
Cell-Cycle Dependent Expression of a Translocation-
Mediated Fusion Oncogene Mediates Checkpoint
Adaptation in Rhabdomyosarcoma
Ken Kikuchi1, Simone Hettmer2,3, M. Imran Aslam1, Joel E. Michalek4, Wolfram Laub5, Breelyn A. Wilky6,

David M. Loeb7, Brian P. Rubin8, Amy J. Wagers2, Charles Keller1*
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Abstract

Rhabdomyosarcoma is the most commonly occurring soft-tissue sarcoma in childhood. Most rhabdomyosarcoma falls into
one of two biologically distinct subgroups represented by alveolar or embryonal histology. The alveolar subtype harbors a
translocation-mediated PAX3:FOXO1A fusion gene and has an extremely poor prognosis. However, tumor cells have
heterogeneous expression for the fusion gene. Using a conditional genetic mouse model as well as human tumor cell lines,
we show that that Pax3:Foxo1a expression is enriched in G2 and triggers a transcriptional program conducive to checkpoint
adaptation under stress conditions such as irradiation in vitro and in vivo. Pax3:Foxo1a also tolerizes tumor cells to clinically-
established chemotherapy agents and emerging molecularly-targeted agents. Thus, the surprisingly dynamic regulation of
the Pax3:Foxo1a locus is a paradigm that has important implications for the way in which oncogenes are modeled in cancer
cells.
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Introduction

Rhabdomyosarcoma (RMS) is the most common childhood soft

tissue sarcoma. Historically, RMS has been thought to arise from

muscle because of the expression of myogenic markers. Most

childhood RMS falls into one of two biologically distinct

subgroups: alveolar (aRMS) or embryonal (eRMS). aRMS is the

more aggressive variant with a survival rate of less than 20% when

metastatic due to chemotherapy and radiation resistance [1].

aRMS is characterized by a frequent t(2;13) chromosomal

translocation, which results in the PAX3:FOXO1A fusion gene, or

less frequently by a t(1;13) mediated PAX7:FOXO1A fusion

oncogene [1]. Clinically, the aggressive behavior of aRMS has

been attributed to PAX3:FOXO1A transcriptional reprograming

because fusion negative aRMS have a more favorable outcome

similar to eRMS [2,3,4].

We previously developed a mouse model of aRMS employing a

conditional knock-in approach that expresses Pax3:Foxo1a from the

native Pax3 locus in fetal and postnatal myoblasts [5,6,7]. In this

model, Pax3:Foxo1a was necessary but not sufficient for aRMS

tumor initiation. Interestingly, cells expressing high levels of

Pax3:Foxo1a were more prevalent in metastatic tumors [7]. The

heterogeneity of Pax3:Foxo1a expression in primary and meta-

static tumors, and enrichment in the latter, suggested that

Pax3:Foxo1a might be selectively expressed in a subset of aRMS

cells; alternatively, Pax3:Foxo1a expression might be temporally

regulated. In the current study we present striking evidence that

Pax3:Foxo1a is expressed in a dynamic manner and mediates a

G2-specific program enabling checkpoint adaptation and refrac-

toriness to therapy.

Results

Pax3:Foxo1a expression is dynamic in mouse aRMS cells
In our genetically-engineered conditional knock-in mouse

model of aRMS, eYFP is expressed as a second cistron on the

same mRNA as Pax3:Foxo1a (Figure 1A). We have observed

heterogeneity of eYFP expression among tumor cells in situ

(Figure 1B). To first examine Pax3:Foxo1a expression as a

function of time, we flow sorted Pax3:Foxo1alow and Pax3:Fox-
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o1ahigh cells using eYFP signal in two independent murine aRMS

primary cultures (Figure 1C and 1D; Figure S1A and S1B).

Comparison of Pax3:Foxo1a protein levels for sorted populations

showed Pax3:Foxo1alow cells possessed much reduced levels of

Pax3:Foxo1a protein (Figure 1E and Figure S1C). However,

FACS analysis over time revealed that the eYFP signal of

Pax3:Foxo1alow and Pax3:Foxo1ahigh tended towards the mean

eYFP fluorescence intensity of unsorted tumor cells with time and/

or cell divisions (Figure 1C and 1D; Figure S1A and S1B). Thus,

Pax3:Foxo1ahigh cell could dynamically reduce expression of eYFP

from the Pax3:Foxo1a locus, and Pax3:Foxo1alow cells could

dynamically increase expression of eYFP from the Pax3:Foxo1a

locus. We further confirmed that eYFP expression was indeed

reflective of Pax3:Foxo1a expression in terms of protein half-life.

Figure S1E and S1F shows levels of eYFP signal and Pax3:Foxo1a

protein stability after translation inhibition by cycloheximide

(CHX). Akin to the strong correlation between eYFP and

Pax3:Foxo1a expression at the protein level (Figure 1 and Figure

S1C), the protein half-lives of Pax3:Foxo1a and eYFP were

roughly similar at 31.6 and 44.7 hours (Figure S1E and S1F),

thereby affirming that eYFP is a reasonable surrogate for

transcription of Pax3:Foxo1a from the Pax3 locus (we do however

acknowledge that eYFP is a better marker of the start of

Pax3:Foxo1a transcription than the end of Pax3:Foxo1a transcrip-

tion or protein expression (i.e., since eYFP is expressed on the same

mRNA as Pax3:Foxo1a, the beginning of fluorescence should

coincide with the initial presence of the Pax3:Foxo1a transcript).

Thereafter, eYFP is susceptible to photo-bleaching and possible

proteasomal degradation sooner than the 44 hours observed under

conditions of cyclohexamide treatment (Figure S1F)).

