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Abstract
Anticipation, manifested through decreasing age of onset or increased severity in successive
generations, has been noted in several genetic diseases. Statistical methods for genetic anticipation
range from a simple use of the paired t-test for age of onset restricted to affected parent-child
pairs, to a recently proposed random effects model which includes extended pedigree data and
unaffected family members [Larsen et al., 2009]. A naive use of the paired t-test is biased for the
simple reason that age of onset has to be less than the age at ascertainment (interview) for both
affected parent and child, and this right truncation effect is more pronounced in children than in
parents. In this paper, we first review different statistical methods for testing genetic anticipation
in affected parent-child pairs that address the issue of bias due to right truncation. Using affected
parent-child pair data, we compare the paired t-test with the parametric conditional maximum
likelihood approach of Huang and Vieland [1997] and the nonparametric approach of Rabinowitz
and Yang [1999] in terms of Type I error and power under various simulation settings and
departures from the modeling assumptions. We especially investigate the issue of multiplex
ascertainment and its effect on the different methods. We then focus on exploring genetic
anticipation in Lynch syndrome and analyze new data on age of onset in affected parent-child
pairs from families seen at the University of Michigan Cancer Genetics clinic with a mutation in
one of the three main mismatch repair (MMR) genes. In contrast to the clinic-based population,
we re-analyze data on a population-based Lynch syndrome cohort, derived from the Danish
HNPCC-register. Both datasets indicate evidence of genetic anticipation in Lynch syndrome. We
then expand our review to incorporate recently proposed statistical methods that consider family
instead of affected pairs as the sampling unit. These prospective censored regression models offer
additional flexibility to incorporate unaffected family members, familial correlation and other
covariates into the analysis. An expanded dataset from the Danish HNPCC-register is analyzed by
these alternative set of methods.
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1 Introduction
Genetic anticipation is a term that refers to an earlier age of onset or increased disease
severity in successive generations. Trinucleotide repeat expansions are a well-known
explanation of this phenomenon in some Mendelian disorders, though alternative
mechanistic explanations have also been suggested [La Spada, 1997, Fraser, 1997]. While
investigating anticipation and assessing the findings of a study, one has to be cautious about
multiple sources of biases that can affect the results and the choice of appropriate statistical
techniques. The “naive” approach to test for anticipation is a paired t-test comparing the
difference in mean ages of onset of affected children and affected parents. Unfortunately, as
demonstrated by Heiman et al. [1996], truncation bias occurs with older generations having
longer follow-up time and later generations not being followed throughout the entire “at-
risk” period. This can dramatically increase the type I error of a t-test. A nonparametric
alternative, like the matched-pairs signed-rank Wilcoxon test, is another potential choice but
is still subject to the same truncation bias [Westphalen et al., 2005]. A sensible but crude
way to minimize truncation bias is to limit the analysis to older birth cohorts (e.g., with
affected parents and children both born before 1920) [Westphalen et al., 2005, Picco et al.,
2001, Nilbert et al., 2009], which allows adequate follow-up time for both generations. But
this entails a loss of sample size and consequently a loss of power for detecting anticipation
effects. This restriction does not make full utilization of the data available in many newer
cohorts.

Apart from truncation bias, other factors that could influence findings on genetic
anticipation are secular trends, such as a change in diagnostic techniques or reporting
protocols, or the introduction of new environmental toxicants/carcinogens that could affect
specific birth cohorts. Also prevalent is ascertainment bias where findings are derived from
multiplex families ascertained for genetic studies. Such families are enriched with early-
onset cases and preferentially selected due to the presence of multiply affected individuals,
as opposed to a population-based sample of affected parent-child pairs.

The objective of this paper is twofold. We first review an array of statistical approaches to
evaluate genetic anticipation as measured by differences in age of onset in successive
generations. The primary study design we consider is that which samples affected parent-
child pairs from existing cohorts. To this end, we present simulation results that compare the
naive paired t-test with parametric and nonparametric approaches that account for bias due
to right truncation [Huang and Vieland, 1997, Rabinowitz and Yang, 1999]. We present
comparison of these methods under random ascertainment as well as multiplex
ascertainment and summarize recommendations in terms of adopting these methods for a
given analysis. We then consider another study design which includes all at-risk family
members in a predefined cohort (affected and unaffected) and follows them prospectively.
The variable of interest is age of diagnosis and we review survival methods to evaluate risk
by relative type [Daugherty et al., 2005, Larsen et al., 2009]. Censoring events are age at
death, age at last follow-up visit or censored at age 85 years. Here, missing data is not right
truncated but right censored, which is accounted for in the survival regression models.
Figure A.1 in the Appendix gives a simple schematic representation of the two different
sampling strategies and the corresponding statistical methods with references.
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We then turn our attention to assess evidence of anticipation in hereditary nonpolyposis
colorectal cancer (HNPCC)/Lynch syndrome in two family cohorts potentially representing
two distinct sets of multiplex ascertainment probabilities. One is a population-based cohort
of all Danish families identified with pathogenic mutations in the mismatch repair (MMR)
gene. Nilbert et al. [2009] reported evidence of anticipation in this cohort. The other is an
aggregation of families seen at the genetic counseling clinic at the University of Michigan
Comprehensive Cancer Center (UMCCC), with identified mutations in the MMR gene. The
UMCCC data has not been previously analyzed for anticipation and is a clinical setting
where multiplex ascertainment could influence the findings. The few studies prior to the one
by Nilbert et al. [2009] have reached contradictory results on anticipation in Lynch
syndrome [Tsai et al., 1997, Westphalen et al., 2005, Stella et al., 2007]. Our results shed
light on the existing body of literature on anticipation in Lynch syndrome and the
dependence of the inference on the choice of statistical techniques. For illustration purposes,
we also employ the second class of survival regression methods described above to analyze
data from an expanded cohort of the Danish HNPCC (Lynch syndrome) register which
evaluates age-at-onset times for proven MMR mutation carriers (affected/unaffected by a
cancer associated with Lynch syndrome). This enables us to contrast this study design and
the appropriate statistical methods with the ones involving affected parent-child pairs. The
paper thus presents a comprehensive overview of statistical design and analytic tools to
evaluate genetic anticipation and contributes new data to the assessment of anticipation in
Lynch syndrome families.

