values used here for GFRover are arbitrary and can be
rescaled if copy number data becomes available.)

3.3. GFR bimodal distribution manipulated by E2
By using a sub-clone of MCF7 cells with a bimodal HER2 distribution, Liu et al. further
showed the sensitivity of HER2 expression to culture conditions [43]. Growing the cells for
5 weeks in charcoal-stripped fetal calf serum (CCS), which is depleted of E2, resulted in a
single peak of cells expressing high levels of HER2. Similarly, Miller et al. reported that
MCF7 cells transfected with EGFR and cultured in CCS create a population consisting
predominantly of cells with high EGFR levels [44]. However, wild type MCF7 cells
cultured in CCS for one year still show a population consisting predominantly of cells with
low EGFR levels [44].

Fig. 3 provides an explanation for these results. In normal MCF7 cells cultured with E2, the
cells are on the lower branch (low GFR) of Fig. 3A. When E2 is depleted, the cells will stay
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on this branch unless stochastic variations are strong enough to occasionally push a cell to
the upper branch (high GFR, Fig. 3A). Note that there is a significant barrier separating the
lower steady state from the unstable steady state (middle branch). We simulated a
population of 500 MCF7 cells starting from low GFR in the E2-withdrawal condition for
five weeks. No cell jumped to the high-GFR state, and there was no change in the GFR
distribution pattern at the population level (Fig. 3C). However, when GFR is transfected into
MCF7 cells (GFRover = 5), the barrier at E2 = 0 disappears (Fig. 3B) and the system only
has one stable steady state at high GFR. Thus, when starting from the low-GFR initial
condition, all cells will move to the high-GFR state. A simulation of 500 GFR-transfected
MCF7 cells for five weeks produced a change in the GFR distribution pattern similar to that
reported by Liu et al. and Miller et al. (Fig. 3D).

Experiments also show that the distribution pattern of GFR can be reversibly controlled by
E2 [43,44]. Growing the MB8 sub-clone MCF7 cells (with bimodal HER2 distribution) in
CCS for five weeks resulted in a single peak at high HER2 (Fig. 4, top left). Continuing to
grow these cells in fetal calf serum (FCS), which contains E2, gradually leads to the rise of a
peak at low HER2 (Fig. 4, left panel) [43]. Similar dynamics have also been reported in
MCF7 cells with EGFR overexpression [44]. Southern blots confirmed that there was no
variation in transfected HER2 gene copy number during E2 manipulation; Northern blots
showed that HER2 mRNA expression is consistent with the protein level [43]. These data
imply that genetic mutations are not the cause of HER2 heterogeneity in these MCF7 cells.

The bifurcation diagram in Fig. 3B provides an explanation for these experimental results.
Consider a population of GFR-transfected MCF7 cells depleted of E2 (E2 = 0) and having
high GFR expression. If E2 is now provided to the cells (E2 = 1), they will stay in the high-
GFR state, but the barrier to transitioning to the low-GFR state will be diminished. Given
adequate time, stochastic variations may induce some cells to transition to the low-GFR
branch. We simulated a population of 5000 cells under these conditions, and the GFR
distributions from the model compared well with the experimental observations (Fig. 4, right
panel). Note that after E2 withdrawal, GFR-transfected MCF7 cells can switch on GFR
within weeks, but cells need months to turn off GFR after E2 addition. Our simulation also
replicates this asymmetry in response time (Figs. 3 and 4).

3.4. Role of ER overexpression
A recent study observed that ER overexpression in MCF7 cells activates the ER-regulated
genes pS2 and PR in the absence of E2 [42]. Prolonged culturing of these cells leads to
proliferation in E2-depleted conditions. However, this proliferation can still be inhibited by
faslodex (a pure ER antagonist), indicating the role of E2-independent ER-P activation in
maintaining cell proliferation. By contrast, long term culturing of wild type MCF7 cells in
the absence of E2 failed to cause resumed cell growth. More interesting, the overexpression
of ER by adenovirus gene transfection in their study was only transient, as evidenced by the
complete loss of co-transfected GFP protein after culturing the cells for 12 weeks.