Pax3:Foxo1a expression is dynamically regulated during
the cell cycle

To investigate what conditions affect the dynamic alteration of

Pax3:Foxo1a expression in aRMS cells, we compared eYFP

fluorescence to cell cycle phase as determined by staining with the

DNA dye Hoechst33342. Almost all Pax3:Foxo1alow cells existed

in G0/G1 (2N) stage, while to our surprise Pax3:Foxo1ahigh cells

were G2/M or hyperdiploid/multinuclear ($4N) cells (Figure 1F

and Figure S1D). We next performed time-lapse experiments of

eYFP activity by confocal microscopy. Figure 1G shows in time-

lapse images that eYFP activity during cell division is transiently

but markedly increased, particularly in pre-mitotic cells. Interest-

ingly, the level of eYFP in some multinuclear cells remained at a

high level in cells that appeared to be unable to undergo

telophase/cytokinesis (Movie S1).

We next performed QPCR of Pax3:Foxo1a and PAX3:FOXO1A

using cell cycle specific sorted mouse and human aRMS cells,

respectively. Both mouse and human aRMS cells showed

significant differences in the mRNA expression of Pax3:Foxo1a

and PAX3:FOXO1A in the transition from 2N (G1) to 3N (S phase)

and 4N (G2/M) cells (Figure 2A and 2B) affirming cross-species

relevance of the cell cycle dependent mRNA regulation of

Pax3:Foxo1a expression.

To investigate the transcriptional basis of this Pax3:Foxo1a

dynamic expression, we performed QPCR of Pax3 and Foxo1 using

cell cycle specific sorted C2C12 mouse myoblast cells of the

genotype Pax3(wt/wt) and mouse aRMS primary tumor cells of the

genotype Pax3(wt/Pax3:Foxo1a). C2C12 myoblasts showed signif-

icant increases in Pax3 mRNA levels for 4N cells when compared

with 2N cells (Figure 2C). Pax3 was not detectable in aRMS cells at

the mRNA level (data not shown), which was also reflected in the

absence of expression of Pax3 protein in aRMS cells by western

blotting (Figure 2D). This result is consistent with our prior studies

suggesting that Pax3:Foxo1a causes decreased expression of the

wildtype Pax3 locus [5,6]. By contrast, Foxo1 mRNA expression

did not differ between 2N and 4N in either C2C12 myoblasts or

aRMS tumor cells (Figure 2E). Thus, the cell cycle dependence of

Pax3:Foxo1a may in some part be attributable to increased Pax3

promoter activity at G2/M versus G1 in C2C12 myoblasts, but

Pax3:Foxo1a transcript level is so significantly increased over Pax3

in aRMS cells that other factors related to the chromosomal fusion

are likely responsible, e.g. gain of a Foxo1a 39 cis-enhancer, or loss of

a Pax3 39 cis-repressor repressor. From the design of the

conditional knock-in allele [5], this element(s) can be inferred to

exist in the 9.3 kB of the Foxo1a 39 region containing exons 2 and 3

and untranslated region (6.5 kb), or exons 8–10 of Pax3. We also

cannot exclude that stabilization of the Pax3:Foxo1a transcript may

to some degree play a role, and this stabilization may or may not

be related to the Foxo1a cis-elements on the chimeric mRNA.

Because Pdgfra [8] and Igf1r [9] are well known direct

downstream targets of Pax3:Foxo1a, we determined whether

these targets were expressed to any degree in 4N (G2/M) cells. We

first sorted aRMS tumor cells for Pdgfra or Igf1r positivity versus

negativity, then performed DNA content analysis. For both

receptor tyrosine kinases (RTKs), the majority of cells with

positive RTK surface expression were 2N (Figure 2F). However,

nearly twice as many 4N cells are Igf1r (or Pdgfra) positive versus

Igf1r (or Pdgfra) negative, suggesting these Pax3:Foxo1a targets

may have a functional role late in the cell cycle, such as the Igf1r-

mediated radioresistance seen for other forms of cancer [10].

Pax3:Foxo1a expression is specific to G2 and acts in G2/M
checkpoint adaptation

To determine the role of Pax3:Foxo1a in G2, M or G2/M

checkpoint, we examined markers of each cell cycle phase under

non-stress or stress conditions. Immunocytochemistry is presented

in Figure 3 is a for Pax3:Foxo1a (Pax3) with phospho-histone H3

(pHH3), a marker of mitosis, or CDC2-Y15 (pCDC2), a negative

marker of entry into mitosis that is commonly expressed in G2

(CDC2-Y15 is phosphorylated by Wee1 kinase, which then

negatively regulates Cdc2 kinase [11]; CDC2-Y15 is present

starting in late G1 then also in S, and G2 phases, but absent in M

[12]). In murine aRMS primary cultures U23674 and U42369,

pHH3 positive metaphase cells did not express Pax3:Foxo1a

protein and yet most pCDC2 positive cells expressed Pax3:Foxo1a

very highly (Figure 3). These results suggest that Pax3:Foxo1a is

expressed in the G2 cell cycle phase but not M phase. Human

Author Summary

Rare childhood cancers can be paradigms from which
important new principles can be discerned. The childhood
muscle cancer rhabdomyosarcoma is no exception, having
been the focus of the original 1969 description by Drs.
Li and Fraumeni of a syndrome now know to be com-
monly caused by underlying p53 tumor suppressor loss-
of-function. In our studies using a conditional genetic
mouse model of alveolar rhabdomyosarcoma in conjunc-
tion with human tumor cell lines, we have uncovered that
the expression level of a translocation-mediated fusion
gene, Pax3:Foxo1a, is dynamic and varies during the cell
cycle. Our studies support that Pax3:Foxo1a facilitate the
yeast-related process of checkpoint adaptation under
stresses such as irradiation. The broader implication of
our studies is that distal cis elements (promoter-influenc-
ing regions of DNA) may be critical to fully understanding
the function of cancer-associated translocations.

