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Modulation of host cell signaling pathways as a 
therapeutic approach in periodontal disease

João Antonio Chaves de SOUZA1, Carlos ROSSA JUNIOR2, Gustavo Pompermaier GARLET3, Andressa Vilas Boas 
NOGUEIRA1, Joni Augusto CIRELLI2

1- DDS, MSc, PhD student, Department of Diagnosis and Surgery, School of Dentistry, UNESP-Univ. Estadual Paulista, Araraquara, SP, Brazil.
2- DDS, MSc, PhD, Professor, Department of Diagnosis and Surgery, School of Dentistry, UNESP-Univ. Estadual Paulista, Araraquara, SP, Brazil.
3- DDS, MSc, PhD, Professor, Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.

Corresponding address: Joni Augusto Cirelli - Rua Humaitá, 1680 - Centro - 14801-903 - Araraquara, SP - Brazil - Phone: +55-16-3301-6375 - e-mail: 
cirelli@foar.unesp.br

Received: May 13, 2010 - Modification: June 21, 2010  - Accepted: October 26, 2010

Recently, new treatment approaches have been developed to target the host component 
of periodontal disease. This review aims at providing updated information on host-

modulating therapies, focusing on treatment strategies for inhibiting signal transduction 
pathways involved in inflammation. Pharmacological inhibitors of MAPK, NFκB and JAK/
STAT pathways are being developed to manage rheumatoid arthritis, periodontal disease 
and other inflammatory diseases. Through these agents, inflammatory mediators can 
be inhibited at cell signaling level, interfering on transcription factors activation and 
inflammatory gene expression. Although these drugs offer great potential to modulate host 
response, their main limitations are lack of specificity and developments of side effects. 
After overcoming these limitations, adjunctive host modulating drugs will provide new 
therapeutic strategies for periodontal treatment.
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1- Etiology and pathogenesis of 
periodontal diseases

The hallmark of inflammatory/infectious 
conditions is the increased production of cytokines, 
proteases and other pro-inflammatory mediators. 
The synthesis and expression of these mediators 
occur in a transitory and strictly controlled 
way, seeking resolution of the problem and re-
establishment of the homeostasis. Regulation 
of cytokine gene expression is controlled by 
various mechanisms, including transcriptional, 
post-transcriptional, translational and post-
translational regulations. In the event of defective 
negative regulation of cytokine gene expression, 
the exaggerated and uncontrolled expression of 
cytokines and proteases can have deleterious 
consequences to the host, including cancer, 
autoimmune and chronic diseases2. Periodontal 
disease is one of these chronic pathologies, and it is 
probably the most significant cause of tooth loss in 
adults10. The pathologic mechanisms of periodontal 

disease are still not completely understood. 
Current knowledge concerning the pathogenesis of 
periodontitis suggests that it is a mixed infection 
in which the host response to bacterial biofilms is 
associated with high levels of pro-inflammatory 
mediators. These mediators trigger a cascade 
of events that, in some individuals, culminate 
in the irreversible degradation of connective 
and bone tissues, and consequent periodontal 
attachment loss6,57. Periodontal diseases have 
unique characteristics that distinguish it from other 
common infectious diseases: there is no uniformity 
on the bacterial profile associated with disease; 
and there is no definite minimum level of infection 
that would result in disease in all individuals. 
Certain individuals seem to be more susceptible 
to periodontal disease and the variability in the 
host response seems to be a major cause of the 
disease extension and severity. Environmental 
and acquired risk factors as diabetes mellitus, 
psychological stress, smoking, and genetic factors 
[such as interleukin-1 (IL-1) gene polymorphisms] 
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can accentuate the host inflammatory response 
and, consequently, the susceptibility to periodontal 
disease1,40. The association of periodontal disease 
with increased levels of cytokines and pro-
inflammatory mediators suggests that endogenous 
mechanisms for the negative regulation of these 
genes may be defective or dysfunctional; and 
this, in turn, may be one mechanism of increased 
susceptibility to periodontal disease.