The rest of the paper is organized as follows. In Section 2, we restrict our attention to the
most common format of data on affected parent-child pairs and discuss statistical methods to
handle the right truncation bias. Section 2.1 presents simulation results comparing existing
choices within this class of methods in the absence and presence of familial ascertainment.
Section 2.2 analyzes data on two Lynch syndrome cohorts using affected parent-child pairs.
Section 3 discusses the second class of statistical models that considers all at-risk affected
and unaffected family members and employs a prospective censored regression model.
Section 3.1 analyzes expanded family data from the Danish HNPCC-register with this
second class of methods. The concluding section is subdivided into two subsections to
emphasize the two major contributions of the paper. Section 4.1 presents an integrated
overview of the different statistical approaches, putting them in the perspective of different
sampling mechanisms and study designs and furnishing a recommendation for a research
investigator. Section 4.2 then summarizes the data analysis results on genetic anticipation in
Lynch syndrome, findings which still conflict across studies and demonstrate a poorly
understood phenomenon from a biological perspective. [Vasen et al., 1994, Rodríguez-Bigas
et al., 1996, Tsai et al., 1997, Westphalen et al., 2005, Nilbert et al., 2009, Larsen et al.,
2009].

2 Methods for affected parent-child pairs
Let (TPi, TCi) be the ages of onset and (CPi, CCi) the ages at ascertainment or ages at
interview of the ith parent and child, respectively. While there is no real physical constraint
to the relationship between (TPi, TCi) and (CPi, CCi), we only observe those pairs which
satisfy the condition

(1)

These are the pairs that can be recognized as “affected” at the time of retrospective
assessment of the cohort. Let the term “parent-child pair” hereafter refer to any pair which
satisfies (1). As mentioned before, comparing the sample means of TP and TC via the paired
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t-test ignores that the data are conditionally observed given (1) and thus leads to biased
inference if follow-up times for the cohort are not sufficiently long. Huang and Vieland
[1997] consider a conditional likelihood reflecting (1) and propose a parametric Wald-type
test for this problem. Their method assumes a joint bivariate normal distribution for (TPi,
TCi) and is based on the asymptotic normality of the conditional maximum likelihood
estimate (MLE). Using the work of Huang and Vieland [1997] and Vieland and Huang
[1998], we briefly review the construction of the likelihood.

Assume that (TPi, TCi) and (CPi, CCi) are conditionally independent given (1). Let f, F
denote the joint probability distribution function (PDF) and cumulative distribution function
(CDF) corresponding to (TPi, TCi), and g, G denote the joint PDF and CDF of (CPi, CCi).
The conditional likelihood of the i-th parent-child pair is given by,

Here 1[A] is the indicator function which assumes the value 1 if event A is true, and is zero
otherwise. When g is left unconstrained (that is, when its governing parameters are not
constrained to be the same as those of f), Huang and Vieland [1997] show that the likelihood
is proportional to

(2)

That is, as long as g is estimated nonparametrically, maximizing  is equivalent to

maximizing the conditional log-likelihood . We consider three
test statistics which invoke the general form of this likelihood.

1. The parametric test statistic (HV)
[Huang and Vieland, 1997]: HV assumes that f is a bivariate normal distribution and
maximizes log(L) with respect to the mean vector and covariance matrix of the distribution.
Anticipation exists when the difference in the means of the parents and the children is
greater than zero. An estimate of this effect is obtained by evaluating the difference of the
MLEs, µ̂TP – μ̂TC, with proper standard errors being estimated from the inverse of the
observed Fisher information matrix. Wald-type test statistics are then constructed, which are
standard normal under the null hypothesis of no anticipation. The HV approach can be
thought of as an adjustment to the t-test for right truncation, both methods assuming
normality.

2. An alternative nonparametric test statistic (RY1)
[Rabinowitz and Yang, 1999]: RY1 uses the quadruples (TPi, TCi, CPi, CCi) to test the null
hypothesis that F is symmetric, without assuming a particular form of the distribution F.
RY1 is based on all parent-child pairs for which max(TPi, TCi) ≤ min(CPi, CCi). This
eliminates the bias due to truncation because every pair which satisfies the condition will be
observed. Hence,
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under the null hypothesis of no anticipation. For n parent-child pairs, the statistic

(3)

is approximately normal with mean 0 and variance

. RY1 can be thought of as a modification to
theWilcoxon signed-rank test in the presence of right truncation.

3. A second nonparametric test statistic (RY2)
[Rabinowitz and Yang, 1999]: RY2 compares parents and children across different pairs.
For any i1, i2, the following holds, assuming no anticipation:

The estimator sums over all pairwise comparisons where the event happens and compares it
1/2:

where

.

This statistic will also have mean 0 under the null hypothesis with variance expression
provided in [Rabinowitz and Yang, 1999].

Remark 1—The efficiency loss of RY1 comes via a reduction of sample size, as the
conditioning event which eliminates the bias due to truncation will also eliminate data and
restrict inference to a smaller subset (see Section 4.1 for a further discussion of this issue).
The extent of this reduction in sample size will depend on how severe the truncation is. RY2
attempts to compensate for this loss of data by making comparisons between parent-child
pairs. When this between-pair comparison is justifiable, i.e., when the parent-child pairs are
exchangeable, this will increase the effective sample size and, consequently, the power of
the test.

Remark 2—In a more recent report, Tsai et al. [2005] propose a generalized paired t-test
and a Wilcoxon signed-rank test that very similar in spirit to RY1: they restrict analysis to
comparable parent-child pairs which satisfy max(TPi, TCi) ≤ min(CPi, CCi) and apply the
standard paired t-test and Wilcoxon signed-rank test to this subset. Due to its similarity to
RY1, we refrain from including this as a separate method for comparison purposes. One
contribution of Tsai et al. [2005] is to extend the generalized t-test to a random effects model
that incorporates family level correlation and introduce a general mixed model framework to
test for a difference in mean ages of onset across generations; this is more robust and general
than a t-test.
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2.1 Simulation Study
Our simulation study was designed to compare the performance of the above three test
statistics (HV, RY1, and RY2) with the paired t-test under three different ascertainment
schema described below. Note that these methods only use data from affected parent-child
pairs. Previously, Vieland and Huang [1998] provided an extensive discussion on the effect
of the ascertainment scheme on the behavior of HV in terms of Type I error and power but
so far no such simulation results are available for the nonparametric methods RY1 and RY2
under varying selection mechanisms. Also, even for an unbiased random ascertainment,
there does not exist any simulation study directly comparing HV, RY1 and RY2
simultaneously in terms of power and Type I error. We first describe the simulation design
under each ascertainment scheme and then summarize our simulation findings.