Dynamic Pax3:Foxo1a in Alveolar Rhabdomyosarcoma
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Figure 1. eYFP activity and Pax3:Foxo1a expression is cell cycle specific. (A) Diagrammatic representation of the conditional Pax3:Foxo1a
knock-in allele by which eYFP is expressed as a second cistron on the same mRNA as Pax3:Foxo1a at the native Pax3 promoter. (B) Heterogeneity of
eYFP expression in a murine aRMS tumor by immunofluorescence. (C) eYFP fluorescence of eYFP sorted cells overtime as measured by FACS. Grey:

Dynamic Pax3:Foxo1a in Alveolar Rhabdomyosarcoma
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aRMS cell lines Rh3 and Rh41 showed identical results (Figure 3).

Next, we sought to understand the function of Pax3:Foxo1a in G2.

For this purpose we performed genome-wide expression analysis

using cells sorted at specific stages of the cell cycle (2N vs. 4N) with

or without Pax3:Foxo1a siRNA knockdown (Figure 4A). Because

eYFP is expressed as a second cistron in the targeted Pax3:Foxo1a-

ires-eYFP allele, we anticipated that siRNA for eYFP would knock

down not only eYFP but also Pax3:Foxo1a. Western blotting of

Pax3:Foxo1a and native Foxo1a protein 48 hours after siRNA

transfection showed that eYFP siRNA efficiently and specifically

knocked down Pax3:Foxo1a protein (Figure 4B). Protein expres-

sion of the Pax3:Foxo1a transcriptional target Pdgfra was also

reduced (Figure 4B).

From genome-wide expression analysis of 2N vs. 4N sorted cells

with or without Pax3:Foxo1a siRNA knockdown, we found several

genes implicated in the process of G2/M checkpoint adaptation to

be down-regulated in G2/M (4N cells) when Pax3:Foxo1a was

knocked down (Figure 4C; Table S1 shows all data analyzed by

ANOVA (,0.05) using the multiple comparison correction

method of Benjamini and Hochberg). Checkpoint adaptation is

the process by which unicellular organisms or cancer cells progress

through a delayed cell cycle checkpoint (G2 or by analogy the

mitotic spindle assembly checkpoint) in lieu of programmed cell

death, but before DNA damage is completely repaired [13,14,15].

Factors implicated in checkpoint adaptation are similar to those

involved in checkpoint recovery (after complete repair of DNA

damage), but additionally require anti-apoptotic signals [14].

Select G2/M checkpoint adaptation genes implicated in this

experiment, the DNA damage sensing/checkpoint progression

factors Plk1, Cdc25b, H2afx and the cell survival factor Birc5

(Survivin), were validated for differential expression by QPCR

(Figure 4D). Whether these genes are direct transcriptional targets

of Pax3:Foxo1a was investigated by interrogating loci for reported

nearby Pax3:Foxo1a binding sites [16]. Most potential regulatory

sites were greater than 60 kB away (Table S2). While regulatory

sequences can be hundreds of kBs away from the target gene, it

remains possible that these genes may also be regulated indirectly

by other Pax3:Foxo1a target genes or miRNAs.

As a test of checkpoint adaptation and the permissiveness of

aRMS cells to transit from G2 to mitosis despite single- and

double-stranded DNA damage, we irradiated tumor cells with or

without Pax3:Foxo1a knockdown. Radiation resulted in a higher

fraction of DNA breaks amongst mitotic cells (as represented by

dual pHH3 positive, H2AX positive cells) under conditions of

Pax3:Foxo1a expression than its knockdown (Figure 5A and

Figure S2A), suggesting that Pax3:Foxo1a does facilitate G2 to M

transition, consistent with checkpoint adaptation. Moreover, we

performed cell cycle and Annexin V apoptosis detection assay after

treatment with 10 Gy radiation for two independent eYFP shRNA

knockdown clones compared to two other independent shRNA

controls (as stated early, eYFP knockdown also achieves

Pax3:Foxo1a knockdown) (Figure S2). Cell cycle analysis of the

shRNA clones treated with radiation revealed increasing percent-

age of cells in cells having $4N DNA content after radiation for

Pax3:Foxo1a knockdown cells compared to radiated controls

(p,0.05)(Figure 5B). This result is consistent with a role of

Pax3:Foxo1a in overcoming G2 arrest or M checkpoint arrest after

radiation. Similarly, the Annexin V apoptosis detection assay

showed a lower induction of apoptosis following radiation when

Pax3:Foxo1a expression was preserved in shControl clones than

shYFP cells (Figure 5C).

To test the acute role of Pax3:Foxo1a in tolerization to

treatment-related DNA damage in vivo, we used eYFP siRNA to

transiently knock down Pax3:Foxo1a in aRMS tumor cells treated

with radiation versus non-irradiated controls that were then

orthotopically injected into unirradiated host mice. Pax3:Foxo1a

mediated a cell survival and tumor re-establishment advantage

under the stress condition of irradiation, but not under homeo-

static conditions (p = 0.02, Figure 6A and 6B).

To assess the extent to which the fusion gene mediates

refractoriness to chemotherapy agents, we observed Pax3:Foxo1a

to facilitate 2–4 fold refractoriness to clinical agents capable of

causing double-stranded DNA breaks and mitotic arrest (vincris-

tine, actinomycin-D, topotecan) more so than agent inducing

single-strand breaks (mafosfamide, the active metabolite of

cyclophosphamide) (Figure S3A–E). That a similar role of

Pax3:Foxo1a may apply to targeted agents was previously

suggested by enriched G2 expression of Pdgfra (Figure 2F) and

then demonstrated by increased sensitivity to prototypic Pdgfr

inhibitor, imatinib, after Pax3:Foxo1a knockdown (Figure S3F).