To understand these experimental results using our model, we first evaluated the role of ER
overexpression. Fig. 5A shows bifurcation diagrams of GFR level, with E2 as the
bifurcation parameter, at different ER levels (ERT = 1, 2 and 3). This figure shows that
increasing ER level decreases the barrier for cells to switch from the GFR–/ERP–/EPI– state
to the GFR+/ERP+/EPI + state when E2 is deprived. Consequently, a transient increase of
ER will also result in a transient decrease of the barrier, opening a temporary window to an
increased probability of state transitions under noise. To demonstrate this outcome, we
stochastically simulated a population of 10,000 cells and evaluated how transient ER
overexpression influences the frequency of transitions in E2-depleted MCF7 cells. No
transition was observed during one month of E2 depletion in normal MCF7 cells (ERT = 1,
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Fig. 5B, left panel). However, in MCF7 cells with transiently over-expressed ER there were
80 transitions during a similar time window (Fig. 5B, right panel). Cells that transition will
have high levels of GFR, EPI, and ERP, implying the capability of E2-independent cell
growth. The number of transitions is influenced by the strength of the ERT pulse, which was
simulated with the following equation:

(1)

where ER0 = 1, ERover = 1.8, T1/2 = 0.25 month, t starts from the time of ER
overexpression.

To capture the experimental proliferation data in E2-depleted conditions, we created a
simple population growth model (Fig. 6A) given by the equations:

(2)

(3)

In these equations, N1 denotes the number of low-GFR, E2-dependent MCF7 cells and N2
denotes the number of high-GFR, E2-independent MCF7 cells. The two cell types have
different proliferation rates (kp1, kp2), and there is a transition rate, kt, which describes how
fast a low-GFR cell can switch to a high-GFR cell under E2-depleted conditions. Notice that
kt = 0 in normal MCF7 cells, since no transition is observed in Fig. 5B. Furthermore, kt is
not a constant in MCF7 cells with transient ER overexpression. To determine the dynamics
of kt we stochastically simulated a population of 6 × 106 cells with transiently overexpressed
ER. The percentage of cells having transitions within independent time intervals is plotted in
Fig. 6B (black bars), and the histogram was fit by a function of the form:

(4)

where fitting parameters a, b, c, d and h are all positive values. The red curve in Fig. 6B is
the result of the fit and describes how kt varies with time in MCF7 cells with the transient
ER overexpression we consider. Using a standard curve fitting method (Matlab Version
7.9.0, Curve Fitting Toolbox), we determined the best fitting parameter values to be a =
3.322 × 10–3, b = 6 × 103, c = 4.802 × 10–4, d = 1.587 × 104 and h = 7.029 × 10–8.

Choosing the parameters ERover = 1.8, kp1 = –3 × 10–5, and kp2 = 2 × 10–5, our simulation
results for total cell number (N1 + N2) in Fig. 6 C,D match the experimental results (red
diamonds and triangles) for both the normal and ER-overexpressed cells. Thus, by
combining models at two different scales (molecular and population), we provide a plausible
explanation for how transient ER overexpression can promote E2-independent growth in
MCF7 breast cancer cells.

4. Discussion
Breast cancer is the most common invasive cancer in women. Endocrine therapy, as the
most successful targeted cancer therapy, has been very effective in reducing breast cancer
mortality. However, resistance often develops and the recurrence rate of breast cancer after
targeted therapies remains unacceptably high. The molecular mechanisms of acquired
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endocrine resistance have been intensively studied both in vivo and in breast cancer cell
lines, such as ER+ MCF7 cells. Many genes have been postulated as key players in acquired
endocrine resistance [5,20,22,39], but despite knowledge of their roles in cell survival and
growth, little is known about how the ‘escape’ paths are mechanistically activated,
dynamically regulated, and epigenetically maintained during the development of endocrine
resistance. Understanding the molecular mechanisms used by breast cancer cells to acquire
resistance to endocrine treatment is critical for designing new therapies for breast cancer.

Emergence of resistance is closely associated with cellular heterogeneity. It has been widely
recognized that breast cancer cells, including the well-studied MCF7 cells, are inherently
heterogeneous. Distinct cell phenotypes in the same MCF7 cell population can be observed.
Upon treatment, individual MCF7 cells can have diverse responses: while some cells die
through apoptosis, others remain alive [23]. MCF7 cells also exhibit heterogeneous
expression of a few key proteins. For example, although the MCF7 cell line is generally
classified as ER+, a minority of these cells express low levels of ER [46]. The bimodal
experimental data considered in the present work also supports the heterogeneity of cancer
cells [43,44].

