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The transcriptional regulator c-MYC is abnormally overexpressed in many human cancers. Evasion from
apoptosis is critical for cancer development, particularly c-MYC-driven cancers. We explored which anti-apoptotic
BCL-2 family member (expressed under endogenous regulation) is essential to sustain c-MYC-driven lymphoma
growth to reveal which should be targeted for cancer therapy. Remarkably, inducible Cre-mediated deletion of
even a single Mcl-1 allele substantially impaired the growth of c-MYC-driven mouse lymphomas. Mutations in
P53 could diminish but not obviate the dependency of ¢c-MYC-driven mouse lymphomas on MCL-1. Importantly,
targeting of MCL-1 Kkilled ¢-MYC-driven human Burkitt lymphoma cells, even those bearing mutations in p53.
Given that loss of one allele of Mcl-1 is well tolerated in healthy tissues, our results suggest that therapeutic
targeting of MCL-1 would be an attractive therapeutic strategy for MYC-driven cancers.
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The c-MYC transcription factor regulates ~10,000 genes,
including many that control cell growth and division
(Dang 1999). Deregulated c-MYC expression is detected
in up to 70% of human cancers, including lymphomas
and leukemias (Boxer and Dang 2001; Sanchez-Beato
et al. 2003). Much of what we know about ¢c-MYC-driven
tumorigenesis has emerged from studies using Eu-Myc
transgenic mice, in which the ¢-Myc transgene is sub-
jugated to the immunoglobulin (Ig) heavy chain gene
enhancer (Eu), mimicking the consequences of the c-MYC/
IGH or ¢-MYC/IGL chromosomal translocations that drive
human Burkitt lymphoma (Adams et al. 1985). The Eu-Myc
mice exhibit a preleukemic expansion of pre-B cells that pre-
cedes the outgrowth of clonal slIg™ pre-B-cell or sIg* B-cell
lymphomas arising with a median latency of ~110 d (Adams
et al. 1985; Langdon et al. 1986).
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Evasion from cell death is a hallmark of cancer, par-
ticularly those driven by ¢c-MYC (Hanahan and Weinberg
2011; Kelly and Strasser 2011). Deregulated c-MYC ex-
pression enhances cell death under unfavorable growth
conditions, such as limited availability of growth factors,
through the intrinsic apoptotic pathway that is regulated
by interactions of proteins belonging to three functionally
distinct subgroups of the BCL-2 family (Youle and Strasser
2008). Following apoptotic stimuli, the proapoptotic
BH3-only proteins (e.g., BIM and PUMA) become tran-
scriptionally and/or post-transcriptionally up-regulated.
For example, in response to DNA damage or oncogenic
stress, the tumor suppressor p53 directly transcription-
ally activates PUMA and NOXA to cause cell death
(Jeffers et al. 2003; Villunger et al. 2003). The BH3-only
proteins directly or indirectly activate BAX/BAK, the
executioners of apoptosis, which permeabilize the outer
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mitochondrial membrane and thereby unleash the down-
stream caspase cascade for cellular demolition (Merino
et al. 2009; Llambi et al. 2011).

Apoptotic blocks, such as overexpression of prosurvival
BCL-2-like proteins (Strasser et al. 1990; Swanson et al.
2004) or loss of proapoptotic BIM or PUMA (Egle et al.
2004; Hemann et al. 2004; Michalak et al. 2009), acceler-
ate c-MYC-driven lymphomagenesis. Interestingly, mu-
tations that deregulate the intrinsic apoptotic pathway,
including amplifications of the genomic regions encoding
MCL-1 and BCL-X (Beroukhim et al. 2010), are detected
in human tumors and are often associated with poor
chemotherapy responses (Khaw et al. 2011). Burkitt
lymphoma is associated with frequent loss of BIM and/
or PUMA expression, in part due to gene hypermethyla-
tion (Mestre-Escorihuela et al. 2007; Garrison et al. 2008;
Richter-Larrea et al. 2010; Giulino-Roth et al. 2012). More-
over, many Burkitt lymphomas contain defects in the p53
tumor suppressor pathway, particularly mutations in p53
itself (Farrell et al. 1991; Bhatia et al. 1992) but also over-
expression of the ubiquitin ligase HDM2 (called MDM2 in
mice) or loss of the pl14/ARF locus (Lindstrom et al. 2001).

Although overexpression of prosurvival BCL-2 family
members accelerates c-MYC-induced lymphomagenesis,
it is unclear whether the sustained survival and growth of
c-MYC-driven lymphomas depends on the expression of
these proteins under endogenous regulation. This remains
an important question because knowledge of which pro-
survival protein is essential for the sustained growth of
a particular cancer will pinpoint the family member that
should be targeted by the emerging BH3 mimetic drugs
(Lessene et al. 2008). Using innovative gene targeting and
drug-mimicking tools, we show for the first time that
MCL-1 targeting kills ¢-MYC-driven mouse and human
lymphoma cells even when p53 is mutated. This is
remarkable given that we found that p53 does affect the
dependency of these lymphoma cells on MCL-1 and
suggest that therapeutic targeting of MCL-1 may be a
promising strategy for cancer therapy.

Results

Experimental strategy to determine which
anti-apoptotic BCL-2 family member is essential
for the sustained survival and expansion

of MYC-driven lymphomas

To examine the roles of BCL-X; and MCL-1 expression
under endogenous control in the sustained growth of Eu-
Myc lymphomas, we generated mice in which we could
genetically delete Mcl-1 or Bcl-x at will exclusively
within ¢-MYC-driven lymphoma cells. Specifically, we
produced Eu-Myc transgenic mice that express a tamox-
ifen-regulated Cre recombinase-estrogen receptor fusion
protein from the ubiquitously expressed Rosa2é locus
(Rosa26-CreERT2 mice) (Seibler et al. 2003) and bear loxP
targeted (floxed, denoted fI) alleles of the prosurvival gene
Bcl-x (Wagner et al. 2000) or Mcl-1 (Vikstrom et al. 2010)
(Supplemental Fig. 1). As expected, the progeny with all
three genetic alterations developed lymphomas with the
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same latency as standard Eu-Myc mice (Supplemental
Fig. 2A) because they expressed normal levels of BCL-Xy,
or MCL-1. The lymphoma cells were transplanted into
C57BL/6-Ly5.1" recipients, which were treated with
tamoxifen to activate the Cre-ERT2 recombinase, leading
to deletion of Bel-x™ or Mcl-17 alleles exclusively within
the malignant cells (Supplemental Fig. 1). Selected pri-
mary lymphomas were infected with an Ub-GFP-Lucif-
erase lentivirus to facilitate monitoring lymphoma pro-
gression/regression following Bcl-x or Mcl-1 deletion by
imaging for bioluminescence in C57BL/6-albino recipient
mice (Supplemental Fig. 1). In mice transplanted with Eu-
Myc;CreERT2 lymphoma cells lacking any floxed allele
(for simplicity, hereafter termed “control”), tumor expan-
sion did not differ significantly between untreated and
tamoxifen-treated recipients (P = 0.06) (Supplemental Fig.
2B). This shows that CreERT2 activation per se does not
impair the growth of Eu-Myc lymphomas.