Many studies have shown that the biological 
activity of a variety of cytokines may be directly 
relevant to periodontal destruction2,29. The 
interaction between cytokines and their antagonists 
will ultimately determine the severity and extent 
of tissue destruction, which may occur either as a 
direct effect of increased level of cytokines, or as 
indirect consequences of cytokine expression57. 
There is evidence of changes in the expression 
of these immune regulatory molecules found in 
diseased sites, compared to health clinic conditions. 
While inflammatory mediators [IL-1, IL-6, and 
tumor necrosis factor-α (TNF-α)] and the T helper 1 
cytokine interferon-γ (IFN-γ) have been associated 
with higher periodontal disease severity, the 
opposite is considered true for T helper 2 type 
cytokines, such as IL-4 and IL-108,19,21. The balance 
between the expression of T helper 1 and T helper 
2 type mediators is thought to be a relevant factor 
in the outcome of disease, possibly regulating the 
balance of anti-/pro-inflammatory cytokines, matrix 
metalloproteinases (MMPs)/tissue inhibitors of 
metalloproteinases (TIMPs) and receptor activator 
of nuclear factor-κB ligand (RANKL)/osteoprogerin 
(OPG). Imbalances between these mediators in the 
periodontal tissues are a major cause of periodontal 
destruction22-23,46.

2- Traditional therapy and 
new therapeutic strategies on 
periodontal diseases

The therapeutic approach to managing 
periodontal diseases has been traditionally targeted 
to the reduction and/or modification of bacteria in 
the dental biofilm. Albeit effective, this approach 
encumbers significant effort and requires periodic 
maintenance82. More recently, modulation of the 
host component of periodontal disease has been 
studied as an alternative therapeutic approach. 
Manipulation of the immune response to suppress 
undesirable reactions is an established therapeutic 
approach not only to various inflammatory and 
autoimmune diseases but also in cancer25,38. The 
purpose of host modulatory therapy is to restore 
balance between pro-inflammatory mediators and 
anti-inflammatory mediators. Recent studies have 
demonstrated that modulation of the host immune/
inflammatory response resulted in significant 

adjunctive benefits to scaling and root planning 
in the treatment of chronic periodontitis71. The 
adjunctive use of host modulatory therapy can slow 
down the progression of the disease, especially in 
susceptible patients at increased risk for whom 
conventional therapeutic approaches are not 
effective. Importantly, modulation of host response 
can prevent and/or minimize the destruction 
associated with the inflammatory process.

There are several strategies for modulation 
of host response. Studies suggest that certain 
local and systemic pharmacologic agents, that 
block specific inflammatory mediators, appear 
to attenuate disease progression90. Modulating 
biochemical agents and drugs have been postulated 
to be of therapeutic value as an adjunctive therapy 
to the management of chronic periodontitis28,42,65. 
The most studied drugs are antibiotics used 
in non-antimicrobial doses (e.g. tetracycline 
derivatives, which inhibit collagenolytic activities 
and activity of neutrophils and osteoclasts), anti-
inflammatory agents and bone-sparing drugs. 
The anti-inflammatory agents are mainly non-
steroidal anti-inflammatory drugs (NSAIDs) and 
weak organic acids, which prevent prostanoid 
formation by blocking the cyclooxygenase pathway 
of arachidonic acid metabolism. The bone-
sparing drugs (e.g., bisphosphonates) bind to the 
hydroxyapatite crystals of bone and prevent their 
dissolution by interfering with osteoclasts activity, 
thus reducing alveolar bone loss.

Inhibition of inflammatory mediators as nitric 
oxide (NO), IL-6, IL-1, TNF-α, MMPs and other 
proteases and pro-inflammatory cytokines have 
demonstrated successful protective effects against 
bone resorption18,44,54. The use of anti-cytokine 
therapies (by anti-cytokine drugs and soluble 
cytokine blockers) has been proven effective to 
block the negative effects of cytokines, slowing 
down the disease process. However, most of these 
drugs are associated with significant unwanted 
side effects, including hemorrhage, gastrointestinal 
problems, and renal and hepatic impairment 
that preclude their use. Another important 
consideration is the protective role of immune 
response and the potential hazards of its negative 
modulation, especially aggravation of infection 
as demonstrated by studies using animals with 
defective immune response and clinical studies in 
severely immunocompromised patients11,16-17.

