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Abstract
Increasing the production of fatty acids by microbial fermentation remains an important step
towards the generation of biodiesel and other portable liquid fuels. In this work, we report an
Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase
domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea
bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from
its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids
were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis.
Results show that the E. coli strain expressing the DH tetradomain fragment was capable of
producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the
negative control strain lacking the recombinant enzyme. The enhancement in production was
observed across the board for all the fatty acids that are typically made by E. coli. The
overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the
observed enhancement in fatty acid production was not a result of effects associated with cell
density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16
°C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol
did not result in an increase in fatty acid production. All these results taken together suggest that
either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid
biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also
capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new
tool which could be incorporated into other existing strategies aimed at improving fatty acid
production in bacterial fermentations towards accessible biodiesel precursors.
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Introduction
The development of commercially available transportation and jet fuels from renewable
sources will be needed in the coming decades in order to offset the high demand for
environmentally deleterious and costly petroleum-derived fuels [1]. Towards this worthy
goal, there have been a number of efforts from industry and academia aimed at developing
the production of different forms of biofuels which include ethanol from maize or
sugarcane, butanes from yeast fermentations and biodiesel derived from the esterification of
fatty acids [2–10].

According to the 2012 Report from the U.S. Energy Information Administration
(www.eia.gov) from 2010 to 2011, the US consumption of biodiesel increased from 263 to
878 million gallons of fuel, while the consumption of ethanol remained nearly constant
between these two years. Currently, biodiesel constitutes about 2.2% of the diesel fuel used
in the US and most of it comes from recycled vegetable oils and animal fats (7.3 billion
pounds in 2011). With higher demand for biodiesel, there has been an increase in the
proportions of soybean oil in biodiesel preparations (4.1 billion pounds in 2011 and 5.2
billion pounds projected for 2012). This diversion of food crops, such as corn and soybeans,
towards the production of biofuels has the effect of increasing global prices for these crops.
Thus, it is apparent that there will be an increasing pressure to foster the production of oils
from non-food crops as the industry grows [11].

An alternative for the production of fatty acids and other biodiesel precursors without
directly using food crops, is by microbial fermentation. There are numerous reports
demonstrating the application of yeast, fungi and bacteria for the production of free fatty
acids as biodiesel precursors [8, 12–16]. One of the most widely used industrial hosts is the
gram-negative bacterium Escherichia coli. This organism is approximately 9 % lipid,
produces fatty acid metabolites at a commercial productivity (~ 0.2 g l−1 hr−1 per gram of
cell mass) and, can achieve product-dependent mass yields of 30 – 35% and is suitable for
genetic manipulation [17].

There are a number of reported biochemical strategies for the enhancement of fatty acid
production in E. coli (Table 1) [2, 6, 12, 17–22]. Most of them involve either (i) the
overexpression of thioesterases to increase fatty acid release during biosynthesis or (ii) the
deletion of genes for fatty acid degradation by the beta-oxidation pathway [2, 5–6, 17, 22].
In some studies, both strategies have been combined to achieve up to 100-fold increases in
the production of fatty acids in E. coli [17]. Additionally, the heterologous expression of key
enzymes involved in alcohol production, such as pyruvate dehydrogenase, alcohol
dehydrogenase and acyltransferases, have also been shown to enhance the production of
acetate units required for the production of fatty acids [3]. Similarly, the overexpression of
regulatory transcription factors such as FadR has been shown to enhance fatty acid
production globally by tuning the expression levels of many genes involved in fatty acid
pathways to optimal levels (abB, fabF, and accA) [21].

The biosynthesis of polyunsaturated fatty acids (PUFA) in deep-sea bacteria employs a
polyketide synthase-like multienzyme system which is widely conserved in marine
environments [24–26] (Figure 1A). This conserved PUFA synthase multidomain system
contains all the enzyme domains required for the elongation, the reduction and double bond
formation in the resulting fatty acid. Our group had previously characterized a tetradomain
protein fragment (DH1-DH2-UMA) from deep-sea bacterium Photobacterium profundum
which was expressed, purified and shown to have enzymatic activity in vitro [27]. The DH1-
DH2-UMA recombinant protein fragment included all four hotdog-fold domains associated
with the dehydratase (DH) activity in the PUFA synthase (Figure 1A) [27]. The DH1-DH2-
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UMA fragment was found to be competent to catalyze the hydration of several surrogate
substrates but its applicability in the enhancement of fatty acid biosynthesis has not been
assessed [27].