1. Random Ascertainment (RA)—RA draws a simple random sample of parent-child
pairs from the population of eligible pairs. That is, every parent-child pair for which both
individuals have developed the disease at time of ascertainment has an equal probability of
selection, regardless of the size of the pedigree. Simulation of RA is straightforward. The
ages of onset, (TP, TC), are assumed to be bivariate normal. (CP, CC), the pair of
ascertainment ages, is assigned to (c1, c2), where c1 is a continuous uniform random
variable, and c2 = c1 – d1, where d1 is also a continuous random variable with parameters
such that c2 is guaranteed to be positive. Sample parent-child pairs are randomly drawn in
this manner, and those which satisfy condition (1) are included in the simulated dataset until
n such pairs have been selected.

2. Generalized Single Ascertainment (GSA)—[Hodge and Vieland, 1996]: GSA
samples entire pedigrees and, within a pedigree, randomly selects a single parent-child pair.
A crucial component of this scheme is that the selection probability of a pedigree is strictly
proportional to the number of parentchild pairs it contains. Hodge and Vieland [1996] prove,
and Vieland and Huang [1998] confirm by example, that if pairs are ascertained with
probability proportional to the number of parent-child pairs in the pedigree, then the correct
likelihood is proportional to the conditional likelihood given the truncation. This shows that
whether the data come from a true random sample of all possible parent-child pairs (an
unlikely situation) or from GSA, maximizing the conditional likelihood is valid and will
yield unbiased estimates.

To simulate GSA, we follow the prescribed methods in Appendix B of Vieland and Huang
[1998] to generate simple pedigrees. Three ages at ascertainment are drawn (c1, c2, c3),
representing a grandparentparent-child triad. As described in RA, c1 is a continuous uniform
random variable, c2 = c1 – d1, and c3 = c1 – d1 – d2, where d1 and d2 are also continuous
uniform random variables with parameters such that c2 and c3 are guaranteed to be positive.
One of the two possible parent-child pairs (either (c1, c2) or (c2, c3)) is selected with equal
probability and assigned to (CP, CC). After drawing a single random bivariate normal pair
(TP,TC), if (1) is satisfied, the pair is included in the dataset, otherwise not. Thus those
pedigrees which have two affected parent-child pairs are twice as likely to be selected as
those with one pair; this is the condition which satisfies GSA. (Although (c1, c2) and (c2, c3)
are selected with equal probability, the fraction of young pairs in the resulting dataset will be
less than 0.5, since (c2, c3) will fail to satisfy (1) more often than (c1, c2).)

3. Multiplex Ascertainment (MA)—In MA, pedigrees with more affected parent-child
pairs are ascertained with a larger probability that is not directly proportional to the number
of affected parent-child pairs. Vieland and Huang [1998] argue that this results in samples
with younger affected individuals: a pedigree with young affected individuals will also have
many affected individuals, since the disease tends to present earlier in that pedigree. Thus a
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sampling scheme which preferentially selects pedigrees with multiply affected individuals
will have the byproduct of having selected many young pairs. This will artificially create a
difference in mean ages of onset between the parent and the child, even if there is none. This
artificial difference is in addition to that created by the truncation bias. To simulate MA,
then, we “enrich” our sample with young pairs. Three ages of ascertainment are drawn, as in
GSA. One of the two pairs is selected (the probability of which determines the level of
“enrichment” of young pairs in the dataset), and random draws of (TP, TC) are made until
condition (1) is satisfied.

For each of the sampling schema, our choice of distributional parameters was governed by
previous simulation studies from Rabinowitz and Yang [1999] and Vieland and Huang
[1998]. Under each simulation configuration, we generated 5000 simulated datasets, each
with 50 parent-child pairs, and tested the null hypotheses of no genetic anticipation against a
one-sided alternative that the mean age of onset in parents exceeds the mean age of onset in
children. In each setting, we calculated the proportion of times the null hypothesis was
rejected in 5000 replications. When data were generated under the null distribution, this
proportion provided an estimate of Type I error, whereas under the alternative, it provided
an empirical estimate of power.

Table 1 provides the simulation results under RA. In terms of Type I error, the most honest
test is RY1, which is close to its nominal value of α = 0.05 for each set of generating
parameters. HV and RY2 stay just above their nominal size, while the paired t-test fares
poorly. The Type I error rate of the paired t-test depends crucially on the amount of
truncation; it converges to its nominal value as the ascertainment distributions increase and
the age-of-onset distributions remain fixed. This is the rationale behind restricting analysis
to older birth cohorts. Under the alternative, RY1 is the most underpowered, with only about
35% of simulations able to detect a difference of 5 years under the assumption of
uncorrelated ages of onset. RY2 does slightly better and HV the best. Of course, the t-test is
the most powerful, which is to be expected given its high rate of false positives.

Remark 3: For all 4 tests, as the correlation between the ages of onset increases,
performance improves. To understand this phenomenon, note that “large” values of TC are
the primary cause of a pair being truncated: in the first three rows of Table 1, Pr(TC > CC) ≈
0.32, whereas Pr(TP > CP) ≈ 0.002. This truncation inflates the difference in the observed
means, even when no such difference exists between the true means. When TC is
uncorrelated with TP, knowing that a pair was ascertained does not provide much
information about TP. But, as the correlation increases, small TC become associated with
small TP the bias from truncation decreases, and, under the null, test statistics converge to
the correct asymptotic distribution faster. Under both the null and non-null scenario,
presence of a positive correlation leads to increased precision for estimating the mean
differences for a fixed n. The fact that HV is most sensitive (among the three asymptotically
unbiased statistics HV, RY1 and RY2) to changes in ρ can be understood further by
observing that the computation of HV involves calculating ρ̂, the estimated correlation
between TP and TC, by maximizing a profile likelihood. We noted in our simulation that this
estimator ρ̂ generally becomes more precise as ρ departs from the null value of zero: the
estimated mean squared error of ρ̂ when ρ = 0 is 2.92 × 10−2 but is 1.98 × 10−2 when ρ =
0.5, providing a estimated relative efficiency of 68%. Moreover, in small samples, ρ is
slightly overestimated when the true value is 0, causing the variance of the difference in
mean age of onset to be underestimated and the null hypothesis of no anticipation to be
rejected more often than desired. On the other hand, RY1 and RY2, which do not directly
use an estimate of ρ in their calculation and are non-parametric tests, remain less affected.
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Table 2 displays the estimated Type I error rates and power under GSA. As before, RY1 is
consistently close to its nominal significance level, and RY2 and HV do reasonably well.
The paired t-test, again, falsely rejects the null many more times than its nominal size
suggests. Power rankings are also as before, with RY1 performing the worst and HV almost
as powerful as the t-test. As was the case under RA, greater correlation decreases Type I
error and increases power.