Homozygous loss of Bcl-x only slightly impairs
the sustained growth of Eu-Myc lymphomas

Since endogenous BCL-X; is necessary for Eu-Myc-in-
duced lymphoma development (Kelly et al. 2011), we
predicted that it might also be essential for the sustained
expansion of such malignant lymphomas. To examine
this, primary lymphomas from nine Eu-Myc; CreERT2;Bcl-
x"" and seven control mice were transplanted into C57BL/
6-Ly5.1" recipient mice and cohorts treated with tamoxi-
fen. Homozygous Bcl-x loss resulted in only a modest
delay in tumor expansion and slightly prolonged survival
of the mice (median survival 25 d for Eu-Myc;CreERT2; Bcl-
x vs. 19 d for the controls; [*] P = 0.0367) (Fig. 1A).
Following homozygous Bcl-x deletion, only 4% of the
recipient mice (three from 73) showed complete lymphoma
regression, which is comparable with the 3% of the tamox-
ifen-treated mice (one from 32) bearing control tumors.

This result was confirmed by in vivo lymphoma bio-
luminescence imaging (Fig. 1B). As early as 7 d after
tumor transplant, the recipients displayed a significant
lymphoma burden (=1 X 107 photon flux per second).
These lymphomas continued to grow following tamoxi-
fen treatment to delete both Bcl-x alleles and over-
whelmed the recipients only shortly after the untreated
mice had succumbed to the same lymphomas that
retained Bcl-x. Efficient deletion of the Bcl-x alleles and
loss of the BCL-X; protein were confirmed by quantita-
tive RT-PCR (qQRT-PCR) and Western blot analyses in
paired tamoxifen-treated and untreated lymphomas taken
from mice transplanted with Eu-Myc;CreERT2;Bcl-x""
lymphomas (Supplemental Fig. 3). These data reveal that
malignant Eu-Myc lymphomas can continue to grow
without endogenous BCL-X} expression.

Loss of Mcl-1 substantially impairs the sustained
growth of Eu-Myc lymphomas

In parallel experiments, we investigated whether MCL-1
was essential for the sustained growth of Eu-Myc lym-
phomas. Cohorts of C57BL/6-Ly5.1" mice were trans-
planted with independent primary lymphomas from six
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Eu-Myc;CreERT2;Mcl-1""" and seven control mice, and
their survival was compared following tamoxifen treat-
ment (Fig. 2). Strikingly, in 30% of the recipients, homo-
zygous deletion of Mcl-1 provoked complete lymphoma
regression and extended survival (>180 d post-transplant)
(Fig. 2A). The dramatic tumor regression was confirmed
by bioluminescence imaging of lymphomas transplanted
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into C57BL/6-albino recipient mice (Fig. 2B). Importantly,
even the tamoxifen-treated recipients that relapsed
exhibited substantially extended survival compared with
those bearing control lymphomas (median survival 35
d for mice bearing Eu-Myc; CreERT2;Mcl-1""! lympho-
mas vs. 19 d for those bearing control lymphomas; [****]
P < 0.0001).

Remarkably, even heterozygous Mcl-1" loss substan-
tially impaired sustained lymphoma growth: 20% of
recipient mice bearing Eu-Myc;CreERT2;Mcl-17"* lym-
phomas showed prolonged survival after tamoxifen treat-
ment (median survival was 23 d for relapsing lymphomas
vs. 19 d for control mice; [****] P < 0.0001) (Fig. 2A).
These results demonstrate that the level of MCL-1 is
highly critical for the sustained survival and expansion of
MYC-driven lymphomas. This conclusion was strength-
ened by further analysis of the relapsing tamoxifen-
treated lymphomas. The conditional allele of Mcl-1 carries
a human (hu) CD4 reporter gene, which is expressed
following Mcl-1" recombination, thus permitting single-
cell analysis of the recombination efficiency (Vikstrom
et al. 2010; Glaser et al. 2012). Strikingly, ~60% of Eu-
Myc;CreERT2;Mcl-1"* and 40% of Eu-Myc;CreERT2;Mcl-1""
lymphomas that relapsed following tamoxifen treatment
had escaped deletion of their conditional Mcl-1 alleles
mostly because they had undergone selection for loss of
CreERT2 expression (Fig. 3A,B). Western blot analysis of
these tamoxifen-treated tumors confirmed that MCL-1
protein expression was not reduced (Fig. 3B). In addition,
the minority of Eu-Myc;CreERT2;Mcl-1"" lymphomas
that did relapse as huCD4-positive following tamoxifen
treatment had only recombined one allele of Mcl-1 and
continued to express MCL-1 protein (Fig. 3C,D). By
inference, the survival curves described earlier grossly
underestimate the role that MCL-1 plays in the sustained
growth of Eu-Myc lymphomas. Indeed when animals that
succumbed to relapsed lymphomas that had selected

Figure 1. Homozygous loss of Bcl-x has only a minor impact
on the growth of Eu-Myc lymphomas. (A) Survival curves of
C57BL/6-Ly5.1* recipient mice transplanted with Eu-Myc;
CreERT2;Bcl-x" (green line) or control (Eu-Myc;CreERT?;
black line) lymphoma cells and treated with tamoxifen to
inactivate Bcl-x where applicable. (n) Total number of recipient
mice analyzed; (N) number of independent lymphomas tested.
Homozygous deletion of Bcl-x resulted in a small but significant
delay in tumor growth. (*) P = 0.0367. For the mice transplanted
with the control Eu-Myc;CreERT2 lymphomas, 3% regressed,
and the overall median survival was 19 d. For the mice trans-
planted with the Eu-Myc;CreERT2;Bcl-x" lymphomas, 4%
regressed, and the overall median survival was 25 d. (B) Bio-
luminescence imaging of the tumor burden in C57BL/6-albino
recipient mice injected with primary Eu-Myc;CreERT2;Bcl-x"/"
lymphoma cells that had been transduced with a lentiviral
vector coexpressing GFP and luciferase. At 7 d post-transplant,
a cohort of these mice was treated with tamoxifen. Mice were
subsequently imaged for bioluminescence to monitor lym-
phoma burden every 3-4 d by measuring the total photon flux
per second emitted from a region of interest (ROI) drawn around
the whole mouse. See also Supplemental Figure 3.