In this work, we report the enhancement of fatty acid production in E. coli which
overexpresses this active fragment, DH1-DH2-UMA, which has been excised from its
natural context as part of the PUFA synthase complex of Photobacterium profundum [27].
Our results clearly show that the expression of DH1-DH2-UMA in E. coli results in a five-
fold increase in fatty acid production for all the typical fatty acids vs. the control. This
production enhancement seems to be independent on the presence of carbon
supplementation of the media with glycerol but highly dependent on temperature.

Materials and methods
All reagents such as kanamycin, chloramphenicol, IPTG (isopropyl β-D-1-
thiogalactopyranoside), yeast extract, NaCl, tryptone, methyl heneicosanoate and glycerol
were purchased from Sigma.

General procedures
Mass spectral data was acquired using a GC-MS (Hewlett-Packard 5972A MSD
Chemstation; Hewlett-Packard, Palo Alto, CA, USA) at 70 eV equipped with a 30 m x 0.25
mm special performance capillary column (HP-5MS) of polymethylsiloxane cross-linked
with 5 % phenyl methylpolysiloxane. For liophilizatation of samples a FreeZone Freeze Dry
Systems was used.

Cloning, cell transformation, media and growth
DH fragments were cloned as previously described by Oyola-Robles et al. [27]. The pET200
expression vector containing the cloned genes encoding either the control pET200/D/lacZ
(Invitrogen) or the experimental pDH1-DH2-UMA constructs were transformed in E. coli
strain BL21-CodonPlus (DE3)-RIL Competent Cells (Stratagene). Transformants were
selected and cultured overnight in LB medium and antibiotics (kanamycin 100 mg/L and
chloramphenicol 25 mg/L) at 37 °C, 270 rpm. Overnight culture was used to inoculate 1 L
of LB medium (supplemented with 0.4 % glycerol when necessary) with antibiotic
(kanamycin 100 mg/L and chloramphenicol 25 mg/L) at 37 °C, 250 rpm until the OD600
reach 0.2 and then, cultured at 30 °C, 22 °C or 16 °C, 250 rpm until the OD600 reach 0.5–
0.6. Protein expression was induced by adding isopropyl β-D-1-thiogalactopyranoside
(IPTG) to a final concentration of 1.0 mM, incubation continued overnight at 30 °C, 22 °C
or 16 °C respectively, 250 rpm. A control experiment was performed with no IPTG
induction in a culture at 22 °C. OD600 was monitored for up to 80 hours for cell growth.
Protein expression was corroborated by SDS-PAGE using 4–15% Mini-PROTEAN® TGX
gels (BioRad®). Cells were collected by centrifugation at 4,400 rpm, 10 min, 4 °C, freeze-
dried and pellets stored at −80 °C.

Fatty acids extraction and methylation
The fatty acyl components of the cell culture were obtained as their methyl esters by the
reaction of 0.10 g of freeze-dried pellet with 10.0 mL of methanolic HCl, refluxed for 2 hr.
The crude of the reaction was taken up with hexane (3 × 15 mL), the organic layer dried
over MgSO4 and concentrated in vacuo. The fatty acid methyl esters were analyzed by GC-
MS. The temperature program was as follows: 130 °C for two minutes, increase at a rate of
3 °C /min to a 270 °C, where the temperature is maintained for 88 min. Methyl
heneicosanoate was used as an internal standard for quantification of fatty acid methyl esters
as described previously [28].
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Statistical analysis: fatty acid composition determination
Individual fatty acids were identified by their retention time and mass spectral
fragmentations in the Chemstation software suite (HP Agilent). Quantitative analysis of fatty
acids composition was performed by using the area under the curve of the peaks
corresponding to the identified fatty acids, normalized by the area under the curve of the
internal standard and, converted to the reported units (mg fatty acid/L culture). All
experiments were performed in biological duplicates or triplicates. The data analyzed using
the following equations:

Eq (1)

In which the total number of millimoles of a fatty acids is given by the known concentration
of the internal standard (CIS) multiplied by the ratio of the areas of the fatty acid and the
internal standard obtained from the gas chromatogram (AFA/AIS). This is multiplied by a
dilution factor of 2 and by the total volume of the sample (Vol total).