A more recent approach to modulation of 
the levels of inflammatory mediators involved in 
the immune response is targeting cell signaling 
pathways important for their gene expression. 
One advantage of this approach is that expression 
of various inflammatory mediators requires 
activation of a limited number of these signaling 
pathways. Thus, modulation of one signaling 
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pathway may affect expression of more than 
one inflammatory mediator and alter the whole 
cytokine network. This is important considering 
the frequently redundant and interchangeable 
role of inflammatory mediators and cytokines and 
also implies that the impact of therapies targeting 
a single cytokine or inflammatory mediator may 
be somewhat limited because of compensatory 
mechanisms30. As promising and attractive as 
these strategies may be, intracellular signaling 
pathways have some important characteristics 
that should be considered, including the fact that 
they may be essential to various cellular processes, 
such as proliferation, apoptosis and survival. This 
suggests that modulation of some cell signaling 
pathways may have negative effects; however 
another hallmark of cytokine cell signaling is that 
activation of these pathways by cytokines and 
their agonists is usually a very rapid and transient 
event (minutes) that results in somewhat long-
lasting consequences (modulation of cytokine gene 
expression). It is, thus, conceivable that a short-
term modulation of cell signaling pathways may 
have an impact on cytokine gene expression without 
having much negative consequences on other 
fundamental cellular processes. For this reason, 
it is important to understand the role of individual 
signaling pathways in inflammation and tissue 
destruction in periodontal disease. Because these 
pathways are common to several inflammatory 
mediators, including many cytokines, chemokines, 
cell-adhesion molecules, acute-phase proteins and 
anti-apoptotic proteins, their inhibition will probably 
prove more progress than current treatment 
strategies. This review aims at providing updated 
information on host-modulating therapies, focusing 
on control mechanisms to inhibiting the most 
important signal transduction pathways related to 
inflammatory periodontal disease.

3- Cell signaling pathways in 
periodontal disease

As soon as bacterial biofilms accumulates in 
the teeth area adjacent to gingival margin, an 
inflammatory process is initiated, triggering a 
dynamic cascade of events. The main purpose of 
these events is the combat of microbial invaders 
through pro-inflammatory actions. These pro-
inflammatory actions depend on the recognition of 
the external antigenic stimuli by host leukocytes of 
the innate immune response, e.g. macrophages, 
neutrophils, dendritic cells, natural killer cells and 
others. This recognition of external “danger” then 
triggers a signal that travels through the cytoplasm 
and reaches the nucleus, and ultimately the pattern 
of gene expression is altered by transcriptional and 
post-transcriptional mechanisms. The ability of the 

inflammatory response to clear the infection will 
determine the sequence of the process. Within 3-4 
days the inflammatory process may be sufficiently 
robust to initiate connective destruction. If the 
initial innate immune response is not sufficient to 
resolve the aggression and eliminate the “danger” 
signals, then an adaptive immune response is 
initiated, involving lymphocytes that will produce 
immunoglobulins, cytokines and also try to clear 
out the aggression by direct cytotoxic mechanisms. 
Regardless of the type of host response (innate 
or acquired immunity), all cellular events depend 
on the activation of multiple signal transduction 
pathways, which may be affected by various 
factors both microbial- and host-derived, including 
lipopolysaccharide (LPS), proteases, cytokines and 
other enzymes47,80. Signal transduction depends on 
receptor-ligand interactions which usually involves 
some modification on the cytoplasmic proteins 
associated with these receptors. The most common 
modification associated with signal transduction is 
phosphorylation of specific aminoacid residues by 
kinases, which induces a conformational change 
on the tridimensional structure of the protein. 
Phosphorylation functions as a very efficient way 
to transfer energy and modulate their biological 
activity, since it does not involve de novo gene 
expression (i.e., the signaling intermediates are 
usually constitutively expressed by the cells and 
“ready to go into action”, as soon as they are 
modified). Signal transduction pathways have a 
varying number of signaling intermediates that 
are activated (phosphorylated) sequentially and 
relay the energy to one or more protein substrates. 
These substrates can exert their biological effect as 
transcriptional factors, transcriptional repressors, by 
altering mRNA stability or translation efficiency. The 
complexity of the inflammatory network established 
during periodontal disease progression results from 
the activation of intracellular signaling pathways, 
which are determined by the nature of extracellular 
stimuli. In periodontal disease the most important 
pathways include the mitogen activated protein 
kinase (MAPK), nuclear factor kappa B (NF-κB) 
and janus tyrosine kinase-signal transducer and 
activator of transcription (JAK/STAT)3,20.