against loss of Mcl-1" alleles were removed from the
analysis (and those lymphomas that had mutated p53
alleles were also removed from the survival curves) (Fig.
5A; see below), nearly 100% of animals survived lym-
phoma-free long-term (>180 d post-transplant) (Fig. 3E).
These findings reveal that even heterozygous Mcl-1 loss
is highly detrimental for the sustained in vivo growth of
malignant Eu-Myc lymphomas, indicating that relatively
weak targeting of MCL-1 might have therapeutic benefits
in MYC-driven cancers.
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The sustained growth of human Burkitt lymphoma
cells depends on the expression of MCL-1

We sought to translate these findings into the human
disease setting. Western blot analysis of Burkitt lym-
phoma cell lines revealed that all expressed MCL-1 with
heterogeneous expression of BCL-Xy and, as previously
reported (Henderson et al. 1991) little to no BCL-2 (Fig.
4A). As a control for the BCL-2 antibody, we showed that
the X50-7 and Awia-tr lymphoblastoid cell lines ex-
pressed high levels of this prosurvival protein (Fig. 4A),
as reported (Henderson et al. 1991).

To examine the impact of targeting BCL-2 prosurvival
proteins on Burkitt lymphoma growth, we developed a
novel assay based on doxycycline (dox)-inducible expres-
sion (from a lentiviral vector) of genetically engineered
variants of the BH3-only protein BIMg with select binding
specificities for distinct BCL-2 prosurvival proteins (Fig.
4B; Chen et al. 2005; Lee et al. 2008). These polypeptides
have a mechanism of action similar to that of BH3
mimetic drugs; i.e., they antagonize BCL-2 prosurvival
protein function by engaging a hydrophobic ligand-bind-
ing groove on their surface (Lee et al. 2007, 2008; Souers
et al. 2013). The wild-type BIMg, which binds with high
affinity to all BCL-2 prosurvival proteins, served as a
positive control for the integrity of the intrinsic apoptotic
pathway. Mutant BIMg4E, which does not bind to any
BCL-2 prosurvival family member, thus served as a nega-
tive control. L62A/F69A mutant BIMg2A preferentially
binds MCL-1, and BIMgBAD binds to BCL-2, BCL-X;, and
BCL-W. Western blotting verified inducible expression of
all BIMg variants in Rael-BL (Fig. 4C) and other Burkitt
lymphoma cell lines (Supplemental Fig. 4A). All Burkitt
lymphoma cell lines tested were highly sensitive to the
expression of wild-type BIMg, demonstrating that they
had an intact intrinsic apoptotic pathway. Conversely, as
expected, these cells were not affected by BIM4E (repre-
sentative FACS plots are shown in Supplemental Fig. 4B).

Figure 2. Loss of Mcl-1, even loss of a single allele, greatly
impairs the sustained growth of Eu-Myc lymphomas within the
whole animal. (A) Survival curves of C57BL/6-Ly5.1* recipient
mice transplanted with Eu-Myc; CreERT2;Mcl-1"* (red line), Eu-
Myc;CreERT2;Mcl-1"" (blue line), or control (Eu-Myc; CreERT2;
black line) lymphoma cells and treated with tamoxifen to
inactivate Mcl-1 where applicable. (n) Total number of recipient
mice analyzed; (N) number of independent lymphomas tested.
Heterozygous and homozygous deletion of Mcl-1 significantly
delayed lymphoma growth. (****) P < 0.0001. For the mice
transplanted with the control Eu-Myc;CreERT2 lymphomas,
3% regressed, and the overall median survival was 19 d. For
the mice transplanted with the Eu-Myc;CreERT2;Mcl-1* lym-
phomas, 20% regressed, and the overall median survival was 23 d.
For the mice transplanted with the Eu-Myc;CreERT2;Mcl-1"/"
lymphomas, 30% regressed, and the overall median survival
was 35 d. (B) Bioluminescence imaging of the tumor burden in
C57BL/6-albino recipient mice injected with primary Eu-Myc;
CreERT2;Mcl-17""" lymphoma cells. At 10 d post-transplant, a
cohort of these mice was treated with tamoxifen. These mice
were subsequently imaged for bioluminescence.
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Figure 3. Most Eu-Myc lymphomas that relapse following tamoxifen treatment have escaped Mcl-17 allele recombination. (A) FACS
analysis to detect expression of huCD4 (reporter for Mcl-1" recombination) on the surface of two representative Eu-Myc;CreERT2;Mcl-1"*
and Ep-Myc;CreERT2;Mcl-7" lymphomas that had relapsed in recipient mice after tamoxifen treatment (transplanted lymphoma cells
stained positive for Ly5.2). Approximately 60% of the relapsed Eu-Myc;CreERT2;Mcl- 17"+ and 40% of the relapsed Eu-Myc;CreERT2;Mcl- 1"/
lymphoma cells had escaped Mcl-1" allele recombination and, as such, were huCD4-negative (like the sample at the left of each pair),
whereas ~40% of the relapsed Eu-Myc;CreERT2,Mcl-1"* and 60% of the relapsed Eu-Myc;CreERT2;Mcl-1"" lymphomas had efficiently
recombined at least one Mcl-1" allele, as reflected by staining positive for huCD4 (like the sample at the right of each pair). (B)
Immunoblotting to detect MCL-1 and CreERT2 protein expression (probing for Actin was used as a loading control) in extracts from the
spleens, lymph nodes, or thymuses of sick mice that had been transplanted with Eu-Myc;CreERT2;Mcl-1"* or Eu-Myc;CreERT2;Mcl-1""
lymphomas. Three independent, paired control, and tamoxifen-treated tumors of each genotype were analyzed (note that one of the Eu-
Myc;CreERT2;Mcl-7""" tumors [#3] examined never relapsed after tamoxifen treatment). Mcl-1 knockout (KO) mouse embryonic fibroblasts
(MEFs) were used as a control to confirm the specificity of the MCL-1 antibody (neg control). (C) DNA PCR analysis of recombined Mcl-1"
and unrecombined (intact) floxed alleles in Eu-Myc;CreERT2;Mcl-1"" lymphomas that relapsed following tamoxifen treatment. (D)
Immunoblotting to detect MCL-1, CreERT2, p53, p19/ARF and Actin (loading control) protein expression in extracts from the spleens,
lymph nodes, or thymuses of sick mice transplanted with Eu-Myc;CreERT2;Mcl- 1" lymphomas that relapsed as huCD4-positive following
tamoxifen treatment. Three independent, paired control, and tamoxifen-treated tumors were analyzed. Mcl-1 knockout (KO) MEFs were
used as a control (neg control) to confirm the specificity of the MCL-1 antibody. (E) Survival curves of C57BL/6-Ly5.1" recipient mice
transplanted with Eu-Myc;CreERT2;Mcl-1"* (red line) or Epu-Myc;CreERT2;Mcl-1"" (blue line) lymphoma cells that had wild-type p53 genes
following tamoxifen treatment and excluding those lymphomas that escaped Cre-mediated deletion of one or both Mcl-17 alleles. C57BL/
6-Ly5.1* recipient mice transplanted with control (Eu-Myc;CreERT2; black line) lymphoma cells and treated with tamoxifen are shown for
comparison. (n) Total number of recipient mice analyzed; (N) number of independent lymphomas tested. Efficient heterozygous and
homozygous deletion of Mcl-1 significantly delayed lymphoma growth. (****) P < 0.0001. For the mice transplanted with the control Eu-
Myc;CreERT2 lymphomas, 3% regressed, and the overall median survival was 19 d. For the mice transplanted with the Eu-
Myc;CreERT2;Mcl-1"* lymphomas, 94% regressed, and the overall median survival was >180 d. For the mice transplanted with the
Ep-Myc;CreERT2;Mcl-1"" lymphomas, 100% regressed, and the overall median survival was >180 d.
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Figure 4. MCL-1 blockade kills human Burkitt lymphoma cells, but some also show minor dependency on BCL-X;. (A)
Immunoblotting to detect MCL-1, BCL-X;, BCL-2, and B-Actin (loading control) in extracts from Burkitt lymphoma cell lines
and, as controls for BCL-2 expression, the X50-7 and Awia lymphoblastoid cell lines. (B) Schematic showing the binding
specificities of the BIMg variants to the BCL-2 prosurvival proteins. (C) Immunoblotting to detect the inducible expression of the
BIMg variants before and after 24 h of dox treatment in the Rael-BL cell lines carrying the different lentiviral-inducible BIMg
expression constructs. Cells were maintained in medium supplemented with the pan-caspase inhibitor qVD-OPh to prevent
protein degradation due to apoptosis. Note that the endogenous BIMgy, BIM;, and BIMg proteins can also be detected but at a lower
level. Probing for B-Actin served as a loading control. (D) Viability of BL cell lines stably infected with lentiviral constructs
carrying vectors for dox-inducible expression of BIMg variants was determined 72 h after the addition of dox to the medium by
staining the cells with propidium iodide (PI) followed by FACS analysis for PI and GFP fluorescence (GFP is expressed from the
lentivirus encoding the BIM; variants). The PI-negative/GFP-positive viable cells were recorded. The percentage of viable/GFP-
positive untreated cells was assigned an arbitrary value of 1, and the percentage of viable/GFP-positive dox-treated cells was
expressed as a proportion of this. Each line was assayed in triplicate, and data are presented as the mean and standard error of the
mean of three independent experiments. Statistical analysis using a paired two-tailed t-test showed that BIMs2A induced
significantly more death in all of the Burkitt lymphoma cells examined compared with the negative control BIMs4E (BL31, [*] P =
0.0179; Ramos-BL, [**] P = 0.0025; Rael-BL, [**] P = 0.0017; Sav-BL, [**] P = 0.0044) and that BIMs2A induced significantly more
death than BIMsBAD in BL31 ([**] P = 0.0056), Ramos-BL ([*] P = 0.0421), and Rael-BL ([**] P = 0.0023) cells but not in the Sav-BL
cells ([ns] P = 0.1348). See also Supplemental Figure 4.