Eq (2)

The total mmol of fatty acid is divided by the mass of dried cells that were used for
extraction (gcell) and then multiplied by the cell density (grams of cell/ L culture).

Eq (3)

Finally, the mmol/L culture can be multiplied by the molecular weight for that fatty acid to
yield the mg of fatty acids per liter of culture.

Theory
The overproduction of fatty acids is an important goal in the search for renewable fuels. In
this work we report an enzyme fragment, DH1-DH2-UMA, which has been taken out of its
natural context within a multi-enzyme from Photobacterium profundum. Overexpression of
this enzyme fragment in E. coli increases the yield of fatty acid in liquid culture by a factor
of five. This level of enhancement is competitive and should be tested in strains of E. coli
that have been optimized for fatty acid production.

Results
Effect of DH1-DH2-UMA overexpression on fatty acid production

The overexpression of enzymes has been employed as a strategy to enhance fatty acid
production in microbial fermentations [5, 17, 22]. In order to investigate whether DH1-DH2-
UMA would interact with the endogenous machinery for fatty acid biosynthesis in E. coli,
we measured the production of fatty acids in BL21 E coli cells expressing either DH1-DH2-
UMA or a negative control protein LacZ (Figure 1B) [27]. No polyunsaturated fatty acids
were detected in any of the bacterial extracts. Although the expression of DH1-DH2-UMA
did not affect the fatty acid profile of E. coli, we did observe a 4 to 5-fold increase in the
total yield of free saturated and monounsaturated fatty acids (Figure 2A). A mixture of
saturated and monounsaturated fatty acids from 12 to 19 carbon chain length were isolated
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from the bacterial culture as shown by the gas chromatograph of their fatty acid methyl
esters (FAME) derivatives (Supplemental figure 1). Palmitic acid (16:0) showed to be the
major fatty acid produced in both the experiment and in the negative control. Each fatty acid
production experiment is accompanied by a protein expression SDS-PAGE gel which shows
that the observed fatty acid enhancement correlates with expression of the DH1-DH2-UMA
protein (Figure 1B). The fact that the expression of DH1-DH2-UMA affected the production
of all fatty acids in equal proportions suggests that the protein is capable of interacting with
the E. coli machinery for fatty acid biosynthesis in a way that does not discriminate based on
fatty acid chain length.

In order to verify that the induction of DH1-DH2-UMA overexpression was executed
exactly at the logarithmic phase and to rule out the possibility that the observed
enhancement in the yield of fatty acids is a reflection of a higher bacterial cell density, we
measured the growth by optical density at 600 nm of the BL21 strain expressing DH1-DH2-
UMA and compared it to one expressing the control pET200TOPO/D/LacZ. Our results
clearly show that induction of the dehydratase domain overexpression was performed at the
log phase (4 to 6 hours of cell culture (Figure 2B). Also, the expression of DH1-DH2-UMA
did not increase cell density significantly (Figure 2B). Therefore, it is clear that the effects
caused by DH1-DH2-UMA are not due to an increase in cell density.

Effect of temperature on the fatty acid production of E. coli
The effect of temperature (16, 22 and 30 °C) on both cell growth and fatty acid production
in the E. coli strain overexpressing DH1-DH2-UMA, was measured. As expected, the yield
of fatty acids was higher at the lower temperature for both the DH1-DH2-UMA strain and
for the control strain [23]. A 10-fold increase in total mg of fatty acids per liter of culture
was observed between the cultures grown at 16 °C relative to the cultures grown at 30 °C
(Figure 3A and 3C, respectively). The enhancement in fatty acid production by the DH1-
DH2-UMA strain was more pronounced at 16 °C than at higher temperatures and the
production of fatty acids was correlated to the levels of protein produced as can be seen by
SDS-PAGE (Figure 4). The results are summarized in Table 2 and Table S1.

As expected, cell growth was slower at the lower temperatures in this study. Dried cell
measurements confirmed that less biomass is produced at lower temperatures (Table 2). At
16°C, a slight decrease (−0.06 g/L) in biomass was observed in the engineered DH1-DH2-
UMA strain compared to the E. coli strain carrying the control vector. Increasing the
temperature to 30°C resulted in a ~ 2 fold increase in biomass.