Table 3 simulates multiplex ascertainment, varying the level of enrichment of young pairs
for a fixed set of generating distributions. As before, RY1 commits the expected number of
Type I errors. The paired t-test performs very poorly, rejecting the null hypothesis with
probability 1 for sufficient levels of enrichment. The number of false positives HV yields
increases with increasing enrichment. Unlike the prior ascertainment schema, this inflation
cannot be solely attributed to small sample sizes; as shown by Vieland and Huang [1998],
the method does incur inflated Type I error under multiplex ascertainment. Besides the t-
test, HV is the most powerful test statistic. Both the nonparametric test statistics lose power
precipitously with increasing enrichment. In this setting, since the t-test and HV do not
maintain nominal Type I error, we present two combined measures of precision, the
accuracy (ACC) and positive predictive value (PPV), defined as

Note that here the ACC and PPV measures are used not in the sense of a diagnostic test but
rather as a combined metric of Power and Type I error, just as mean squared error is a
combined measure of bias and variance in the context of estimation. For example, these
measures have recently been used to assess properties of statistical tests for genetic
association which do not strictly maintain Type I error level in the context of combining
individual and family-based studies [Mirea et al., 2010]. All three test statistics, HV, RY1,
and RY2, outperform the paired t-test in terms of these metrics. HV performs best for all
levels of enrichment; its strength is most evident in terms of its accuracy for high levels of
enrichment. The loss of power is not nearly as dramatic as for the nonparametric tests, and
this outweighs its increase in Type I error. Between RY1 and RY2, RY2 would be preferred
in terms of both metrics.

Remark 4: In Tables 1–3, we noted that HV has the highest power, while the nonparametric
tests, RY1 and RY2, lack power in spite of adhering to nominal Type I error rates under a
wide spectrum of scenarios. Recall that in all these simulation settings we generated the age-
of-onset distribution from a bivariate normal distribution. Thus the parametric modeling
assumption of HV was exactly satisfied by the generated data. To assess the sensitivity of
HV in terms of model misspecification, we generated ages of onset from a bimodal
distribution, governed by a two component mixture of Normals (results not shown). Under
this setting, HV has slightly inflated error rates compared to the more robust RY statistics
but still retains its power advantages in most cases. This trade off between robustness and
efficiency is expected in comparing any parametric method with its nonparametric
counterpart.

2.2 Example: Application to Lynch syndrome data from affected parent-child pairs
In addition to the above simulation studies, we applied these methods to two cohorts of
families with genetic predisposition to Lynch syndrome (previously better known as
hereditary nonpolyposis colorectal cancer (HNPCC), but first known as a cancer family
syndrome [Warthin, 1913], characterized by the early onset of gastrointestinal, uterine and
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other cancers). In 1991, the Amsterdam criteria were developed for inclusion of families in
HNPCC studies to identify causal genes [Vasen et al., 1991, 1999]. The genetic basis of
Lynch syndrome is germline mutation in MMR genes, with four genes known so far to be
causally responsible for Lynch syndrome (hMSH2, hMLH1, hMSH6 and hPMS2). The
possibility for anticipation has been suggested, sometimes by anecdotal observation or
subjective observation of the data [Menko et al., 1993, Vasen et al., 1994, Rodríguez-Bigas
et al., 1996] and sometimes by formal statistical analysis [Westphalen et al., 2005, Nilbert et
al., 2009]. In a carefully done analysis in Tsai et al. [1997] consisting of 475 pairs selected
from 308 families identified through the Hereditary Colorectal cancer registry at John
Hopkins University, no evidence of anticipation was noted. However the nature and
definition of our cohort is quite different from the Tsai et al. study where only 14 out of the
475 pairs were from 7 families identified with germline mutations in hMSH2 or hMLH1.

Our first dataset consisted of 74 families, each with an identified deleterious MMR
mutation, seen at the genetic counseling clinic at the UMCCC. The index cases presented to
the clinic between 1999 and 2009. Thus the clinic data is very likely to be subjected to
multiplex ascertainment as discussed in Section 2.1. Cancers that qualified as a part of
Lynch syndrome were colorectal cancer, endometrial cancer, epithelial ovarian cancer,
upper urothelial cancer, gastric cancer, cancer of the small intestine, and malignant brain
tumors. Out of these 74 families, 57 had at least one affected parent-child pair, leading to
181 affected parent-child pairs in the database. For patients with multiple cancers, the first
was used to establish the age of onset. Due to missing age-of-onset information, some pairs
were deleted from the current analysis, and the final analysis was restricted to 136 parent-
child pairs with complete age-of-onset information coming from 47 MMR-positive families.
The maximum number of pairs coming from a single family was 15 with an average of 3.53
pairs coming from each pedigree. The final dataset consisted of 190 individuals. The date of
ascertainment was taken as the date of interview with the proband. For relatives with
missing date of birth, age at ascertainment was estimated from a prediction model based on
the proband/index person’s year of birth and relationship to the proband/index person.
Construction of the family cancer history was based on interviews with the proband by a
trained genetic counselor and cross-verified by interviews with other family members.
Absence of confirmatory medical records to verify ages of onset was an obvious limitation
of this cohort. We will refer to this cohort as UMLYNCH from now on.

The other dataset we considered comes from the Danish HNPCC-register on all Danish
families identified with hereditary colorectal cancer from 1991 until December 2006. The
Lynch syndrome cohort was defined as 151 families with pathogenic MMR gene mutations.
Out of these 151 families, 92 families contained at least one affected parent-child pair. The
final cohort consisted of 400 individuals making up 290 parent-child pairs. Unverifiable
cancers were ignored, and, for patients with multiple cancers, the first was used to establish
the age of onset. Nilbert et al. [2009] analyzed this data in a prior paper using the paired t-
test and HV but did not apply the methods of Rabinowitz and Yang [1999]. We will refer to
this cohort as DLYNCH from now on. In comparison to UMLYNCH, DLYNCH has more
complete age-of-onset information and the advantage of having verified medical history
data. From Table 4, the mean age at diagnosis for all individuals in UMLYNCH was 47.1
yrs, compared to 46.8 yrs in DLYNCH.