Notably, all Burkitt lymphoma cells were sensitive to
BIMg2A, indicating a dependency on MCL-1 (Fig. 4D;

more potent killing activity of BIMg2A versus BIMgBAD
on most cell lines reflected the dependence of these cells

Supplemental Fig. 4D). Ramos-BL, BL31, and Sav-BL were
also sensitive to BIMgBAD (and, accordingly, also to
treatment with ABT-737, which targets BCL-X;, BCL-2,
and BCL-W), albeit for Ramos-BL and BL31, significantly
less than to BIMg2A, indicating only a partial dependency
on BCL-Xy (Fig. 4D; Supplemental Fig. 4C,D). Kinetic
binding analyses using the Biacore confirmed that the

on MCL-1 rather than a greater capacity of BIMg2A to
engage MCL-1 compared with the ability of BIMgBAD to
bind BCL-X;. Indeed these Biacore binding assays showed
that the affinity of the BAD-BH3 is actually ~20-fold
higher for BCL-X; (similar to that of wild-type BIMg BH3)
than the affinity of BIMg2A for MCL-1 due to a signifi-
cantly faster dissociation rate in the MCL-1 interaction
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(Supplemental Fig. 4E). Collectively, these results show
that the sustained survival and growth of Burkitt lym-
phoma cells is dependent on MCL-1 either alone or with
a contribution by BCL-X.

Mutations in p53 reduce but do not ablate
the dependency of c-MYC-driven mouse
and human lymphomas on MCL-1

Although most transplanted Eu-Myc mouse lymphomas
(14 from 23 analyzed) could not continue to grow follow-
ing heterozygous recombination of McI-1%, a minority of
relapsing lymphomas (nine from 23 analyzed) did display
heterozygous Mcl-1" allele deletion, as demonstrated by
huCD4 immunostaining (Fig. 3A). We were interested to
understand why these lymphoma cells were less depen-
dent on MCL-1 for their growth, since such insights will
be critical for predicting the therapeutic response of
c-MYC-driven lymphomas and other cancers to MCL-1
antagonists. Interestingly, we noticed that most lympho-
mas capable of growth following transplantation and
heterozygous Mcl-17 loss (seven of nine identified) dis-
played dramatically increased expression of the tumor
suppressor p53 (Figs. 3D, 5A), a hallmark of p53 gene
mutations. DNA sequence analysis confirmed the pres-
ence of mutations affecting known “hot spot” residues
(Freed-Pastor and Prives 2012) within the DNA-binding
domain of p53 in the primary lymphomas capable of
growth following transplantation and heterozygous de-
letion of Mcl-1 (Figs. 3D, 5B). This suggests that the
presence of existing mutations in the p53 gene decreased
the dependency of these tumor cells on MCL-1. An
additional relapsed lymphoma of genotype Eu-Myc;
CreERT2;Mcl-1""" (#6) showed evidence of p53 path-
way mutation (increased pl9/ARF protein expression)
upon tamoxifen treatment (increasing the frequency to
eight of nine lymphomas showing perturbation of the p53
pathway) (Fig. 3D). As a control, we sequenced the p53
gene in seven of the 14 lymphomas that expressed
physiological (i.e., very low/barely detectable in the
absence of genotoxic stress) levels of p53 (indicative of
wild-type nonmutated p53 genes) and were not capable of
growing following heterozygous loss of Mcl-1 and con-
firmed that their p53 genes were wild type. This high-
lights a novel and highly specific interplay between
malignant cell survival dependency on MCL-1 and the
p53 tumor suppressor pathway. Importantly, a lymphoma of
genotype Eu-Myc;CreERT2;Mcl-1"" (#3) carrying the p53
mutation that introduced a stop codon almost always
regressed following tamoxifen treatment. These results
suggest that mutations in the p53 pathway and complete
loss of wild-type p53 were not sufficient to allow sus-
tained expansion of Eu-Myc lymphomas with homozy-
gous Mcl-1 loss.