Effect of carbon supplementation on fatty acid production
It has been reported that the distribution of fatty acids can vary according to the composition
of the E. coli culture media [23]. We therefore cultured the DH1-DH2-UMA E. coli strain in
1 L of LB media supplemented with 0.4 % (v/v) glycerol as a carbon source.
Supplementation with 0.4% glycerol causes a slight elevation in fatty acid production (1.4 –
2 fold) in both the DH1-DH2-UMA and in the control strain (Table 2, Figure 5A and B).
The addition of glycerol to the culture media did not cause a significant changes in
UFA:SFA ratios or in the general distribution of fatty acids (Table S2). However, a 2-fold
increase in biomass production was observed when glycerol is added to the culture media,
indicating that the fatty acid production increase resulting from carbon supplementation is
due to a general biomass effect (Table 2).

Effect of inducing enzyme expression on fatty acid production
Since the increase in the production of fatty acids was found to be accompanied by an
increase in DH1-DH2-UMA protein expression, we wanted to know whether inducing the
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overexpression of the enzyme using isopropyl β-D-1-thiogalactopyranoside (IPTG) would
result in further enhancement in fatty acid production. We measured fatty acid yield with
and without added IPTG (to induce protein expression levels). GC/MS analysis of the
FAME showed the same principal eight monounsaturated and saturated C12 to C19 fatty
acids are produced (Figure 5C and D). In the absence of IPTG, the fatty acid yield was 1.6
higher in both control and experimental strains perhaps because lower protein expression
means that more of the carbon source can be available for making fatty acids (Table 2). No
changes in the UFA:SFA ratio were reported (Table S2). The addition of IPTG suppressed
overall fatty acid biosynthesis, but it accentuated the fatty acid enhancement in the DH1-
DH2-UMA strain which registered a 3.5 fold increase of FA enhancement under these
conditions (Figure 5D, Table 2).

The addition of IPTG causes a 2-fold increase in biomass when compared to the cultures
where no IPTG is added (Table 2). However, there were no differences in cell density
between the control and experimental strains (Table 2).

Discussion
In recent years, there has been a substantial interest in the identification of new enzymes that
increase the yield of fatty acids produced in microbial cultures [2, 5–6, 17, 22]. There are
numerous reports of strategies to increase the production of fatty acids in E. coli with
enhancements fluctuating between 3 and 5-fold for individual modifications (Table 1) [2, 5–
6, 17]. In this report we have measured the ability of an active dehydratase tetradomain
protein fragment to increase the production of fatty acids in E .coli by as much as 5-fold.
This level of enhancement is within the range observed for a single modification in a strain
of E. coli which has not been optimized for fatty acid production. We can confidently
project that the yields of fatty acids can be pushed upwards by overexpressing DH1-DH2-
UMA in a strain with an impaired beta-oxidation pathway (ΔfadD, ΔfadE) or by combining
with other orthogonal strategies for enhancement, such as FadR co-expression [20].

The observed enhancement in fatty acid production by DH1-DH2-UMA was more
pronounced at lower temperatures (16°C). This was not unexpected for a variety of reasons.
Firstly, it is well-established that E. coli makes or accumulates a higher proportion of free
fatty acids at lower temperatures, perhaps as an adaptive mechanism to the stress induced at
cold temperatures [20, 23, 30]. Also, the exogenous enzyme being introduced in our study
comes from P. profundum, a piezophilic deep-sea bacterium adapted to low temperatures
[25]. Thus, it is possible that the enzyme itself is more active or that its structure is more
stabilized at the lower temperatures. Thirdly, our results show that the expression of DH1-
DH2-UMA was higher at the lower temperature. Therefore it is possible that the fatty acid
enhancement could be reflecting the increase in enzyme production. The most likely
explanation is that a combination of these three effects (enzyme expression, enzyme activity
and enzyme stability) could be contributing towards the optimization of fatty acid
enhancement at 16 °C.