Similarly, Pax3:Foxo1a knockdown sensitized tumor cells to siRNA

inhibition of downstream signaling mediators of acquired imatinib

resistance (Figure S3G) [17]. Thus, these in vitro and in vivo results

are consistent with a function of Pax3:Foxo1a in mediating

checkpoint adaptation and refractoriness to the established clinical

therapies of radiation and chemotherapy, or more contemporary

molecularly-targeted agents.

Discussion

A key finding of this study is that Pax3:Foxo1a expression is

dynamic and varies during the cell cycle. To our knowledge this is

first report of a translocation-mediated chimeric transcription

factor oncogene that is expressed in a cell cycle-specific manner –

much less, one that is expressed specifically during G2. The master

transcription factor MYOD is expressed strongly during G1 [18]

but is inactivated by phosphorylation during mitosis, which results

in deportation from the nucleus [19]. MYF5 is also expressed in a

cell cycle-dependent manner, but neither MYOD nor MYF5

expression is increased during G2/M as observed in our study of

Pax3:Foxo1a in aRMS. Our findings reveal that Pax3 expression

in wildtype C2C12 myoblasts is dynamic and increased during

G2/M, but that to account for the dramatic increase in

Pax3:Foxo1a expression an additional enhancer effect of Foxo1a 39

region DNA is likely to be present. This result opens the possibility

that co-factors assembled at the Pax3 promoter or fusion gene

specific cis-elements might be targeted to suppress Pax3:Foxo1a

expression.

Cell cycle progression after DNA damage is regulated by

checkpoint controls, which prevent continued transit through the

cycle until the damage has been repaired, hence protecting the

integrity of the genome. Arrest in G1 permits repair prior to

replication, whereas arrest in G2 allows repair prior to mitotic

chromosome segregation. The p53 tumor suppressor, which is

mutated in roughly half of human aRMS, has been shown to be

C2C12 (negative control), blue: no sorted cells, green: eYFP activity high cells, red: eYFP activity low cells. (D) Mean of relative eYFP activity in panel 1C
measured by FACS. (E) Western blot analysis using eYFP sorted cells. Plotted are relative protein levels of Pax3:Foxo1a/b-Actin. Mean 6 SE were
obtained from three independent immunoblottings. Black line shows significant difference (p,0.05). (F) eYFP activity and cell cycle analysis using
Hochest33342 staining for mouse primary cell culture U23674. Green shows G0/G1 phase, brown shows S phase, and blue shows G2/M phase. (G)
Time-lapse experiment of eYFP activity (select frames over 16 hours). See also corresponding Movie S1.
doi:10.1371/journal.pgen.1004107.g001

Dynamic Pax3:Foxo1a in Alveolar Rhabdomyosarcoma
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integral to both G1 and G2 damage checkpoint machinery, but

some reports found p53 dispensable for the G2 checkpoint [13,20].

Checkpoint adaptation is defined as the ability to divide and

survive following a sustained checkpoint arrest despite the

presence of unrepairable DNA breaks [14]. Cells undergoing

checkpoint adaptation will frequently die in subsequent cell cycles

if DNA damage goes unrepaired, yet, some cells may be able to

survive and proliferate in an aneuploid state [14]. Furthermore, in

Figure 2. Pax3:Foxo1a activity is cell cycle dependent. (A) mRNA expression of Pax3:Foxo1a normalized by Gapdh in U23674 mouse aRMS
primary cell culture sorted by DNA content. Black lines show significant differences (p,0.05). (B) mRNA expression of PAX3:FOXO1A normalized by
GAPDH in Rh3 and Rh41 human aRMS cell lines sorted by DNA content. (C) mRNA expression of Pax3 normalized by Gapdh in C2C12 murine
myoblasts sorted by DNA content. (D) Western blot analysis of Pax3 and Pax3:Foxo1a in unsorted murine U23674 aRMS cells (genotype Pax3
(Pax3:Foxo1a activated/Pax3:Foxo1a activated)), murine U57844 aRMS cells (genotype Pax3 (wt/Pax3:Foxo1a activated)), proliferative C2C12
myoblasts (pro) and differentiating C2C12 myoblasts (dif). (E) mRNA expression of Foxo1 and Pax3:Foxo1a normalized to Gapdh in C2C12 myoblasts
and the U57844 mouse aRMS primary cell culture. (F) Cell cycle analysis after sorting for Pax3:Foxo1a targets Igf1r or Pdgfra in mouse aRMS tumor
cells. Nearly twice as many 4N cells are Igf1r (or Pdgfra) positive versus Igf1r (or Pdgfra negative), suggesting these Pax3:Foxo1a targets may have a
functional role late in the cell cycle (* P,0.05). pos, positive. Neg, negative.
doi:10.1371/journal.pgen.1004107.g002

Dynamic Pax3:Foxo1a in Alveolar Rhabdomyosarcoma
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unicellular eukaryotes and tumor cells, DNA repair can occur at

G1 [21]. Here, we reveal that the G2/M adaptation genes (H2afx,

Cdc25b and Plk1) were suppressed by Pax3:Foxo1a knockdown in

G2 and M cell cycle phases and that fewer cells transited from G2

to M without initiating apoptosis under conditions of Pax3:Foxo1a

knockdown in the context of radiation-induced stress. These

Figure 3. Pax3:Foxo1a is expressed in G2 for mouse and human aRMS. Immunocytochemistry for Pax3 (green), pHH3 (red) and DAPI (blue)
or Pax3 (green), pCDC2 (red) and DAPI (blue). Numbers are relative rate of Pax3:Foxo1a high or low cells/pHH3 positive cells and Pax3:Foxo1a high or
low cells/CDC2-Y15 high cells. Black line shows significant difference (p,0.05).
doi:10.1371/journal.pgen.1004107.g003