Therefore, and since mutations in p53 are a common
feature of many human cancers (Vousden and Lane
2007), we investigated whether p53 pathway defects could
render Burkitt lymphoma cells resistant to MCL-1 target-
ing. Mutations of the p53 gene, clustering around “hot
spot” residues in the DNA-binding domain that are
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known to abrogate p53 function (Cho et al. 1994, Petitjean
et al. 2007; Freed-Pastor and Prives 2012), were detected
in Rael-BL, Sav-BL, and BL-31 and globally in ~60% of
the 16 Burkitt lymphoma cell lines tested (note that
many lines were in early passage) (Fig. 5C,D). Im-
portantly, all Burkitt lymphoma cells that retained
wild-type p53 genes displayed other abnormalities in
the p53 tumor suppressor pathway, including HDM2
overexpression (Fig. 5C) or pl4ARF locus deletion
(BL2) (Fig. 5D). Thus, functional inactivation of the
p53 tumor suppressor pathway appears to constitute
a critical step in the pathogenesis of ¢-MYC-driven
Burkitt lymphoma but is insufficient to overcome the
exquisite growth dependency of these malignant cells
on MCL-1. Therefore, therapeutic targeting of MCL-1
would still remain an effective treatment regime for
Burkitt lymphoma and possibly other ¢-MYC-driven
human cancers.

Discussion

Up to 70% of human cancers display deregulated c-MYC
overexpression (Boxer and Dang 2001; Sanchez-Beato
et al. 2003). Identifying the cellular factors critical for
the growth of c-MYC-driven cancers therefore remains an
important objective for designing novel treatment strategies.

We investigated this by using two novel, innovative
approaches: conditional deletion of McI-1 or Bcl-x genes
at will in Eu-Myc lymphomas within the whole mouse or
inducible expression of polypeptides that inhibit specific
BCL-2 prosurvival proteins (mimicking the action of
drugs that target these proteins; e.g., ABT-737 or ABT-
263/navitoclax) in human Burkitt lymphoma cells. We
found that although BCL-X; is essential for Eu-Myc-
induced lymphoma development (Kelly et al. 2011), the
loss of BCL-X;, had only a minimal impact on sustained
tumor growth. Consistent with this, treatment of Eu-Myc
lymphomas with the BH3 mimetic ABT-737, which tar-
gets BCL-2, BCL-X;, and BCL-W (Oltersdorf et al. 2005;
van Delft et al. 2006), does not cause tumor regression
(Mason et al. 2008), suggesting that these three prosurvival
proteins are dispensable for sustained Eu-Myc lymphoma
growth. In contrast, sustained growth of Eu-Myc lympho-
mas was exquisitely dependent on MCL-1. Remarkably,
even heterozygous deletion of Mcl-1 was sufficient to
result in complete regression of ~20% of tumors, allow-
ing long-term survival of formerly lymphoma-burdened
mice. Strikingly, analysis of the lymphomas that did
relapse revealed that ~60% had escaped Mcl-1 deletion
(mostly due to loss of the Cre recombinase). Indeed, when
the animals bearing lymphomas that escaped Mcl-1"
allele deletion (and had not acquired mutations in p53)
were removed from the analysis, nearly 100% survived
lymphoma-free long-term (>180 d post-transplant) (Fig.
3E). Importantly, this translated into the human disease
setting, where we found that MCL-1 blockade efficiently
killed Burkitt lymphoma cells, with a lesser impact of
BCL-Xy targeting observed in some lines.

An MCL-1 dependency was also detected in AML
mouse models and human AML-derived cell lines (Xiang
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Figure 5. Mutations in p53 reduce but do not ablate the dependency of c-MYC-driven mouse and human lymphomas on MCL-1. (A)
Immunoblotting to detect stabilized p53 proteins, indicative of a mutant p53 protein, in extracts from 17 Eu-Myc;CreERT2;Mcl-1""*
and six Eu-Myc;CreERT2;Mcl-1"""" lymphomas. All but two of the samples were extracted from transplanted and tamoxifen-treated
lymphomas. The two exceptions were Eu-Myc; CreERT2;Mcl-1"* #9, which was a primary lymphoma, and Eu-Myc;CreERT2;Mcl-1"
#3, which was a transplanted but not tamoxifen-treated lymphoma (this particular lymphoma has the deletion of two bases that
introduces a premature stop codon in the p53 gene). Probing for HSP70 served as a loading control. (B) Summary of the p53 mutations
detected in Eu-Myc;CreERT2;Mcl-1""* and Eu-Myc;CreERT2;Mcl-1"" lymphomas as detected by DNA sequence analysis. The
mutations are listed as wild-type (wt) amino acid (aa) affected, amino acid position, and mutant amino acid. The frequencies at which
the mutations were detected in the lymphomas and the human equivalents of the mutations are listed. The sequence alignment for
murine p53 was performed using Ensembl transcript number ENSMUST00000108658 as the reference transcript. (C) Immunoblotting
to detect the expression of HDM2, p53, and B-Actin (loading control) in human Burkitt lymphoma cell lines. (D) Summary of the p53
pathway aberrations detected in the human Burkitt lymphoma cell lines. The p53 mutations present in each cell line is listed as wild-
type (wt) amino acid (aa) affected, amino acid position, and mutant amino acid, and the number of alleles affected is also detailed.
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et al. 2010; Glaser et al. 2012). This finding and the
observation that ~10% of diverse tumors contain somat-
ically acquired amplifications of the genomic region
harboring MCL-1 (Beroukhim et al. 2010) highlight the
importance of developing BH3 mimetic drugs that selec-
tively target MCL-1 for treating human cancers. A concern
is that MCL-1 is required for the survival of hematopoietic
stem/progenitor cells (Opferman et al. 2005) and several
other critical cell types, including cardiomyocytes (Opferman
et al. 2003; Vikstrom et al. 2010; Thomas et al. 2013; Wang
et al. 2013). Importantly, our discovery that MYC-driven
lymphomas cannot tolerate even heterozygous loss of
Mcl-1 (which should mimic 50% drug-mediated inhibi-
tion of the protein), whereas its heterozygous loss is well
tolerated in normal tissues (Opferman et al. 2003, 2005;
Vikstrom et al. 2010), indicates that it should be pos-
sible to establish a therapeutic window for MCL-1 inhib-
itory drugs.