What is the source of this heterogeneity? A population comprised of cancer cells with
distinct phenotypes is usually attributed to mutations resulting from the genomic instability
of cancer cells. However, this emphasis on genetic causes for heterogeneity has been
challenged, as summarized by Huang et al. [47]. Recent studies indicate that viability within
a population of cancer cells can also result from noisy gene expression and the fact that gene
networks have multiple stable states, providing a non-genetic source of heterogeneity [47].
The presence of cancer stem cells (CSCs) in breast cancer strongly supports a non-genetic
basis for tumor heterogeneity. There should be no genetic difference between CSCs and
differentiated ‘bulk’ cells unless they acquire new mutations. CSCs, unlike bulk cells, are
usually ER– and dependent on the GFR pathway to survive [48,49]. For example, evidence
shows that NFκB inhibitors can preferentially inhibit CSCs in MCF7 cells, but not MCF7
bulk cells [50]. Moreover, CSCs have the potential to develop into bulk cells, and vice versa.
These reversible transitions between stem cells and bulk cells are implicated in the well-
documented cellular mesenchymal–epithelial transition and epithelial–mesenchymal
transition. During either of these transitions, cells are reported to have an increased or
decreased ‘stemness’ associated with changes in expression of specific stem cell surface
markers [37].

In this work, a mathematical model based on a bistable switch with an epigenetic component
successfully explains five intriguing experimental observations in MCF7 cells [42–44] (Figs.
S1–S4). (1) The bifurcation analysis in Fig. 2A shows that GFR-transfected MCF-7 cells
have three distinct possibilities for GFR expression (low, both low and high, and high)
depending on the number of GFR copies that were transfected, explaining why different
experimental subclones exhibited these three different GFR profiles. (2) For a subclone with
a bimodal GFR expression, the model analysis in Fig. 3B shows that E2 deprivation will
force the cells into a high GFR state, as the low GFR state disappears, and re-adding E2 will
return the cells to the bimodal state, in accord with experiment, Fig. 4. (3) Fig. 3B also
shows why the transition of a bimodal sub-clone to a high GFR state upon E2 deprivation is
fast, as there is only one stable state and no barrier to cross to get there, while reversing the
transition by re-adding E2 is slow, as cells must transition across a barrier to regain the low
GFR state. (4) For nontransfected MCF-7 cells, the model analysis in Fig. 3A shows that E2
deprivation will not result in a high GFR state, since there is a large barrier preventing state
switching, even though such deprivation does result in a high GFR state for the bimodal
subclones, Fig. 3B, as they have no barrier to cross. (5) The analysis in Fig. 5 shows that
transient ER overexpression lowers the barrier to the high GFR state during a small time
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window and allows a few E2-deprived MCF-7 cells to cross the barrier. This explains why a
population of E2 deprived MCF-7 cells will die out, but a similar population with a transient
ER overexpression will eventually regrow, Fig. 6.

It should be emphasized that the model we present here, because it is an abstract and
simplified version of reality, has some limitations. While a bistable switch is not
unexpected, due to the presence of positive feedback loops in the ER–GFR crosstalk
network, further experiments are required to confirm the exact mechanism. In particular, we
emphasize epigenetic regulation of GFR promoters (EPI) in our current model, creating an
epigenetic switch by assuming that EPI controls and is being controlled by GFR. The reality
could be more complicated, since cell differentiation and de-differentiation processes are
closely linked with both ER and GFR pathways. MicroRNAs, epigenetic regulation, and
inter-cellular communications are implicated in differentiation/de-differentiation processes
[1,37,51]; however, much is unknown at present. Moreover, cell-signaling networks may
have as many steady states as there are physiological states, each steady state being
represented in a subpopulation of cells within a cell culture or tissue. The low-GFR, E2-
dependent and the high-GFR, E2-independent states are just two examples of many states
that are possible.

Notwithstanding these limitations, the model of a survival-signaling switch presented here
helps to understand certain dynamic behaviors of breast cancer cells that are difficult to
comprehend by intuitive reasoning alone. Refining this model by obtaining data from
primary breast cancers, as opposed to cell lines, will increase its clinical relevance and could
aid in the search for new strategies to overcome breast cancer resistance.
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Abbreviations

AKT a serine/threonine-specific protein kinase, also known as Protein Kinase B
(PKB)