Dynamic Pax3:Foxo1a in Alveolar Rhabdomyosarcoma
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Figure 4. Pax3:Foxo1a induces G2/M checkpoint adaptation gene in G2/M. (A) Diagrammatic representation of Pax3:Foxo1a knockdown
strategy using eYFP siRNA. (B) Knockdown of the Pax3:Foxo1a protein by siYFP. Total cell lysates were isolated 48 h after transfection. Pax3:Foxo1a
was detected with an antibody targeting the C-terminus of Foxo1a. (C) Differential expression of 60 of cell cycle genes (as annotated by Gene

Dynamic Pax3:Foxo1a in Alveolar Rhabdomyosarcoma
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results suggested that not only cell cycle dependent expression but

also a clinically-relevant biology underlying Pax3:Foxo1a expres-

sion at the G2-M checkpoint, a critical cell cycle checkpoint

following radiation or DNA double strand break inducing-

chemotherapy.

That a myogenic cancer might utilize genomic instability,

aneuploidy or multinucleation as a mechanism of cell survival or

tumor cell evolution/progression may not be so unexpected, in

retrospect. Normal myofibers are typically multi-nuclear by

definition, and genetic conditions predisposing to mitotic disjunc-

tion such as Mosaic Variegated Aneuploidy (MVA) are strongly

associated with the development of RMS [22]. Both aRMS and

eRMS have also been documented to be hyperdiploid, tetraploid,

polyploid or to even have mixed aneuploid populations [23,24,25].

At a cellular level, the heterogeneity of cells in rhabdomyosarcoma

is notable for the subpopulation of multi-nucleated rhabdomyo-

blasts which appears with giant nuclei or as multi-nucleated giant

cells, often with cross-striations – yet highly mitotic [26]. These

rhabdomyoblasts might be compared to the multinucleated

stemloid cells in fibrosarcoma, which have a tumor-repopulating

ability [27]. Our recent study of aRMS and the PKC iota inhibitor,

aurothiomalate, reveals that aRMS cells have a remarkable

tolerance to polyploidy, which induces neither apoptosis or

senescence [28]. This intrinsic capacity to tolerate aneuploidy as

well as this report’s observed Pax3:Foxo1a-mediated increase in

checkpoint adaptation gene expression may be directly relevant to

clinical care, given that decreased expression of these same factors

(i.e., PLK1, CCCNB1, BIRC5, AURKB) have been reported to

improve sensitivity to mitotic inhibitors [29]. Therefore, the interest

generated from chemical screens identifying PLK1 as a potential

therapeutic target in RMS [30] is likely warranted.

When considering the differences in treatment-related outcomes

in RMS subtypes, the role of Pax3:Fox01a in checkpoint

adaptation may be our most important clue yet as to how to

improve outcome for fusion positive patients: while aRMS are

certainly sensitive to standard chemotherapy and radiation, it is

the survival of resistant clones which is the cause of disease

progression and relapse – which occur to a greater extent in

Pax:Foxo1a positive aRMS than fusion negative aRMS or eRMS

[31,32], and which we believe to be a result of Pax3:Foxo1a-

mediated checkpoint adaptation. These effects on tumor cell

sensitivity to radiation, chemotherapy and targeted therapeutics

are likely to be cumulative and possibly critically important in

defining the otherwise very narrow therapeutic window for fusion

positive aRMS, for which the toxicity of chemotherapy and

radiation is now dose-limiting [33].

Perhaps the most interesting aspect of this genetically-engi-

neered conditional mouse model of a deadly but rare childhood

cancer is that a labor-intensive knock-in approach to modeling the

molecular pathophysiology of a fusion gene was beneficial.

Successful transgenic tumor models have been generated by

constitutive, ectopic expression of translocation-related fusion

oncogenes for synovial sarcoma [34] as well as other ‘‘driver’’

oncogene related tumors [35]; similarly, retroviral transfection of

oncogenes into hematopoietic cells has enabled this study of

translocation-associated leukemia for many years [36,37]. How-

ever, are these systems driven by non-native or partial-native

promoters to be the definitive preclinical platforms for interrogat-

ing molecular physiology – or are distal native cis- and trans-

regulation temporally critical? Every experimental system has its

advantages and limitations, yet for cell and animal models where

translocation-mediated fusion genes have yet to be modeled at the

native promoter, we may have an entirely new spectrum of cancer

genetics to explore.

Materials and Methods

Ethics statement
All animal procedures were conducted in accordance with the

Guidelines for the Care and Use of Laboratory Animals and were

approved by the Institutional Animal Care and Use Committee

(IACUC) at the University of Oregon Health & Science University

(OHSU) or the Joslin Diabetes Center (Boston, MA). Every effort

was made to minimize suffering.

Mice
The Myf6Cre,Pax3:Foxo1a,p53 conditional aRMS mouse model

has been described previously [5,6,7], is described as caMOD

Model 150064393, and is publically available through the NCI

MMHCC Repository (MMHCC Strain Codes 01XBL B6; 129-

Myf6,tm2(Cre)Mrc. and 01XBM B6; 129-Pax3,tm1Mrc.).

SHO-PrkdcscidHrhr mice were purchased from Charles River

Laboratories (Wilmington, MA) and bred/maintained at OHSU.