Carbon supplementation of the media typically results in an improvement of fatty acid
production in bacterial cultures [6]. In this study, we assessed the effect of adding 0.4 % v/v
glycerol to the culture media on the production of fatty acids. The addition of glycerol
allowed the cells to grow up to 80 hours without entering the death phase thus achieving
higher cell density (Figure 2). This increase in biomass resulted in a modest increase in fatty
acid production per unit of volume. The fact that carbon supplementation did not greatly
affect fatty acid production, suggests that the LB media without supplementation contained
enough carbon-containing nutrients for the bacteria to grow and make fatty acids.
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The effect of enzyme expression on fatty acid production was assessed by the addition of the
inducer IPTG. Our results showed that the overexpression of the tetradomain fragment
resulted in a lower overall fatty acid production, but a higher degree of enhancement of fatty
acid production over the control strain (3.5-fold increase when IPTG is added versus 1.5-
fold increase without IPTG) (Table 2). These results are consistent with those from Zheng et
al., who report that E. coli expressing a thioesterase from a medium copy number vector,
which would be expected to make less of the enzyme, actually makes more fatty acids than
the same gene cloned in a high copy number vector [31]. Also, Hoover et al. reported an
optimal IPTG concentration of 50 μM for the induction of fatty acid production, suggesting
that higher concentrations of the inducer results in the expression of too much enzyme,
which is not always ideal for the production of fatty acids [32].

Our finding that a dehydratase, DH1-DH2-UMA, was capable of enhancing fatty acid
production was somewhat surprising, especially since the dehydration reaction has not been
identified as a bottleneck in bacterial fatty acid biosynthesis. In fact, previous work by
others showed that overexpression of the native dehydratase from E. coli, FabA, does not
increase the production of fatty acids [5]. One possible explanation is that this dehydratase
tetradomain domain also catalyzes other types of reactions, such as thioester hydrolysis. The
tetradomain DH1-DH2-UMA is composed of four contiguous hotdog fold domains [27] and
this family of structural domains has been implicated in both dehydratase and thioesterase
activity [33]. Therefore, it is possible that DH1-DH2-UMA also contains an additional
hydrolase activity within its four different hotdog domains. Further work will need to be
carried out to ascertain the mechanism by which DH1-DH2-UMA enhances fatty acid
biosynthesis in E. coli.

Conclusions
In this study the production of fatty acids in E. coli was increased by the expression of an
enzyme fragment with dehydratase activity from P. profundum. Others have reported higher
yields in the production of fatty acids in E. coli, but these high yields are the result of
combining several genetic manipulations within the same strain. We report an enhancement
in fatty acid production which is comparable to that reported by others, for a single genetic
manipulation of E. coli. Thus, this work lays the groundwork for further exploration of the
applicability of enzymes from marine organisms towards increasing the yields, purity or
quality of fatty acids in microbial fermentations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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PUFA polyunsaturated fatty acids

FAME fatty acid methyl ester

DH dehydratase

AT acyl tranferases

KS keto-acyl synthase, ACP, acyl carrier protein

KR keto-acyl reductase, ER, enoyl reductase

GC gas chromatography

MS mass spectrometry, UFA, unsaturated fatty acid

SFA saturated fatty acid
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Highlights

• An engineered E. coli strain is capable of overproducing fatty acids up to 5-fold.

• The observed enhancement is more pronounced at lower temperatures (16 °C).

• The observed enhancement was not due to changes in E. coli cell density.

• The DH domains tested in this study interact with the endogenous E. coli
pathways.

• The overexpression of DH domains represents an unexplored strategy for
biofuels.

Oyola-Robles et al. Page 10

Enzyme Microb Technol. Author manuscript; available in PMC 2015 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. DH1-DH2-UMA overexpression
(A) The PKS multienzyme for the anaerobic production of eicosapentaenoic acid (EPA) in
Photobacterium profundum consists of five different proteins (Pfa A, B, C ,D and E). The
four dehydratase (DH) domains are housed within the PfaC multienzyme. The fragment
DH1-DH2-UMA contains all four conserved domains. (B) SDS-PAGE analysis of
recombinant DH1-DH2-UMA protein before (−) and after (+) induction of expression with
IPTG (1mM final concentration) for three replicates. The control protein LacZ shows as a
band of >100 kDa while the dehydratase DH1-DH2-UMA shows as a band just below 100
kDa corresponding to DH1-DH2-UMA protein of 96 kDa.
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Figure 2. Effect of DH1-DH2-UMA overexpression on bacterial fatty acid production
(A)Fatty acid profile of Escherichia coli expressing either the enzyme in this study, DH1-
DH2-UMA (white bars) or the LacZ (black bars) (B) Measurements of the optical density at
600 nm were taken periodically for 80 hours of culture at 22 °C. Errors bars represent
standard deviations about the mean of three replicate samples.
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Figure 3. Temperature effects
Fatty acid profiles were determined for DH1-DH2-UMA (white bars) and pET200/D/lacZ
controls (black bars) as described previously. Fatty acid titers were measured at (A) 16 °C
(B) 22 °C and (C) 30 °C. Error bars represent standard deviations about the mean of two or
three replicate samples.
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Figure 4. Effect of temperature on DH1-DH2-UMA expression
SDS-PAGE gels of the E. coli culture at different temperatures (A) 16 °C (B) 22 °C and (C)
30 °C shows that lower temperatures promote higher expression levels.
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Figure 5. Effect of culture media supplementation
Fatty acid profiles were determined for DH1-DH2-UMA (white bars) and pET200/D/lacZ
controls (black bars) as described previously. Fatty acid titers were measured (A) without
supplementation and (B) with supplementation of 0.4 % glycerol as a carbon source. These
experiments were carried out at 22°C and with 1 mM IPTG. In separate experiments, fatty
acid titers were measured (C) without IPTG and (D) with 1mM IPTG added to the culture
media. These experiments were carried out at 22°C and with 0.4% glycerol. Error bars
represent standard deviations about the mean of two or three replicate samples.