Remark 5—Since the objective of this article is to provide a review and comparison of
existing methods, our simulation studies only considered the originally proposed test
statistics (t-test, HV, RY1, RY2) and generated independent parentchild pair data with one
pair per family. However, the data analysis results presented in this section are modifications
of the original test statistics in the sense that they make adjustments for the correlation that
may potentially exist between multiple pairs sampled from the same family, which is the
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case for both UMLYNCH and DLYNCH cohort. For the parametric methods (t-test and
HV), we used robust sandwich estimators of the standard errors based on the score residuals
summed over each family. For the nonparametric methods (RY1 and RY2) we extended the
original variance formulae to accommodate between-pair correlation within the same family
(assumed to be constant across families). More specifically, from the theory of U-statistics,

both RY1 and RY2 can be asymptotically represented in the form  (with i indexing
each pair and n being the total number of pairs) where exact expressions for ui and the
corresponding variance approximations under the independence assumption are provided in
Rabinowitz and Yang [1999]. The original unadjusted variance estimates assume that Var

 for i = 1…, n and Cov (ui,uj) = 0 for i ≠ j. Thus, . We introduce a

familial correlation structure by letting  when i and j come from the same
family, which implies that

with the convenion that . This serves to adjust for the artificial increase in sample

size due to incorrectly assuming between-pair independence. The estimates  and ρ̂u are
obtained from the empirical variance and cross-correlation of ûi, with ûi as described in
Rabinowitz and Yang [1999].

Table 5 provides the correlation-adjusted version of the set of four test statistics discussed in
Section 2. We first discuss the analysis that includes all pairs. The paired t-tests, even with
robust standard errors, as might be expected, display high levels of significance, with
observed differences in mean ages of onset of 9.89 years for UMLYNCH (P < 0.0001) and
8.72 yrs for DLYNCH (P < 0.0001). Similar evidence is obtained by RY2 (P = 0.0067 in
UMLYNCH and P < 0.0001 in DLYNCH). HV gives only slight evidence of genetic
anticipation in UMLYNCH (P = 0.0294) compared to DLYNCH (P < 0.0001), and RY1
applied to UMLYNCH shows no significance (P = 0.5) whereas DLYNCH shows
significance (P = 0.0046). This last observation is explained by the fact that in UMLYNCH,
only 62 pairs qualified in the construction of RY1, limiting the power and reliability of the
analysis (as discussed in Remark 1 of Section 2). Results from DLYNCH show greater
levels of significance than UMLYNCH for all the tests we considered, which is explained by
the larger sample size of DLYNCH.

Considering only those pairs where both individuals had colorectal cancer, the difference in
mean ages of onset increased in both datasets (11.19 yrs in UMLYNCH, 11.01 yrs in
DLYNCH); with one exception (HV in DLYNCH), the significance level dropped slightly
across the board due to the reduced sample size in this subgroup. In UMLYNCH, mutation
status was known for 46 out of 190 individuals. Since this is a small number of subjects,
stratified analysis by gene-specific mutation type was not feasible. In DLYNCH, where
complete data was available on mutation status, the gene most commonly mutated was
hMSH2 (153/290 pairs). The difference in mean ages of onset in successive generations
restricted to hMSH2 mutation carriers was 7.58 yrs, and all three test statistics (HV, RY1,
RY2) displayed only marginal statistical significance (0.01 < P < 0.05). Among those with a
mutation in the hMLH1 gene, the difference in mean ages of onset was larger, 10.10 yrs, and
HV and RY1 were less significant; however, RY2 was actually considerably more
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significant (P < 0.0001). The hMSH6 group had a difference of 9.76 yrs and was least
significant due to only 41 pairs.

For the sake of completeness, the data analysis results using the test statistics as proposed in
the original articles and discussed in Section 2, without adjusting for correlation among pairs
coming from the same family are presented in Table ?? and, as expected, they are inflated
relative to the adjusted results in Table 5. Appendix Table ?? provides the inverse variance-
weighted pooled estimates [DerSimonian and Laird, 1986] combining UMLYNCH and
DLYNCH estimates from the full cohort corresponding to Table ??. The pooled estimates
from the t-test, HV and RY2 still show strong statistical significance, whereas RY1 fails to
reach significance. The same finding holds for adjusted estimates presented in Table 5 when
pooled.

3 Use of censored regression models: Inclusion of affected and unaffected
family members

Anticipation is a phenomenon which can be addressed via study designs beyond a
retrospective comparison of mean ages of onset of affected parent-child pairs in a (possibly
truncated) cohort. The second genre of methods and thus study designs considers a well-
defined cohort of all at-risk affected and unaffected individuals and applies censored
regression models and classical survival analysis techniques to test for a generational effect.

Hsu et al. [2000] proposed two nonparametric matched and unmatched test statistics based
on multivariate survival analytic techniques that consider both affected and unaffected
family members and potential correlation between the ages of onset within a family. For
unaffected individuals, Hsu et al. consider age at last follow-up or age at death and include
this information while differentiating the age-of-onset distribution in two successive
generations. The method proposed by Hsu et al. [2000] cannot incorporate other covariates.
However, their idea of including all affected/unaffected pairs is further extended into a
general survival regression framework in the following two more recent papers. The
advantages of these censored regression models are the flexibilities to incorporate other
covariates, environmental factors, screening practices or secular trends as needed. They are
also easily amenable to incorporate familial correlation using standard techniques for
correlated failure time data [Kalbfleisch and Prentice, 2002].

1. Normal random effects model (REM)
Larsen et al. [2009] employ a normal random effects model in the following study setting.
Pedigrees known to be carriers for mutations in one of the MMR genes are identified, and all
at-risk members of these families (affected or unaffected) are followed until disease
diagnosis or time of censoring. The paper uses a superset of DLYNCH. Let tij be the age to
disease diagnosis for the jth individual in the ith family. Larsen, et al. posit the following
model,

(4)

where ui is a family specific random effect, Zij is the generation of the j-th individual in the
i-th family (with the oldest individual in a family being denoted as first generation with Zij =
1), γ is the fixed effect of generations, and εij is the residual with mean zero and a given
variance component. All random effects u and ε are assumed to be independent. When γ = 0,
there is no change in time to disease diagnosis across generations. Random family effects
account for within family correlation, and fixed effects for other covariates can be added to
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the model, as the term βXij represents in (4). The likelihood is adjusted for censoring
indicators, assuming censoring is non-informative with respect to age of onset.