Primary tumor cell cultures and cell lines
Mouse primary cell cultures (U23674, U42369, U57844) were

established from tumor samples. Tumors were minced into small

pieces and digested with collagenase (10 mg/ml) overnight at

37uC. The dissociated cells were then incubated in Dulbecco’s

modified eagle’s media supplemented with 10% fetal bovine serum

(FBS) and 1% penicillin-streptomycin in 5% CO2 at 37uC. C2C12

mouse myoblast cells were purchased from ATCC (Manassas,

VA). Human aRMS cell lines were a gift from Peter Houghton

(Rh3; Nationwide Children’s Hospital, Columbus, OH) or Patrick

Reynolds (Rh41; COG Cell Culture and Xenograft Repository).

These cells lines were maintained in the same culture conditions as

primary tumor cell cultures: DMEM supplemented with 10%

Fetal Bovine Serum (FBS) and 1% Penicillin-Streptomycin. All

primary cell cultures experiments using cells were carried out at

passage 3–7.

Confocal imaging
For immunofluorescence staining of frozen sections, the

polyclonal antibody for green fluorescent protein (1:1000,

AB16901, Chemicon) was used with DAPI counterstain.

RNA interference studies
siRNA transfections were carried out using Lipofectamine2000

(Invitrogen, Grand Island, NY) according to manufacturer’s

recommended protocol. siRNA’s were diluted between 0.1 and

10 nM, and the final concentration of Lipofectamine2000 was

0.2%. siYFP Stealth RNAi siRNA Reporter Controls (cat. 12935-

145; Invitrogen) were used as the eYFP siRNA to knockdown the

Pax3:Foxo1a-ires-eYFP bi-cistronic mRNA, whereas Stealth RNAi

siRNA Negative Control Med GC #3 (cat. 12935-113; Invitro-

gen) was used as the siRNA control (siCont).

Ontology) for DNA content with or without Pax3:Foxo1a knockdown. (D) mRNA expression by QPCR of Plk1, Cdc25b, H2afx and Birc5 normalized to
Gapdh in DNA content-sorted U23674 mouse aRMS primary tumor cells with or without Pax3:Foxo1a knockdown. Black and red line shows significant
difference (p,0.05).
doi:10.1371/journal.pgen.1004107.g004
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Generation of shRNA tumor cell culture clones
To establish shRNA knockdown clones of primary tumor cell

cultures, we used MISSION pLKO.1-puro eGFP shRNA Control

Transduction Particles (cat. SHC005V; Sigma Aldrich) for

Pax3:Foxo1a knockdown and MISSION pLKO.1-puro Non-

Mammalian shRNA Control Transduction Particles (cat.

SHC002V; Sigma Aldrich) as the control, respectively. shRNA

transfections and clonal selection were carried out according to

manufacturer’s recommended procedures. Mouse RMS primary

cell cultures were plated at 1.86106 cells per 150 mm dish. After

24 h, hexadimethrine bromide was added (8 mg/ml, cat. H9268;

Sigma Aldrich), followed by each particle solution (MOI 0.5). After

another 24 h, media were removed and fresh media were added.

The following day, puromycin was added (5 mg/ml, cat. P8833;

Sigma Aldrich). Puromycin-resistant clones were selected cloning

rings at day 14 (shControl) and day 17 (shYFP), with continuous

puromycin selection at all times.

Radiation
Cells were irradiated on a Trilogy linear accelerator (Varian,

Palo Alto, CA) with a 10610 cm AP field. Two centimeter of

bolus material was placed on top of the 2 chamber slide or 6 cm

dish and the target surface distance to the bolus was at 97 cm.

Monitor units on the linear accelerator were then set to deliver 6

Gy or 10 Gy of dose to the cells.

Immunoblotting
Tumors were lysed in radioimmunoprecipitation assay (RIPA)

buffer or NP40 buffer containing both protease and phosphatase

inhibitor (Sigma). The lysates were homogenized and centrifuged

at 8000 g for 10 minutes. The resulting supernatants were used for

immunoblot analysis. Goat anti-FOXO1A antibody (cat. Sc-9808;

Santa Cruz, Santa Cruz, CA), goat anti-GFP antibody (cat. 600-

101-215, Rockland; Gilbertsville, PA) or rabbit anti-PDGFRa

antibody (cat. #3164; Cell signaling Technology, Danvers, MA).

Immunocytochemistry
Cells were plated on 8-well CultureSlides (cat. 354118; BD

Falcon, Franklin Lakes, NJ), fixed with 4% paraformaldehyde,

permeabilized with 0.1% or 0.25% TritonX100, washed and

incubated with mouse monoclonal anti-skeletal myosin (FAST)

(cat. M4276; Sigma), rabbit anti-Ki67 (cat. RM-9106-F; Thermo

Scientific, Waltham, MA), mouse anti-Pax3 (cat. MAB2457; R&D

Systems), mouse anti-phospho Histone H3 (cat. #9706; Cell

Signaling Technology), rabbit anti-phospho Histone H3 (cat.

#3377; Cell Signaling Technology), mouse anti-phospho Histone

H3 (cat. #9706; Cell Signaling Technology), rabbit anti-CDC2-

Y15 (cat. #4539; Cell Signaling Technology) or rabbit anti-

phospho H2AX antibody (cat. #9718; Cell Signaling Technolo-

gy), overnight, rinsed with PBS, incubated with fluorescein

isothiocyanate-conjugated anti-mouse and rabbit IgG (1:200) for

Figure 6. Treatment-related implications for dynamic oncogene expression in rhabdomyosarcoma in vivo. (A) Kaplan-Meier survival
analysis for disease-free survival of mice implanted with pre-irradiated (10Gy) primary murine aRMS tumor cells treated with Pax3:Foxo1a siRNA (siY)
or control siRNA (siC), n = 5 animals per cohort. The p value for the difference between siY and siC groups receiving radiation was 0.02. (B)
Diagrammatic representation of results in (A).
doi:10.1371/journal.pgen.1004107.g006