3.1- MAPK pathway
MAPKs are an evolutionarily conserved family of 

protein kinases that mediate fundamental biological 
processes and cellular responses to different 
extracellular stimuli through multiple receptors41. 
MAPKs are involved in signal transduction of 
extracellular hormones, growth factors, cytokines, 
bacterial antigens and environmental stresses and 
play a crucial role in many aspects of immune 
mediated inflammatory responses63,67. The three 
main sub-families of MAPKs are extracellular-
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regulated kinases (ERK-1/-2), c-Jun N-terminal 
activated kinases (JNK) and p38. ERK kinases are 
traditionally considered as being primarily activated 
by mitogens and growth factors while inducers of 
stress and pro-inflammatory cytokines are activated 
by JNKs and p3860, although this general concept 
does not apply to all cell types and to all external 
stimuli. However, there is evidence of cross-
activation and interaction between various levels 
of the main MAPKs pathways (ERK and p38)64,86. 
The MAPK cascade consists of a series of three-
tired protein kinases, a MAPK and two upstream 
components, MAPK kinase (MAPKK) and MAPKK 
kinase (MAPKKK). Activation of the MAPKs results 
in phosphorylation of specific transcription factors 
that mediate gene transcription (Figure 1). The 
multiple interactions between the different MAPK 
cascades serve to integrate the responses and 
activate separate sets of genes43,63. All three MAPK 
families are expressed in periodontal disease20.

During initial interaction of pathogens with 
the host’s immune system, pathogen-associated 
molecular patterns (PAMPs), such as LPS, 
peptidoglycans, lipoteichoic acid, or bacterial 
CpG-DNA can trigger cells of the innate immune 

system52. Cytokines produced in response to this 
initial activation by PAMPs can also activate signal 
transduction pathways by autocrine or paracrine 
mechanisms. These microbial products and 
cytokines (e. g. IL-1β and TNF-α) act through the 
Toll receptors, IL-1 receptor (TIR) family or the 
TNF receptor family. Activation of these receptors 
triggers MAPK pathway (Figure 1), leading to 
activation of the transcription factor NF-κB, which is 
known to be relevant for cytokine gene expression43. 
The activation of MAPK/NF-κB pathway is a key to 
chronic inflammatory conditions such as rheumatoid 
arthritis81.

p38 activation leads to increased expression 
of various cytokine genes by modulation of 
both transcriptional and post-transcriptional 
mechanisms. The contribution of each mechanism 
to the global change of gene expression varies with 
the cell type and nature of external stimulation, 
but among the genes that are at least partially 
modulated by post-transcriptional mechanisms 
involving modification of RNA-binding proteins 
as substrates of p38 MAPK are TNF-α, IL-8, IL-
6, IL-2 and cyclooxygenase (COX)-233,61,91. Other 
genes are primarily regulated by transcriptional 

Figure 1- MAPK pathway: The three main sub-families of mitogen-activated protein kinases (MAPKs) are extracellular-
regulated kinases (ERK), c-Jun N-terminal activated kinases (JNK) and p38 that mediate immune cell functional responses 
to different extracellular stimuli through multiple receptors. The MAPK cascade consists of a series of three-tired protein 
kinases, a MAPK and two upstream components, MAPK kinase (MAPKK) and MAPKK kinase (MAPKKK). Activation of the 
MAPKs results in phosphorylation of a specific transcription factors that mediate gene transcription. Several biochemical 
compounds capable of inhibiting MAPKs are presented in the figure. Abbreviations: AP1, activating protein-1; ATF, 
activating transcription factor; ELK, Ets-like transcription factor associated kinase; MEK, MAPK/ERK Kinase; TAK, TGFb 
associated kinase
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mechanisms and include IL-1β, RANKL, chemokines 
and metalloproteinases7,70,72.