A novel and highly important finding from this study is
the observation that mutations in “hot spot” residues in
the DNA-binding domain of the p53 gene can reduce but
not abrogate the lymphoma cells’ dependency on MCL-1.
Consistent with a recent study that found that p53
mutations are the fourth most commonly detected ge-
netic change in a large panel of Burkitt lymphoma bi-
opsies (Love et al. 2012, we found that ~60% of Burkitt
lymphoma lines had acquired mutations in the DNA-
binding domain of p53 (Petitjean et al. 2007). Remarkably,
all of the remaining Burkitt lymphoma lines examined
displayed some other abnormalities in components of
the p53 pathway, such as HDM2 overexpression or pl4/
AREF loss. Importantly, MCL-1 antagonism was able to
kill Burkitt lymphomas with p53 pathway defects,
suggesting that MCL-1 inhibitory drugs could be effica-
cious in the treatment of c-MYC-driven cancers bearing
p53 mutations.

The network of processes that p53 activates to suppress
tumorigenesis are still emerging (Brady et al. 2011; Li
et al. 2012; Valente et al. 2013). The observation that
mutation and loss of p53 constitute critical steps in
c-MYC-driven lymphomagenesis (Vousden and Lane
2007; Michalak et al. 2009) and that they can facili-
tate the sustained growth of malignant Eu-Myc lym-
phomas with reduced MCL-1 expression highlights the
connection between the p53 tumor suppressor pathway
and the dependency of malignant cells on prosurvival
MCL-1.

Our results are consistent with a model (Fig. 6] in
which ¢-MYC-driven lymphomas are highly dependent
on MCL-1 for survival. A reduction of MCL-1 expression
through either genetic means or, in the future, therapeu-
tics could induce cell death by disturbing the balance
between the proapoptotic p53 targets PUMA/NOXA and
prosurvival MCL-1. However, when designing therapeu-
tic strategies for such lymphomas, we need to be mindful
that mutations in p53 would prevent oncogenic stress-
induced up-regulation of PUMA and NOXA and may
thereby render lymphoma cells less dependent on MCL-1.
Therefore, for such (p53 mutated) c-MYC-driven lympho-
mas, it may be beneficial to activate the intrinsic apo-
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Figure 6. A proposed model in which ¢-MYC-driven lym-
phoma cells that are highly dependent on MCL-1 for their
sustained expansion can no longer survive once MCL-1 expres-
sion is reduced and the balance between this prosurvival protein
and the p53 proapoptotic targets PUMA/NOXA is disturbed.
The ¢-MYC-driven lymphoma cells that have acquired p53
mutations display an accelerated lymphoma progression. These
lymphomas express less PUMA/NOXA, and, consequently, less
MCL-1 expression is required to maintain the lymphoma pro-
gression. Despite this, we showed that targeting of MCL-1 in
lymphomas with p53 mutations was sufficient to result in tumor
regression. Note that the mouse protein nomenclature is used.

ptotic pathway more potently than is needed for tumors
that carry wild-type p53.

In conclusion, our findings suggest that MCL-1 target-
ing may be a viable strategy for cancer therapy, particu-
larly in tumors where deregulated ¢c-MYC expression
instills an exquisite dependence (much more so than in
nontransformed cells) on this prosurvival protein.

Materials and methods

Mice

Experiments with mice were conducted according to the guide-
lines of The Walter and Eliza Hall Institute Animal Ethics
Committee. Eu-Myc transgenic (Adams et al. 1985), Bcl-x™"
(Wagner et al. 2000), Mcl-1"" (Vikstrom et al. 2010), Rosa26-
CreERT? (Seibler et al. 2003), and p53~/~ (Jacks et al. 1994) gene
targeted mice have all been described previously. All mouse
strains were on a C57BL/6-Ly5.2* genetic background generated
on either this background (Mcl-7"" and Rosa26-CreERT2) us-
ing C57BL/6-derived embryonic stem cells, a mixed C57BL/
6x129SV background (Bcl-x"") using 129SV-derived embryonic
stem cells, or a mixed C57BL/6xSJL background (Eu-Myc) using
microinjection of C57BL/6xSJL-derived oocytes and then back-
crossed for 10 to >20 generations with C57BL/6 mice.

Single-cell suspensions of 3 X 10° Eu-Myc lymphoma cells in
PBS were injected into C57BL/6-Ly5.1* or C57BL/6]-Tyr*? (re-
ferred to as C57BL/6-albino; The Jackson Laboratory) recipient
mice by intravenous (i.v.) tail vein injection. Mice were admin-
istered by oral gavage with 200 mg/kg tamoxifen (Sigma-
Aldrich) in peanut 0il/10% ethanol per day (Anastassiadis
et al. 2010) for two consecutive days on either days 5 and 6 or
days 10 and 11 post-injection of the tumor cells. Transplants in
which the matched control untreated mice did not become sick
by 28 d post-tumor cell injection were excluded from the
analysis.



Statistical analysis

Graphpad Prism software was used for generating Kaplan-Meier
plots and performing statistical analysis (using a log-rank test) to
compare the survival of mice injected with lymphoma cells of
different genotypes. Graphpad Prism was also used to carry out
paired two-tailed t-tests on the death induced in the Burkitt
lymphoma cells following dox-inducible expression of the BIMs
variants. Specifically, the significance of the extent of cell death
induced by BIMs2A (to target MCL-1) expression compared with
either inducible expression of BIMs4E (negative control) or
BIMsBAD (to target BCL-2, BCL-X;, and BCL-W) was calculated
for each of the Burkitt lymphoma cell lines.