Figure 5. Pax3:Foxo1a facilitates G2/M checkpoint adaptation. (A) Immunocytochemistry for pHH3 (green), pH2AX (red) and DAPI (Blue)
using U23674 mouse aRMS primary cell culture with or without Pax3:Foxo1a knockdown treated with 6 Gy irradiation. Black line shows significant
difference (p,0.05). See Figure S2A for representative single-channel ICC images corresponding to Figure 5A. Arrowheads indicate pHH3 and pH2AX
double positive cells. (B) Representative cell cycle analysis for U23674 transfected by shControl (Clone A) or shYFP (Clone C) with or without 10 Gy
irradiation. The graph shows the differences of percentage between control and radiated cells in shControl and shYFP clones in 3 independent
experiments. Black line shows significant difference (p,0.05). (C) Annexin V apoptosis detection assay for U23674 transfected by shControl or shYFP
clones with or without 10 Gy irradiation. Black line shows significant difference (p,0.05).
doi:10.1371/journal.pgen.1004107.g005
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1 h, and examined by confocal microscopy with a Zeiss LSM700

instrument. For immunocytochemistry experiments, at least 100

positive cells were scored per specimen.

FACS sorting
Cells were suspended in Hank’s balanced salt solution (HBSS)

with 2% FBS and 2 mM EDTA. Antibody staining was performed

for 20 minutes on ice. Prior to FACS sorting, cells were suspended

in 1 mg/ml propidium iodide (Pi) and 10 mM calcein blue

(Invitrogen) to identify viable cells (Pi2Ca+). Purity checks were

performed to confirm that the sorted eYFP+ and eYFP- cell

subsets had a purity of .98% using a eYFP expression threshold

determined by the background fluorescence of eYFP- C2C12 cells.

The following antibodies were used to evaluate receptor tyrosine

kinase surface expression: APC-conjugated Pdgfra antibody (#17-

1401-81, eBiosciences) or anti-IGF1 Receptor antibody (cat.

Ab32823; Abcam, Cambridge, MA; 1 in 25).

Cell cycle analysis
Mouse RMS primary cell cultures were trypsinized and

incubated with Hoechst33342 (final concentration 15 mg/ml)

and Reserpine (final concentration 5 mM). Cells were incubated

in the dark for 30 min at 37uC, and analyzed and sorted by flow

cytometry using an Influx FACS instrument (Becton Dickinson,

Franklin Lakes, NJ). Cell cycle was determined with the FlowJo

software (Tree Star, Inc., Ashland, OR).

Annexin V apoptosis detection assay
Mouse primary cell cultures were stained with Annexin V and

Propidium iodide using Annexin-V-FLUOS Staining Kit (cat. 11

858 777 001; Roche) following the protocol provided by the

manufacturer. Briefly, 48 hour after irradiation, 106 mouse

primary cell cultures were trypsinized, washed by PBS and

resuspended in 100 ml of Annexin-VFLUOS labeling solution,

incubated 10–15 min at 15–25uC, and analyzed by FACS

Calibur.

Quantitative RT PCR (QPCR)
U23674 cells were subfractionated by FACS sorting as

described above. mRNA was isolated using RNeasy spin columns

(Qiagen, Valencia, CA) and reverse transcribed using Superscript

III First-Strand Synthesis System for RT-PCR (Invitrogen).

QPCR was performed using an AV7900 PCR system (Applied

Biosystem) with SYBR-green PCR reagents. Pax3:Foxo1a was

detected using the following primer sequences: 59-AGA-

CAGCTTTGTGCCTCCAT-39 and 59-CTCTTGCCTCCCTCTGGA-

TT-39. Other primers are Taqman Gene Expression assay, H2afx

(Mm00515990_s1), Cdc25b (Mm00499136_m1), Birc5 (Mm00599-

749_m1), Plk1 (Mm00440924_g1) and Gapdh (Mm99999915_g1)

by Invitrogen. RT-PCR data were quantified using the standard

curve method, and relative expression of Pax3:Foxo1a per sample

was determined by normalization against the quantity of 18 s

rRNA and Gapdh within each sample. For each sample, QPCR

was performed in technical duplicates and results were averaged.

In vitro growth inhibition assays
Mouse RMS primary cell cultures were plated at 16103 cells of

each cohort per well in a 96-well plate. After cell incubations,

cytotoxic effects were assayed using CellTiter 96 AQueous One

Solution Cell Proliferation Assay system (Promega, Madison, WI)

and SpectraMax M5 luminometer (Molecular Devices, Sunnyvale,

CA). IC50 and C.I. were determined with CalcuSyn software

(BIOSOFT, United Kingdom).Drugs: Vincristine sulfate salt (cat.

V8879; Sigma), Actinomycin-D (cat. A9415; Sigma), Mafosfamide

(cat. sc-211761; Santa Cruz), Topotecan hydrochloride (cat.

S1231; Selleck), Eribulin mesylate (NDC 62856-389-01; Eisai) or

Imatinib Mesylate (cat. S1026; Selleck).

RNAi-assisted protein target identification (RAPID) screen
For these studies, individual siRNA were obtained from

Dharmacon (Lafayette, CO), including the mouse siRNA library

targeting the tyrosine kinome (siGENOME). These experiments

are performed at 100 nM concentration and include non-specific

pooled siRNA as a control purchased from Dharmacon.

Transfection of siRNA was carried out using Lipofectamine

2000 in Opti-MEM Reduced Serum Media (Invitrogen). After

cells were plated in 96-well plates in the presence of inhibitor or

siRNA, and incubated for 96 hours, respectively, 20 mL CellTiter

96 AQueous One solution (MTS) was added to each well and

absorbance values assessed by the BioTek Synergy 2 plate reader

(BioTek, Winooski, VT).