The evidence indicating a prominent role of 
MAPK pathways (in particular p38α MAPK) for 
cytokine gene expression and signaling, make them 
potential targets for anti-inflammatory therapeutics. 
Inhibitors targeting p38α MAPK pathway have been 
developed and preclinical and clinical data suggest 
that they exhibit anti-inflammatory activity36, as 
presented figure 4. Most of these protein kinase 
inhibitors interfere with phosphorylation or bind 
in the ATP binding site. Several compounds such 
as SD-282, SC-409, SB (SmithKline Beecham) 
-242235, AW-814141 and other capable of inhibit 
p38 have been studied in murine models of 
rheumatoid arthritis and/or periodontal disease and 
have prevented progression of the disease and bone 
resorption4,12,49,51,69. The promising results obtained 
in both in vitro and in preclinical studies generated 
interest of pharmaceutical companies to develop 
protein kinase inhibitors. The p38 inhibitor BIRB-
796 (Boehringer Ingelheim Pharmaceuticals Inc., 
Ridgefield, CT, USA) and VX-702 have been tested 
in a phase II study in rheumatoid arthritis but shown 

limited results15,92. Studies to evaluate the safety 
and efficacy of other compounds in patients with 
arthritis are currently underway76. To date, efficacy 
of these compounds in arthritis appears limited and 
there are significant adverse reactions79. VX-745 
was discontinued because in animal test revealed 
adverse neurological effects. Although no adverse 
effects were reported in human, gastrointestinal 
symptoms were described31,87.

Inhibitors of JNK and ERK have also shown 
efficacy in inhibiting the production of pro-
inflammatory mediators32,89 (Figure 4). So far, 
no human trials have been initiated with these 
inhibitors. In murine model of rheumatoid arthritis, 
the JNK inhibitor SP600125 (Celgene Corporation, 
San Diego, California, USA), besides the reduction 
in the level of TNF-α, IFN-γ, IL-6, COX-2 and MMPs, 
also inhibit joint destruction in a rat adjuvant 
arthritis model32. Specific ERK inhibitors have been 
available but there is limited information about their 
potential therapeutic applications in inflammation83. 
Recently, a potent and selective inhibitor for ERK, 
FR180204, has been proven effective against 
mouse collagen-induced arthritis. This compound 

Figure 2- NF-κB pathway: IκBs bind to functional NF-kB transcription factors (p50/p60) in cytoplasm in absence of stimuli 
and prevent their nuclear translocation. Signaling through TNF receptor (TNFR), IL-1 receptor (IL-1R), or toll-like receptor 
(TLR) can activate a cascade that involves the recruitment of MYD88 (myeloid differentiation primary response gene 88) 
and IRAK (interleukin-1-receptor associated kinase). Activation of IRAK results in the phosphorylation of TNF-receptor 
associated factor 6 (TRAF6), leading to transforming growth factor-β-activated kinase 1 (TAK1) activation, which, in 
turn, is required for IκB kinase complex (IKK) phosphorylation. IKK then phosphorylates the IκBα protein, which results 
in ubiquitination, dissociation of IκBα from NF-κB and degradation of IκBα by the proteosome. The NF-κB protein then 
translocates to the nucleus where it binds to its specific DNA and initiates transcription of multiples genes. The IKK inhibitor, 
BMS-345541 prevents IκBα degradation and therefore activation of NF-κB
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suppresses the activation of T cells, which play a 
important role in progress of the disease56.