Cell culture

Eu-Myc mouse lymphoma cells were cultured in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) (Gibco), 50 pM B-mercapto-
ethanol (Sigma-Aldrich), 100 wM asparagine (Sigma-Aldrich),
100 U/mL penicillin, and 100 mg/mL streptomycin (Gibco) at
37°C and 10% CO,. OP9 cells were cultured in «MEM (Gibco)
supplemented with 20% heat-inactivated FBS, 1 mM glutamine
(Gibco), 10 mM Hepes (Gibco), 1 mM sodium pyruvate (Gibco),
50 pM B-mercaptoethanol, 100 U/mL penicillin, and 100 pg/mL
streptomycin. Human cell lines were cultured in a humidified
incubator at 37°C and 5% CO,. Virus-producing 293T cells were
maintained in DMEM supplemented with 10% FBS. Approxi-
mately 6 h prior to transfection, 293T cells were cultured in
DME glutamax (Gibco) supplemented with 10% FBS and 25 mM
Hepes. Rael-BL, Ramos-BL, Sav-BL, and BL-31 human Burkitt
lymphoma-derived cell lines were cultured in RPMI 1640 sup-
plemented with 10% FBS, 1 mM glutamine (Gibco), 1 mM
sodium pyruvate (Gibco), 50 uM a-thioglycerol (Sigma-Aldrich),
and 20 nM bathocuproine disulfonic acid (BCS) (Sigma-Aldrich).
X50-7 and Awia lymphoblastoid cell lines were cultured in RPMI
1640 supplemented with 10% FBS and 1 mM glutamine.

Lentiviral plasmids and virus production

The dox-responsive lentiviral vector pFTRE3G_pGK3G_GFP
was generated by digesting Pacl/Ascl and cloning the TRE3G_
PGK3G_GFP cassette. The TRE3G_pGK3G GFP cassette was
amplified by PCR as pTRE3G_pGK3G_GFP (Yamamoto et al.
2012). The PCR products of the BIM; variants (Lee et al. 2008)
were cloned into pFTRE3G_pGK3G_GFP. The lentiviral imaging
construct was generated by inserting Luciferase2 linked via a T2A
peptide to eGFP downstream from the human ubiquitin pro-
moter of the FUGW vector (Lois et al. 2002). Lentivirus-con-
taining supernatants were produced by transiently transfecting
293T cells with the expression constructs of interest alongside
the packaging plasmids, VSV-G, MDL, and RSV-Rev using the
standard CaPO, method (Herold et al. 2008). Supernatants
containing infectious virus particles were harvested 2-3 d
post-transfection.

Lentiviral transduction of Eu-Myc lymphoma cells
and Burkitt lymphoma cell lines

For infection, aliquots of 0.5 X 10° to 1 X 10° primary Eu-Myc
lymphoma cells or 1 X 10° Burkitt lymphoma cells were
suspended in 4 mL of virus-containing supernatant containing
10 ng/p.L polybrene, incubated for 30 min at 37°C and 5% or 10%
CO,, and then centrifuged at 2200 rpm for 2.5 h at 32°C. The
supernatant was subsequently discarded, and the cells were
resuspended in fresh medium for culture.

MCL-1 is essential for MYC-driven lymphoma growth

Inducible expression of BIMg variants in human
Burkitt lymphoma cells

To induce expression of the BIMg variants, cells were cultured in
medium supplemented with 1 pg/mL dox. The viability of the
GFP-positive cells was determined by propidium iodide (PI)
staining and FACS analysis in an LSR1 machine. The PI-
negative/GFP-positive cells were considered as live cells. The
cell death following inducible expression of the BIMs variant was
expressed relative to the untreated Burkitt lymphoma cells,
which were assigned a value of 1. For the analysis of the BIMg
variant expression by immunoblotting, the pan-caspase inhibitor
qVD-OPh (25 pM; MP Biomedicals) was added to the dox-treated
cells for 24 h to inhibit cell killing.

Direct binding assays to determine the binding parameters
of BH3 ligands for BCL-X; and MCL-1

Direct binding assays were performed at room temperature using
a Biacore S51 biosensor exactly as described previously (Lee et al.
2007). The peptides used were BIMs BH3, DMRPEIWIAQELRR
IGDEFNAYYARR; BIMg 2A BH3, DMRPEIWIAQEARRIGDEA
NAYYARR; and BADg BH3, NLWAAQRYGRELRRMSDEFVD
SFKKG.

Immunofluorescent staining, flow cytometric analysis,
and cell sorting

To immunophenotype Eu-Myc lymphomas, single-cell suspen-
sions were stained as described (Strasser et al. 1991) with surface
marker-specific antibodies and analyzed using an LSR1 machine
(Becton Dickinson). The following fluorochrome-conjugated
antibodies were used: CDI19 (clone ID3), B220 (RA3-6B2), IgM
(clone 5.1), IgD (clone 11-26C), CD4 (clone H129), CD8 (clone
YTS.169), Thyl (clone T3.24.1), Macl (M1/70), and GR1 (clone
RB6-8C5). To discriminate host-derived (Ly5.1*) from donor-
derived (Ly5.2*) cells, monoclonal antibodies to Ly5.1 (clone
A201.1) and Ly5.2 (clone 5.450.15.2 or AL14A7) were used. To
verify recombination of the loxP-flanked allele of Mcl-1, cells
were stained with antibodies to human CD4 (clone RPA-T4),
since Mcl-1" recombination subjugates a human CD4 reporter
cassette to the Mcl-1 promoter/enhancer (Vikstrom et al. 2010).
Antibodies were produced in our laboratory and conjugated to
FITC, R-phycoerythrin (R-PE), or allophycocyanin (APC) accord-
ing to the manufacturers’ instructions. Where required, Burkitt
lymphoma cells were sorted for GFP expression using an AriaW
cell sorter (Becton Dickinson).

Immunoblotting

Total protein extracts were prepared from cells (primary Eu-Myc
lymphomas and Burkitt lymphoma cell lines) by lysis in onyx
buffer, NP40 buffer, or urea buffer containing protease inhibitors
(Complete protease inhibitor cocktail, Roche). Protein content
was quantified using the Bio-Rad Bradford assay. Total protein
extracts (20 pg) were separated on the basis of molecular weight
by SDS-PAGE and Western-blotted onto nitrocellulose mem-
branes. The membranes were blocked in 5% skim milk in PBS
and 0.1% Tween20 (blocking buffer) before incubation with
antibodies. Polyclonal antibodies were used to detect mouse
MCL-1 (Rockland Antibodies and Assays), BIM (Enzo Life
Sciences), BCL-x (BD Biosciences), and human MCL-1 (s-19,
Santa Cruz Biotechnology); monoclonal antibodies were used to
detect mouse p53 (clone IMX25, Novocastra), pl9/ARF (clone
5.C3.1, Rockland Antibodies and Assays), ERa (to detect the
CreERT2 protein) (clone HC-20, Santa Cruz Biotechnology),
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Actin (clone AC40, Sigma-Aldrich), and B-Actin (clone AC74,
Sigma-Aldrich); and monoclonal antibodies were used to detect
human p53 (clone FL393), HDM2 (clone N20), BCL-2 (clone C-2),
BCL-X¢ (clone H5) (all from Santa Cruz Biotechnology), B-Actin
(clone ACI15, Sigma-Aldrich), and HSP70 (mouse monoclonal
antibody clone N6; detects both mouse and human protein) (a
gift from Dr R Anderson, Peter MacCallum Cancer Research
Institute, Melbourne, Australia). All antibodies were diluted in

blocking buffer.