CCS charcoal-stripped fetal-calf serum

CSC cancer stem cell

E2 17β-estradiol

E2:ER E2-bound estrogen receptor

EGFR epidermal growth factor receptor

ER estrogen receptor

ER-P phosphorylated estrogen receptor

FCS fetal calf serum

GFR growth factor receptor

HER2 human epidermal growth factor receptor-2
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MAPK mitogen activated protein kinases

mTOR mammalian target of rapamycin

NFκB nuclear factor kappa-light-chain-enhancer of activated B cells

PI3K phosphatidylinositide 3-kinases
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Fig. 1.
A model of the crosstalk between ER and GFR pathways exhibits bistable switching
properties. (A) Influence diagram of the model. E2, estrogen level; ERT, total ERα level;
E2ER, estrogen-dependent E2:ER complex; ERP, phosphorylated ER; GFR, growth factor
receptor; EPI, epigenetic components in GFR pathway; GFRover, number of extra GFR
gene copies. (B) Nullclines of the system at different E2 levels. s, stable steady state; u,
unstable steady state. (C) Bifurcation diagram of GFR, with E2 as the bifurcation parameter.
The curves trace the steady state level of GFR as a function of E2 level. For a given value of
E2, a cell may express a low or high value of GFR (upper and lower solid lines; the middle
dashed line indicates a branch of unstable steady states).
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Fig. 2.
Three distribution patterns of GFR are exhibited in GFR-transfected MCF7. (A) Signal–
response curve for GFR as a function of GFRover. The steady-state value of GFR is plotted
as a function of GFRover (from 0 to 14). For intermediate values of GFRover, a cell may
express either a low or high level of GFR (upper and lower solid lines; the middle dashed
line indicates a branch of unstable steady states). (B) Different HER2 distribution patterns in
HER2-overexpressed MCF7 sub-clones. Sub-clones MB5, MB7 and MB4 represent three
typical distribution patterns of HER2 observed in experiment. Experimental data are adapted
from [43]. (C) Distribution of GFR in 500 cells that are stochastically simulated at different
values of GFRover (2, 8, and 14) for four months by starting from random initial conditions.
GFR level = 10GFR in these histograms.
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Fig. 3.
E2 withdrawal turns on GFR in GFR-transfected but not in normal MCF7 cells. (A, B)
Bifurcation diagrams of GFR with E2 as bifurcation parameter in normal MCF7 cells
(GFRover = 0) and in GFR-transfected MCF7 cells (GFRover = 5). (C, D) Temporal
evolutions of GFR distribution under E2-withdrawal conditions for normal MCF7 cells
(GFRover = 0) and for GFR-transfected MCF7 cells (GFRover = 5). In each case, 500 cells
were simulated over the course of five weeks. GFR level = 10GFR in these histograms.
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Fig. 4.
GFR bimodal distribution is reversibly controlled by different E2 levels. Left panel,
experimental data adapted from [43]. The MB8 sub-clone of GFR-transfected MCF7 cells
showing a bimodal HER2 distribution was treated with a series of E2 conditions: CCS,
without E2, for 5 weeks; FCS, with E2, for 5 weeks, 3 months and 4 months. Right panel,
model simulations, showing the distribution of GFR level in 5000 GFR-transfected MCF7
cells (GFRover = 5) under the same conditions as the experiments. GFR level = 10GFR in
these histograms.
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Fig. 5.
ER overexpression increases the probability of a survival-signaling switch. (A) Bifurcation
diagram of GFR with E2 as bifurcation parameter at different ER levels (ERT = 1, 2 and 3).
(B) Transient ER overexpression opens a time window for transitions from low to high GFR
levels. Left panel, normal MCF7 cells show no transitions in stochastic simulations of 10000
cells (20 cells are plotted for illustration). Right panel, 80 transitions are observed within a
short time window during transient ER overexpression in MCF7 cells (20 cells and one
example of a transition are plotted for illustration). The pulse of ER overexpression is
simulated by Eq. (1) in the manuscript. Red line, trace of a deterministic simulation; blue
lines, traces of 20 stochastic simulations; the horizontal dotted line shows the threshold we
set to score transitions (EPI = 0.5).
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Fig. 6.
A population growth model shows the effects of transient ER overexpression. (A) Schematic
representation of the population growth model. kp1, kp2 = (specific birth rate – specific death
rate) for cell populations N1 and N2, respectively. kt = rate at which low-GFR cells switch to
high-GFR cells. (B) Transition probability of MCF7 cells that transiently overexpress ER
according to the survival-signaling switch model described in Fig. 5. Black bars, percentages
of cells having transitions in given time intervals (1000 min); Red line, fitted curve showing
how kt varies with time in ER-overexpressed MCF7 cells. (C) Experimental data (red
diamonds) and simulation results (grey line) for the dynamics of total cell number in normal
MCF7 cells after E2 depletion. (D) Experimental data (red triangles) and simulation results
(grey line) for the dynamics of total cell number in transient ER-overexpressed MCF7 cells
after E2 depletion. The pulse of ER overexpression is simulated by Eq. (1). Experimental
data are adapted from [42].
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