Genome-wide expression analysis
Labeled target cRNA was prepared from 12 mouse total RNA

samples (3 independent experiments64 samples). Samples were

amplified and labeled using the Ambion MessageAmp Premier

RNA Amplification Kit following the manufacturer’s protocol.

Sample order was randomized. Each sample target was hybridized

to an Illumina MouseRef 8 v 2 Expression BeadChip Array.

Image processing and expression analysis were performed using

Illumina BeadArray Reader and GenomeStudio (v. 2010.1) Gene

Expression module (v. 1.6.0) software. Microarray data have been

accessioned with the Gene Expression Omnibus (GEO) under

series GSE41675. The following link has been created to allow

review of record GSE41675 while it remains in in review/under

private status: http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?token = xdajbqeisomcyhq&acc = GSE41675.

In vivo studies with Pax3:Foxo1a knockdown and
radiation

aRMS primary cultures (passage 5) were plated in 6 cm dishes.

The next day cells were transfected with siYFP Stealth RNAi

siRNA Reporter Controls or Stealth RNAi siRNA Negative

Control Med GC #3. Two days later cells were irradiated on a

Trilogy linear accelerator with a 10610 cm AP field with two

centimeter of bolus material was placed on top of the 6 cm dish.

The target surface distance to the bolus was at 97 cm and monitor

units on the linear accelerator were then set to deliver 10 Gy of

dose to the cells. Subsequently, cells were trypsinized and 500,000

cells were injected into the gastrocnemius muscle of SHO mice

that had been pre-injured 24 hours prior with 0.85 mg/mouse

cardiotoxin intramuscularly. Tumor volumes (cm3) were measured

3-dimensionally with electronic calipers and calculated from

formula (p/6)6length6width6height, assuming tumors to be

spheroid. For statistical analysis of disease-free survival, a tumor

volume threshold of 0.25 cc was applied. The log-rank test was

used to contrast treatments. All analyses were performed using R

3.0.0 (The R Foundation for Statistical Computing, Vienna,

Austria).

Supporting Information

Figure S1 This supplemental figure relates to Figure 1. eYFP activity

and Pax3:Foxo1a expression is dynamic. (A) eYFP fluorescence of

eYFP sorted U42369 mouse aRMS primary cell culture overtime

as measured by FACS. Grey: C2C12 (negative control), blue: no

sorted cells, green: eYFP activity high cells, red: eYFP activity low
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cells. (B) Mean of relative eYFP activity measured by FACS. (C)

Western blot analysis using eYFP sorted cells. Plotted are relative

protein levels of Pax3:Foxo1a/b-actin. Mean 6 SE were obtained

from three independent immunoblottings. Black line shows

significant difference (p,0.05). (D) eYFP activity and cell cycle

analysis using Hochest33342 staining for mouse primary cell

culture U42369. Green shows G0/G1 phase, brown shows S

phase, and blue shows G2/M phase. (E–F) Proliferating mouse

aRMS tumor cells were treated with 10 mg/ml CHX for the

indicated incubations, and eYFP, Pax3:Foxo1a and Pdgfra protein

levels were followed by western blot analysis (E). Protein

expression quantified as relative flux normalized by b-actin for

calculation of protein half-lives (F).

(TIF)

Figure S2 This supplemental figure relates to Figure 5. Pax3:Foxo1a

mediates checkpoint adaptation. (A) Individual and merged

channels for immunocytochemistry of pHH3 (green), pH2AX

(red) and DAPI (blue) using U23674 mouse aRMS primary cell

culture with or without Pax3:Foxo1a knockdown treated by 6 Gy

irradiation. (B) Western blot analysis of Pax3:Foxo1a and Foxo1a

in U23674 shControl and shYFP clones.

(TIF)

Figure S3 This supplemental figure relates to Figure 6. Pax3:Foxo1a

modifies the aRMS therapeutic response and remains an essential

target. (A–E) Pax3:Foxo1a knockdown increases select chemother-

apy sensitivities. MTS assay was performed for Pax3:Foxo1a

knockdown mouse aRMS tumor cells treated with DNA damaging

agents and microtubule inhibitors. Pax3:Foxo1a knockdown

reduced the concentration at which viability was impaired by

50% (IC50) of vincristine, actinomycin-D, topotecan and eribulin

by 2.9, 3.4, 4.8 and1.8 fold, respectively, yet did not affect the

IC50 of mafosfamide. (F–G) Imatinib IC50 determination using

mouse aRMS tumor cells transfected with siCont or siYFP,

respectively. Pax3:Foxo1a knockdown sensitized aRMS cells 5-fold

to this prototypic Pdgfra inhibitor. Given the role of Pax3:Foxo1a

in growth factor receptor transcription, we next explored the role

of Pax3:Foxo1a in driving aberrant tyrosine kinase signaling by

means of an RNAi-assisted protein target identification (RAPID)

screen after first knocking down Pax3:Foxo1a in mouse aRMS

tumor cells [38]. Cell viability was significantly decreased not only

for targets of imatinib but also for mediators of imatinib resistance

[17] in Pax3:Foxo1a knockdown cells compared with control cells

(G). * p,0.01.

(TIF)

Movie S1 This supplemental movie relates to Figure 1. Time lapse of

eYFP expression in murine aRMS cells.

(MOV)

Table S1 Genome-wide expression analysis using cell cycle

specific sorted cells (2N vs 4N) with or without Pax3:Foxo1a

knockdown.

(XLSX)

Table S2 Putative Pax3:Foxo1a binding sites of Checkpoint

Adaptation related genes.

(XLSX)
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