gRT-PCR analysis

Total RNA was extracted from paired untreated and tamoxifen-
treated Eu-Myc lymphoma cells using TRIzol reagent (Invitrogen)
according to the manufacturer’s instructions. The RNA was
treated with DNase to remove contaminating DNA using the
RNase-free DNase Qiagen kit according to the manufacturer’s
instructions. RNA quality and quantity were determined using
the NanoDrop assay (Thermo Fisher Scientific). Aliquots of
1 pg of RNA were reverse-transcribed into cDNA using the
SuperScript III first strand synthesis Supermix kit (Invitrogen)
in a 20-pL reaction volume according to the manufacturer’s
instructions. The cDNA was diluted 10-fold in H,O, and PCR
amplifications of 1 pL of cDNA were performed with an Applied
Biosystems 7900HT thermal cycler using TagMan Universal
PCR Mastermix and 0.5 pL of TagMan primer/probes (both
Applied Biosystems) in a 10-pL reaction volume. Assays specific
for Bcl-x (MmO00437783) and (as an endogenous control for RNA
quality/input) HMBS (MmO01143545) transcripts were performed.
Three replicates of each reaction were performed. All qPCR data
were analyzed using the 27T method and expressed relative to
the untreated sample of each pair.

1VIS imaging

Single-cell suspensions of lymphoma cells taken from the lymph
nodes, spleens, or thymuses of sick Eu-Myc;CreERT2,Bcl-x"/"
and E,LL—Myc;CreERTQ;Mcl-lﬂ/ﬂ mice were transduced with
a GFP-luc lentiviral vector as described above. Transduced cells
were cultured for three passages on an OP9 cell feeder layer
(Zuniga-Pflicker et al. 1994) and then washed in PBS, and 4 X 10°
to 1 X 10° live lymphoma cells were injected i.v. into C57BL/
6-albino recipient mice. To visualize the tumor burden, 200 wL of
15 mg/mL D-luciferin potassium salt (Caliper Life Sciences) in
PBS was administered to the mice by intraperitoneal (i.p.)
injection. Mice were then anaesthetized with isoflurane inhalant
and imaged using the IVIS live-imaging system (Perkin Elmer) to
detect luciferase bioluminescence exactly 15 min after adminis-
tration of the luciferin substrate. The tumor burden was quan-
tified by measuring the total photon flux per second emitted
from a region of interest (ROI) drawn around the whole mouse.
When the lymphoma burden was sufficiently high (photon flux
per second of >1 X 107), some mice from each cohort were
administered tamoxifen by oral gavage once per day for three
consecutive days, and the tumor regression/progression was
monitored by further bioluminescence imaging at indicated
time points.

Human p53 cDNA sequence analysis

The human p53 gene status was determined by sequencing of
cDNA (Lindstrom et al. 2001). Total RNA was extracted from
cells using TRIzol reagent (Invitrogen) according to the manu-
facturer’s instructions. The cDNA was made from total RNA
using the Advantage one-step RT-PCR kit according to the
manufacturer’s instructions (Clontech). p53 was sequenced from
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pooled PCR reactions using the following primers: p53F1 (5'-GA
AGGATCCGAGGAGCCGCAGT-3'), p53F781 (5'-CTGAGGTT
GGCTCTGACTGTACCACCATCC-3'), p53R789 (5'-AACAAG
CTTATTACCACTGGAGTCTTC-3'), and p53R1179 (5'-AGGG
AATTCAGTCTGAGTCAGGC-3').

DNA extraction, PCR, and DNA sequence analysis

DNA was extracted from cells using the Qiagen DNEasy tissue
kit (Qiagen) according to the manufacturer’s instructions, and
the DNA concentration was quantified using the Nanodrop
assay. Exons 4, 5-6, 7, 8-9, and 10 of the mouse p53 gene were
PCR-amplified from 100 ng of DNA using GoTaq green master
mix (M712, Promega) and 3.3 pM primers using 32 cycles of
1 min at 94°C, 1 min at 52°C, and 1 min at 72°C followed by a
5-min extension at 72°C. DNA sequence analysis was performed
by Micromon Monash. The following primer combinations were
used to PCR-amplify and sequence mouse p53: Ex4F (5'-GGT
TCTTCTTTGTCCCATCC-3') with Ex4R (5'-GAGGCATTGA
AAGGTCACAC-3’), Ex5F 5'-TTAGTTCCCCACCTTGACAC-
3') with Ex6R (5'-AGGCTGGAGTCAACTGTCTC-3'), Ex7F (5'-
TAGTGAGGTAGGGAGCGACTTC-3') with Ex7R (5'-CCAAG
AGGAAACAGAGGAGG-3’), Ex8F (5'-CTTCTCGGGGTTCC
TGTAAC-3’) with Ex9R (5'-CCTGGCAACCTGCTAATAAC-
3'), and Ex10F (5'-AAACCTGTAAGTGGAGCCAG-3') with
ExIO0R (5'-AGTCAGTTCTCGTAGGGTGC-3'). The sequence
alignment for murine p53 was performed using Ensembl transcript
number ENSMUSTO00000108658 as the reference transcript.

DNA PCR to detect Mcl-1", Mcl-1"*, and recombined
Mcl-1 alleles

The wild-type, Mcl-1", and recombined McI-1" alleles were PCR-
amplified from 100 ng of DNA using GoTaq green master mix
(M712, Promega) and 0.5 uM primers using 30 cycles of 40 sec at
94°C, 30 sec at 55°C, and 1 min at 72°C followed by a 5-min
extension at 72°C. The following primers were used to detect
Mcl-1" and Mcl-1** alleles: 5'-GCACAATCCGTCCGCGAGCC
AA-3’ and reverse 5'-GCCGCAGTACAGGTTCAAG-3'. The
wild-type PCR product was smaller than the floxed PCR product.
The following primers were used to detect recombined Mcl-1"
alleles: 5'-CGACACAGATCAGCAGGCGTTC-3' with 5'-GAG
TCAGCGCGATCATTCAGCT-3'.

DNA PCR to detect homozygous deletion
of the CDKN2A (INK4A/ARF) Iocus

The following PCR primers were used: exon 18, (F, 5-TGC
AGTTAAGGGGGCAGGAG-3’; R, 5'-TTATCTCCTCCTCCT
CCTAGCCTG-3') and exon 2 (551R, 5'-TCTGAGCTTTGGA
AGCTCT-3; 42F, 5-GGAAATTGGAAACTGGAAGC-3'). A
GAPDH exon 8 fragment served as control for integrity of DNA.
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