The MAPK inhibitors are capable of reducing 
the synthesis of pro-inflammatory cytokines. Many 
studies with these inhibitors have shown benefits 
in patients with inflammatory diseases such as 
rheumatoid arthritis and periodontal disease27,37,59,62. 
In several cases, however, the clinical studies have 
been stopped87. MAPKs play several physiological 
roles and suppression of these functions may lead 
to a number of problems. While many inhibitors 
have shown efficacy in clinical trials, side effects 
have prevented the development of some of these 
compounds. Therefore, most of these compounds 
have subsequently been discontinued. One of the 
underlying reasons for these unacceptable side 
effects might be the cross-reactivities against other 
kinases or other cellular signaling molecules14.

3.2- NF-κB pathway
NF-κB was first identified as a transcription factor 

that binds to a 10 base pairs (bp) DNA element in 
kappa immunoglobulin light-chain enhancer in B 
cells74. The NF-κB family of transcription factors 
has been shown to be involved in many different 
pathways and has a central role in regulating the 
expression of a wide variety of genes that control both 
innate and adaptive immune responses. Activated 
NF-κB has been detected in human synovial tissue 

on the early stage of joint inflammation26. Activation 
of the NF-κB pathway occurs in the presence of 
many pro-inflammatory mediators present in large 
quantities in tissues with periodontal disease such 
as bacterial LPS, TNF-α, IL-1, MMPs, COX2 and 
inducible nitric oxide synthase (iNOS)5,81. In vitro 
studies have established that both Porphyromonas 
gingivalis and other periodontal pathogenic bacteria 
can also activate NF-κB in periodontal tissues78. 
This activation of NF-κB in the presence of such 
a diversity of biologically active molecules is the 
consequence of the activation of other signaling 
pathways, including MAPKs and TLR pathways. A 
better understanding of the regulation of NF-κB 
pathways will provide a platform for developing 
specific therapeutics for inflammatory diseases. A 
recent study in patients with chronic periodontitis 
and healthy controls showed that activation of NF-
κB (p50/p65) is significant in periodontally diseased 
tissues, suggesting the potential of NF-κB inhibitors 
in managing periodontitis3. In animal models of 
rheumatoid arthritis, the administration of NF-κB 
inhibitors seems to be effective53.

The NF-κB family consists of five members: 
REL-a (p65), NF-κB1 (p50; p105), NF-κB2 (p52; 
p100), c-REL and REL-b24. These subunits, except 
REL-b, form homodimers and heterodimers to 
produce NF-κB transcription factors. The most 
common activating form in inflammatory reactions 

Figure 3- JAK/STAT pathway: the activation of Janus tyrosine kinases (JAK) after cytokine binds to its specific receptor at 
cell surface results in the phosphorylation of signal transducers and activators of transcription (STATs), which then dimerize 
and translocate to the nucleus where they can regulate gene transcription. The compound CP-690550 inhibits JAK3 and 
prevents activation of JAK/STAT pathway
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is a heterodimer of p50 and p65. They bind to the 
NF-κB 5`-3` site and then activate or repress target 
gene transcription13,45. The key regulators of NF-κB 
are inhibitors of NF-κB (IκB), of which the most 
common are IκBα, IκBβ and IκBε24. IκBs proteins 
bind to functional NF-kB dimers in cytoplasm 
in absence of stimuli and prevent their nuclear 
translocation. Signaling through IL-1 receptor (IL-
1R) or toll-like receptor (TLR) can activate a cascade 
that involves the recruitment of MYD88 (myeloid 
differentiation primary response gene 88) and 
IRAK (interleukin-1-receptor associated kinase). 
Activation of IRAK results in the phosphorylation of 
TNF-receptor associated factor 6 (TRAF6), leading 
to transforming growth factor-β-activated kinase 
1 (TAK1) activation, which, in turn, is required for 
IκB kinase complex (IKK) phosphorylation. IKK then 
phosphorylates the IκBα protein, which results in 
ubiquitination, dissociation of IκBα from NF-κB and 
degradation of IκBα by the proteosome. The NF-κB 
protein then translocates to the nucleus where it 
binds to its specific DNA and initiates transcription of 
multiples genes, including cytokines, chemokines, 
matrix metalloproteinases and other inflammatory 
mediators (Figure 2). Many strategies to prevent 
activation of NF-κB are based on the modulation 
of IκB, as proteasome inhibitors that block 
degradation of IκB, and overexpression of IκB by 
recombinant protein or by gene therapy9. The IKK 
inhibitor, BMS (Bristol-Myers Squibb)-345541, was 
evaluated in the collagen-induced arthritis model 