Oyola-Robles et al. Page 15

Enzyme Microb Technol. Author manuscript; available in PMC 2015 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Oyola-Robles et al. Page 16

Table 1

Reports of single genetic modifications of Escherichia coli which result in the enhanced production of fatty
acids.

Plasmid Description Fold-increase
in FA
production

Reference

pACYC-TE pACYC harboring A. thaliana thioesterase 1.7 Cao, Y. et al Appl Microbiol
Biotechnol (2010) 87:271–280.5

pET-fabAB and pACYC-TE pET30a harboring E. coli fabA and fabB, and
pACYC harboring A. thaliana thioesterase.

1.6

pXL.49 pET28b harboring plant thioesterase(U31813)
from Cinnamomum camphorum

2.0 Lu. X. et al Metabolic Engineering
(2008) 10:333–339.22

pBAD33-BTE pBAD33 harboring Umbellularia californica
thioesterase (BTE)

3.6 Lennen. R. Biotechnology and
Bioengineering (2010) 106(2):193–
202.6

pBAD33-BTE-ACC pRL2 harboring accDABC. The accD gene
encoding the (β-subunit of acetyt-CoA
carboxyltransferase, the accA gene encoding
the a-subunit of acetyl-CoA
carboxyltransferase, and the accBC operon
encoding biotin carboxyl carrier protein and
biotin carboxylase.

2.3

placUV5:’tesA E. coli ‘tesA. thioesterase without leader
sequence.

10.7 Steen. E.J. et al Nature (2010) 463:
559–563.17

pDH1-DH2-UMA (Palmitica
Bio Inc IP)

pET200 harboring the DH1-DH2-UMA
fragment from the PUFA synthase.

3.6 This report.
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Table 2

Summary of results of biomass and fatty acid yield. The temperature experiments were carried out with 0.4%
glycerol and 1 mM IPTG. The glycerol experiment was carried out at 22°C and with 1 mM IPTG. The IPTG
experiment was carried out at 22°C and with 0.4% glycerol. Thus, the 22°C data, the 0.4% Glycerol data and
the 1 mM IPTG data are exactly the same data.

Total biomass production (g cells/ L Culture) Total mg Fatty Acid/ L Culture

Experimental Condition pET200/D/lacZ DH1-DH2-UMA pET200/D/lacZ DH1-DH2-UMA

16 °C 0.43 ± 0.08 0.37 ± 0.16 59.65 ± 8.88 227.58 ± 33.39

22 °C 0.57 ± 0.06 0.53 ± 0.06 33.18 ± 5.87 115.33 ± 19.44

30 °C 0.66 ± 0.24 0.84 ±0.23 15.00 ± 2.21 22.57 ± 3.50

No Glycerol 0.29 ± 0.01 0.23 ± 0.01 16.48 ± 2.54 80.31 ± 11.75

0.4 % Glycerol 0.57 ±0.06 0.53 ± 0.06 33.18 ± 5.87 115.33 ± 19.44

No IPTG 1.00 ± 0.08 1.03 ± 0.17 117.77 ± 7.32 182.55 ± 16.23.

1 mM IPTG 0.57 ± 0.06 0.53 ± 0.06 33.18 ± 5.87 115.33 ± 19.44
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