2. Cox proportional hazards model (CPH)
Daugherty et al. [2005] use a Cox proportional hazards model under the following study
design: families with at least one affected individual are first ascertained, and all parents and
children of affected individuals are followed until the cancer event (disease diagnosis) or
time of censoring. Let tij again be the age of onset for member j in family i. The following
marginal proportional hazards model is assumed:

(5)

The term λo is the baseline hazard function, Xij are other relevant measured covariates for a
given individual and Zij is a binary indicator of relative type (0 for offspring and 1 for
parent). Evaluating H0 : γ* = 0 evaluates the relative hazard between parents and offspring.
Estimation of β* and γ* are carried out via a working independence assumption, but, by
using a robust sandwich estimate of the covariance matrix, within-family correlations can be
accounted for. Despite these strengths, however, the model answers the question of
anticipation at the generational level and not the familial level; that is, all parents are
assumed to have the same hazard function and all children another. This is problematic for
two reasons. First, the degree of anticipation in one family may be different than the degree
of anticipation in another, yet both are constrained to have the same hazard. The matched
statistic of Hsu et al. [2000] addresses this issue of heterogeneity of hazards across families.
Second, when three consecutive generations are considered, the middle individual plays the
role of a child in one parent-child pair and that of a parent the other. The same individual
will thus have two predicted hazards, one as a child and one as a parent according to this
model. This also artificially inflates the sample size. To overcome this second limitation of
their approach, we slightly modify the model, letting Zij denote the generation of person j in
family i (as in REM). This slightly changes the interpretation of γ*, which now becomes the
hazard ratio between two successive generations.

3.1 Application of censored regression models to expanded Danish cohort
For illustration purposes of the second class of methods as well as to understand the
differences in defining the study cohort, we return to the Danish HNPCC registry and
consider the same dataset analyzed in Larsen et al. [2009]. The dataset consists of 816
individuals who are mutation positive for one of the three MMR genes, coming from 155
pedigrees. Lynch associated cancer developed in 568 individuals by December 2007. Zij
took values in {1, 2, 3, 4}, with Zij = 1 corresponding to the oldest member of a family.
Excluding censored individuals, the mean ages of onset were 53.0 years, 45.2 years, 40.0
years and 25.0 years in generations 1,2, 3, and 4, respectively.

Let Xij = 1[individual j in family i is male] in (4) and (5), so that β, here 1-dimensional,
characterizes the increase (or decrease) in age at diagnosis between males and females, and
β*, also 1-dimensional, gives the log hazard ratio between males and females, all other
factors being equal. See Larsen et al. [2009] for details of the derivation of the likelihood of
(4), where censored observations must be taken into account. Maximization of the likelihood
can be accomplished via standard optimization routines or via a grid search, and standard
errors can be calculated by inverting the Hessian of the maximum likelihood estimates.
Standard software packages will estimate parameters and standard errors for (5), this being
the regular partial likelihood of the Cox proportional hazards model. Table 6 gives
parameter estimates and test statistics under both REM and CPH model.
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REM estimates of γ indicate that each generation within a family, adjusting for gender,
develops Lynch syndrome about 3 years sooner than the previous generation; this effect is
highly significant (P < 0.0001). As mentioned before, we modified the CPH approach of
Daugherty et al. [2005] slightly by defining Zij not as a dichotomous classifier but as the
generation of the jth individual in the ith family. CPH estimates γ*, the difference in the log-
hazards between two consecutive generations, to be 0.222 (P = 0.001). The hazard for
generation k + 1 is about e0222 = 1.25 times higher than the hazard for generation k, k =
1,2,3. The gender effect is not significant in REM and only marginally so in CPH, but both
indicate that men with Lynch Syndrome tend to be diagnosed with cancer at a later age than
women. The interpretation/magnitudes of γ and γ* are not directly comparable (as is also the
case with β and β*), although, in both cases, the null hypothesis of no genetic anticipation
H0 : γ(or γ*) = 0 is rejected.

4 Discussion
Since the paper has a two-pronged objective of reviewing analytical choices to assess
genetic anticipation and adding new evidence to the context of Lynch syndrome, we
separate the two discussion items and summarize our findings.

4.1 Choice of statistical methods
The primary objective of the paper is to provide the reader with a sense of the gamut of
statistical techniques that can be used to assess genetic anticipation, depending on their
choice of cohort. We clearly delineate contrasting statistical issues when one assesses
generational effects on age of onset using just affected parent-child pairs versus affected and
unaffected family members at risk. Collecting data under the first design is probably easier,
because gathering information on unaffected relatives often requires substantial work.
However, the censored regression models are more powerful, since each family contributes
the additional information of its unaffected members. The second class of methods falls
under the well-developed realm of regression models for censored data and allows the
immediate extension to inclusion of covariates and correlations among ages of onset.

The simulation study in the paper is also the first one to compare the parametric and
nonparametric methods that address the issue of truncation bias. We evaluate the
performance of these alternatives under different ascertainment schema and model
misspecification. Using solely Type I error as a metric, RY1 is consistently the preferred test
statistic across all ascertainment schema, among any set of generating parameters we
considered. However, as demonstrated in Tables 1 to 3, its power, even for an effect as large
as a difference in 10 years in mean age of onset, can be unacceptably small. We notice this
limitation in our data analysis as well, where RY1 appears to have a non-significant/less
significant result in contrast to HV and RY2. This is because many parent-child pairs get
excluded from the construction of the RY1 test statistic. For example, in the last row of
Table 3, over 5000 simulations, an average of 5.58 pairs (out of 50) satisfied 1[max(TPi, TCi)
≤ min(CPi, CCi)] (see expression (3) above). Thus the hypothesis was typically accepted or
rejected based on only 5 or 6 parent-child pairs, with all the others being excluded from the
sample. In some simulations, no parentchild pairs satisfied the criterion for being retained
and RY1 is not defined in that case. The highest level of enrichment simulated in Table 3
was 90%. HV has inflated Type I errors of approximately 16% in this instance. Although
these extreme levels of enrichment do inflate HV’s Type I error, for a modest level of
enrichment (50–60%), the Type I error is still within an acceptable range. RY2 also
maintains Type I error, but under extreme enrichment, (90%) it is very conservative with
Type I error rate lower than nominal level (0.02).
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In terms of power, because we generated data from the Bivariate normal distribution in
Tables 1–3, HV was superior as expected. However, the nonparametric RY methods are
valid over any distributional form of the age-of-onset distribution in terms of Type I error
rates. Among the two nonparametric methods, RY2 has better power properties than RY1
across all simulation settings. Given the operating characteristics of these procedures across
simulation settings, we recommend calculating HV and RY2, and examining the results of
both procedures, so as to strike a balance between bias and efficiency. If there is the
possibility of multiplex ascertainment strongly influencing the results, or major violation of
the normality assumption, one should trust RY2 more than the HV method in order to avoid
the chance of yielding false positives.