in mice and decreased both synovial inflammation 
and joint destruction50 (Figure 4). Inhibition of the 
protein kinases that activate IκB may also prevent 
NF-κB activation. Other strategies to block NF-κB 
activity are being developed by pharmaceutical 
industries, and are based either on targeting the 
DNA-binding activity of NF-κB or blocking the 
nuclear translocation of NF-κB dimers.

Despite the potential use of this pathway in 
development of therapeutic interventions for 
immune/inflammatory diseases, NF-κB also 
participates in normal physiological process. 
Therefore, general blockade of NF-κB results in 
unwanted side effects as liver failure related to 
hepatocyte apoptosis48.

3.3- JAK/STAT pathway
Many cytokines and growth factors (interferons, 

interleukins, epidermal growth factor, growth 
hormone, erythropoietin and others) exert their 
biological functions through JAK-STAT signal 
transduction pathway55,73. Classically, interferons 
and interleukins, cytokines with key roles in 
regulating the immune response, activate enzymes 
called Janus kinases (JAK1, JAK2, JAK3 and Tyk2), 
which are associated with the cytoplasmic portion 
of the transmembrane receptors34. Activated JAKs, 
phosphorylate the cytoplasmic domain of the 
receptor leading the activation of its substrates, 
especially the proteins known as STATs (STAT1-4, 
5a, 5b, and 6). Upon phosphorylation, STATs may 

Figure 4- Pharmacological compounds with potential host-modulation actions

Compound Target Effects
SD-282 p38 LPS-induced periodontal disease, inflammatory cytokine expression, 

osteoclastogenesis, and alveolar bone loss were reduced in rats model69

Cartilage and bone destruction in mice with collagen-induced arthritis were 
reversed51

SC-409 p38 Streptococcal cell wall-induced arthritis, joint swelling and bone destruction 
were attenuated in rats49

SB-242235 p38 Symptoms of adjuvant-induced arthritis in rats were significantly reduced4

AW-814141 p38 Inflammation in two different models of arthritis in mice were reduced12

BIRB-796 p38 Reduce join inflammation in a phase II study in rheumatoid arthritis92

VX-702 p38 May not provide sustained suppression of the chronic inflammation seen in a 
phase II study in rheumatoid arthritis15

VX-745 p38
Inhibits cartilage induced and adjuvant induced arthritis model31 but was 
discontinued because in animal test revealed adverse neurological effects87

SP600125 JNK
Reduction in the level of TNF-α, IFN-γ, IL-6, COX-2 and MMPs, also inhibits 
joint destruction in a rat adjuvant arthritis model32

FR180204 ERK Effective against mouse collagen-induced arthritis56

BMS-345541 NF-kB
Decreased both synovial inflammation and joint destruction in the collagen-
induced arthritis model in mice50

CP-690550 JAK3
Phase I and II clinical trials demonstrated the efficacy and safety of CP-
690550 in preventing transplant rejection and alleviating the symptoms of 
rheumatoid arthritis and psoriasis88
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form homo- or hetero-dimers; which enables them 
to enter to the nucleus where they can regulate 
gene transcription55 (Figure 3). Although individual 
STAT proteins may be activated by multiple ligands, 
certain cytokines preferentially activate particular 
STATs. IFN-γ preferentially activates STAT1 through 
JAK1/JAK2 and IL-6 activates STAT3 through 
JAK1. This pathway is crucial to many responses 
like hematopoiesis, oncogenesis and immune/
inflammation regulation. However, abnormal 
activity of JAK/STAT pathway is associated with a 
wide variety of human malignancies such as cancer. 
Regulatory mechanisms controlling the duration 
of the signal include the downregulation of the 
receptor/ligand complex, degradation of signaling 
intermediates, inactivation of positive regulators 
by dephosphorylation (receptor, JAK or STAT) or 
activation of specific suppressors77.