Remark 6—A referee suggested comparing the methods in Section 1 (affected parent-child
pairs) with methods in Section 2 (all affected and unaffected family members at risk). Since
the two classes of methods are based on two different designs, it is hard to structure a
realistic simulation study that will be meaningful to compare across all six tests (Design 1: t-
test, HV, RY1, RY2; and, Design 2: REM and CPH) based on generated pedigree data. Note
that REM and CPH always maintains Type I error as they are valid statistical tests under the
given survival regression model. To provide an approximate sense of relative power across
the six tests, we resampled the extended DLYNCH data with pedigree sizes of 25, 50 and 75
respectively and applied the Section 1 methods to the affected parent-child pairs from the
sampled families and applied Section 2 methods to the entire sampled family. The results are
presented in Appendix Table ??. We note that HV, RY2 and REM are the most powerful
statistical tests. Since REM uses data from all family members and is a likelihood-based
parametric approach, it is the most powerful method. The CPH and RY1 appear to be less
powerful tests in this context. The loss of power in CPH as compared to REM may be
attributed to the use of robust sandwich estimator of variance to account for familial
correlation in CPH, whereas REM is a model-based approach, modeling the age-of-onset
times directly via a normal random effects model.

4.2 Looking for an answer in Lynch syndrome?
In the context of Lynch syndrome, new evidence in favor of genetic anticipation is added
through the analysis of UMLYNCH. UMLYNCH arguably falls under more severe
multiplex ascertainment than DLYNCH; a likely catalyst for probands/index persons to
present at the clinic is multiply affected family members with early age of onset. On the
other hand, DLYNCH data is a richer, populationbased database of larger size, with cancers
verified through medical records, clinical records and death certificates, as well as complete
characterization of mutation status. Despite these differences, there is a surprising amount of
agreement between UMLYNCH and DLYNCH cohorts in terms of the mean age of onset,
their mean differences across generations and effect sizes in terms of genetic anticipation.
We analyzed the datasets by all four methods, after adjusting for correlation between pairs
coming from the same family, and the generally significant results with P < 0.01 (except HV
and RY1 in UMLYNCH) are indeed reassuring. Our simulation results (Table 3) indicate
that under multiplex ascertainment, RY1 and RY2 are valid procedures, maintaining correct
Type I error rates with RY2 having more power to detect a given effect size. Thus, using
RY2, the risk of false positives from an inflated Type I error due to multiplex ascertainment
is not a concern in our analysis of UMLYNCH and DLYNCH. The analysis of the expanded
DLYNCH data also presents strong evidence in favor of genetic anticipation in Lynch
Syndrome by both a random effects and a proportional hazards model.

There are other considerations that add complexity to the situation. While age of onset is an
important indicator for anticipation, there may also be anticipation exhibited through more
aggressive disease severity. In Lynch syndrome, for example, this can be measured by the
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number of cancers/tumors or the stage of the tumor. Ideally, the measured response then
would be multivariate, taking into account all of these outcomes via a multivariate response
model. As mentioned in the introduction, bias in estimates may result from a change in
screening practices over time. For the case of Lynch syndrome, an increase in the rate of
colonoscopies or a decrease in the mean age of first colonoscopy may lower the mean age at
diagnosis apart from the effects of genetic anticipation. For retrospective data, this may
mean stratifying analysis by time relative to the introduction of the colonoscopy as a
common diagnostic tool. A model-based approach to this bias would be the inclusion of an
indicator variable for whether the individual was diagnosed before or after the introduction
of the colonoscopy. Incorporating detailed colonoscopy records would be a critical
contribution towards arriving at the truth. In the Danish registry, information on all
colonoscopies were not available, but if an adenoma had been identified at screening, this
information was entered in the population-based pathology register and at-risk individuals
were censored at this time.

Another addition to the regression-based approaches in Section 2 would be the expansion of
the random effects model; a referee pointed out that a constant random intercept alone might
not properly account for familial correlations of larger datasets, and each family may have
an individual random slope for generational effects. Changing the fixed effect γ to a random
effect γi in (4) would allow for additional flexibility in the model, and family-wise
predictions of γi may be of clinical interest. We are currently investigating this model from a
Bayesian perspective.

Finally, detecting anticipation statistically does not necessarily suggest a plausible
mechanistic explanation to genetic anticipation in Lynch syndrome. Before the biological
basis of anticipation had been demonstrated in several specific disorders, the phenomenon
was thought to be due to sampling bias, epigenetic effects, gene conversion, or recombinant
events. Since then, the biological basis for anticipation in a number of neurodegenerative
disorders has been shown to be attributable to trinucleotide repeat instability, with expansion
of repeats clearly correlated with an earlier age of onset. While molecular instability due to
MMR gene mutation is a natural hypotheses for anticipation in Lynch syndrome, there is no
mechanistic data to support this. Recently, telomere shortening has been suggested as the
mechanism for anticipation [Vulliamy et al., 2004]. Anticipation has been hard to study in
cancer genetic syndromes. However, new evidence from studies of Li-Fraumeni syndrome
(LFS) suggest telomere shortening as an alternative mechanism [Tabori et al., 2007].
Accelerated telomere attrition has been reported in affected carriers with LFS compared
with unaffected carriers as well as compared with normal wild-type controls, leading
investigators to speculate that defects in TP53 allow cells with shorter telomeres to escape
senescence and proliferate. If this type of selection for shorter telomeres applies to both
somatic and germline tissues, then one would expect that shorter telomeres would be
identified at birth in each successive generation. Whether this hypotheses is tenable for
Lynch syndrome is a question that still remains to be answered. The National
Comprehensive Cancer Network’s guidelines recommend initiating colonoscopy at age 20
to 25 or 10 years before the earliest diagnosis in carrier families, and these new data clearly
support enhanced surveillance for mutation carriers at a young age. Except for the Tsai et al.
[1997] paper, all published data have so far presented evidence in favor of genetic
anticipation in Lynch syndrome. Further mechanistic studies are needed to arrive at the true
answer to this important question.
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Appendix
Table A.1

Four analytical methods1 applied to UMLYNCH and DLYNCH. ‘Only CRC’ considers
those parent-child pairs where both had colorectal cancer and, for DLYNCH, ‘MSH2’,
‘MLH1’ and ‘MSH6’ stratify by mutation type.

Subset UMLYNCH DLYNCH

Difference Test StatisticsSignificance Difference Test StatisticsSignificance

pairs(n) in means t-test HV2 RY13 RY23 pairs(n) in means t-test HV2 RY13 RY23

Entire cohort 136 9.89 7.42*** 3.11** 0.00 3.05* 290 8.72 9.84*** 4.73*** 2.97* 5.39***

  Only CRC 62 11.19 5.06*** 2.74* −0.18 2.85* 130 11.01 8.54*** 4.41*** 2.65* 4.89***

    MSH2 153 7.58 6.38*** 3.33** 2.51* 3.59**

    MLH1 Not Analyzed Due to Missingness 92 10.10 6.18*** 2.89* 1.21 3.75***

    MSH6 41 9.76 4.32*** 1.90 1.13 2.00

1
With no adjustments to the variance estimates for correlation of multiple pairs coming from the same family. These results

are obtained by direct use of the test statistics as proposed in the original papers.
2
Huang and Vieland [1997]

3
Rabinowitz and Yang [1999]

***
indicates a p-value less than 0.0001,

**
less than 0.001, and

*
less than 0.01.
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Table A.2

Pooled estimator from combining the UMLYNCH and DLYNCH estimators for genetic
anticipation (from Table A.1 – not adjusted for within-family correlation); the method for
pooling used was that prescribed by DerSimonian and Laird [1986] for combining estimates
across studies with different sample sizes, using the inverse variances as weights.

n t-test HV RY1 RY2

UMLYNCH 136 7.42*** 3.11** 0 3.05*

DLYNCH 290 9.84*** 4.73*** 2.97* 5.39***

POOLED 426 12.29*** 5.64*** 1.39 3.79***

Table A.3

Estimated proportion of rejection with 2500 resampled datasets with n = 25, 50, 75
pedigrees from the expanded DLYNCH dataset containing 155 families. The first four
estimates under Design 1 are based on affected parentchild pairs sampled from the selected
families, whereas the two tests under Design 2 use all affected and unaffected family
members. The tests that may not maintain Type I error under multiplex ascertainment are
presented in bold font.

n Method:

Design 1 Design 2

t-test HV RY1 RY2 REM CPH

25 0.956 0.615 0.330 0.693 0.703 0.525

50 Rejection Rate: 0.999 0.826 0.505 0.876 0.905 0.628

75 1.000 0.925 0.671 0.947 0.971 0.764
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Figure A.1.
A schematic classification of statistical methods for testing genetic anticipation with
corresponding references.
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Table 1

Estimated Type I error rates and Power (corresponding to 5000 simulations with 50 parent-child pairs per
simulation) with nominal significance level α = 0.05 under Random Ascertainment for 4 test statistics. (TP,
TC) are the respective ages of onset for the parent and child, with BVN the bivariate normal distribution with
parameters (µp, µc, σp,σc ρ(Tp,Tc)). The ascertainment ages (CP,CC) are determined by c1~ Unif (80, 90) and
d1 ~ Unif(20,30) as described in Section 2. Powers in bold come from tests which asymptotically fail to
maintain nominal level of significance. Powers in italics come from tests which are asymptotically unbiased,
but, due to small sample size, have Type I error rates significantly greater than 0.05.

(TP, TC)~
t-test HV1 RY12 RY22

Type I Error

BV N (55, 55, 100, 100, 0.0) 0.858 0.085 0.054 0.067

BV N (55, 55, 100, 100, 0.5) 0.562 0.069 0.048 0.062

BV N (55, 55, 100, 100, 0.7) 0.387 0.064 0.049 0.058

Power

BV N (55, 50, 100, 100, 0.0) 0.996 0.642 0.353 0.543

BV N (55, 45, 100, 100, 0.0) 1.000 0.988 0.826 0.966

BV N (55, 50, 100, 100, 0.5) 0.999 0.912 0.673 0.853

BV N (55, 45, 100, 100, 0.5) 1.000 1.000 0.993 1.000

BV N (55, 50, 100, 100, 0.7) 1.000 0.993 0.891 0.979

BV N (55, 45, 100, 100, 0.7) 1.000 1.000 1.000 1.000

1
Huang and Vieland [1997]

2
Rabinowitz and Yang [1999]
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Table 2

Estimated Type I error rates and Power (corresponding to 5000 simulations with 50 parent-child pairs per
simulation) with nominal significance level α = 0.05 under Generalized Single Ascertainment for 4 test
statistics. (TP,TC) are the respective ages of onset for the parent and child, with BVN the bivariate normal
distribution with parameters (µpµc,σp,σc,ρ(Tp,Tc)). The ascertainment ages (CP,CC) are determined by c1 ~
Unif (80, 90) and d1, d2 ~ Unif(20,30) as described in Section 2. Powers in bold come from tests which
asymptotically fail to maintain nominal level of significance. Powers in italics come from tests which are
asymptotically unbiased, but, due to small sample size, have Type I error rates significantly greater than 0.05.

(TP, TC)~
t-test HV1 RY12 RY22

Type I Error

BV N(55, 55, 100, 100, 0.0) 0.906 0.078 0.051 0.065

BV N(55, 55, 100, 100, 0.5) 0.653 0.049 0.051 0.063

BV N(55, 55, 100, 100, 0.7) 0.444 0.044 0.050 0.055

Power

BV N(55, 50, 100, 100, 0.0) 0.994 0.635 0.330 0.521

BV N(55, 45, 100, 100, 0.0) 1.000 0.988 0.778 0.951

BV N(55, 50, 100, 100, 0.5) 1.000 0.799 0.633 0.834

BV N(55, 45, 100, 100, 0.5) 1.000 0.997 0.984 1.000

BV N(55, 50, 100, 100, 0.7) 1.000 0.931 0.854 0.968

BV N(55, 45, 100, 100, 0.7) 1.000 0.997 0.999 1.000

1
Huang and Vieland [1997]

2
Rabinowitz and Yang [1999]
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