The JAK-STAT pathway is the signaling target 
of many cytokines which are thought to have 
biologically significant roles in rheumatoid arthritis 
(IFN-g, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, and 
IL-15) and in periodontal disease (INF-g, TNF-α, 
IL-1 IL-4, IL-6, and IL-10)8,66,85. Furthermore 
preliminary studies in human synovial tissue 
suggest that constitutive STAT activity is observed 
in rheumatoid arthritis35,39. Other recent study have 
shown that STAT3 and STAT5 activations were noted 
on the ligature-induced model of experimental 
periodontitis20. To date, no studies with STAT 
inhibitors are available in periodontal disease and 
in rheumatoid arthritis, despite the potential role 
of these proteins in expression of important genes 
related with inflammatory diseases.

Among the four JAKs, JAK3 and Tyk2 have 
been the focus of most interest in terms of drug 
development whereas experimental deficiency 
of JAK1 or JAK2 is lethal. Therefore, targeting 
these kinases would not be expected to be good 
targets58,68. At moment, no Tyk2 inhibitor was 
developed. Tyk2 was involved in signaling by type 
I IFNs84. Targeting Tyk2 would be a useful strategy 
for the treatment of Th1 mediated disorders such 
as arthritis75. The JAK3 antagonist CP-690550 
(Pfizer) showed potential benefits in treatment of 
rheumatoid arthritis88 (Figure 4).

It is now clear that JAK/STAT pathway have a 
fundamental role in inflammatory diseases onset 
and progression. This pathway can affect the 
expression of various genes with pro-inflammatory 
and anti-inflammatory activity. Furthermore, the 
modulation of this pathway on cytokine signaling 
increases the possibility that these proteins may 
prove to be excellent targets for the discovery of 
drugs that can manipulate cytokine outcomes to 
resolve disease.

4- Conclusions

Periodontal diseases are one of the most 
significant causes of tooth loss in adults and it is 
clear that both the pathogenesis and the clinical 
manifestations of this disease are, at least in 
part, due to abnormal immune and inflammatory 
responses. Wherefore, the importance of the 
host response in inflammatory process should 
be recognized by the fact it represents the 
opportunity to explore new treatment approaches. 
The adjunctive use of modulation of host response 
with traditional mechanical periodontal therapy has 
provided significant clinical benefits in the treatment 
of periodontal disease.

Improved knowledge of signal transduction 
mechanisms and gene regulation involved in 
immune responses, notably in pathways involving 
NF-κB, p38 MAP kinase and JAK/STAT, will certainly 
create new therapeutic targets useful in treating 
inflammatory disorders. Once these pathways are 
common to various inflammatory mediators, their 
blockade may be more effective than targeting 
specific cytokines. However these pathways are 
important in several other physiological processes 
and therefore their inhibition can also result in 
undesirable side effects.

The development of effective drugs targeting 
host response mechanisms may represent a new 
approach in adjunctive treatment of periodontal 
disease. Although these drugs offer great potential 
to modulate host response, a notable limitation of 
these agents is a lack of specificity and collateral 
effects. Drugs that inhibit destruction of the 
connective tissue in one periodontal site also 
interfere with wound healing at another, or worse, 
can predispose the patient to opportunist and/or 
acquired infections in other organ systems when 
these drugs are administered systemically. Thus, 
drugs that have beneficial effects for the treatment 
of periodontal disease may cause problems in other 
parts of body. Nevertheless, preliminary results 
indicate that the therapeutic potential of some of 
these drugs are promising for the management of 
rheumatoid arthritis and other inflammatory and 
chronic diseases. In the future, it is possible that 
host modulating drugs will provide new adjunctive 
therapeutic strategies for periodontal treatment.
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