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Abstract
Mother-to-child-transmission of HIV by breast-feeding remains a major obstacle in the eradication
of HIV infection. Compared to adults, HIV-infected infants have more rapid disease and show
higher susceptibility to co-infections like tuberculosis (TB). Although the Bacille Calmette-Guérin
vaccine can be administered at birth to protect against TB, BCG can disseminate in HIV-infected
infants and increase mortality. Thus, a pediatric combination vaccine to stop both HIV and TB
infection in infants is urgently needed.

Towards the goal of developing a pediatric combination HIV-TB vaccine to prevent both oral HIV
acquisition by breast-feeding and TB infection, we tested and optimized an immunization regimen
using a novel live attenuated Mycobacterium tuberculosis vaccine engineered to express simian
immunodeficiency (SIV) antigens followed by heterologous MVA-SIV boosting in the infant
macaque model. A single oral dose of the attenuated Mtb-SIV vaccine strain mc26435 during the
first week of life was sufficient to induce persistent TB-specific immune responses. SIV-specific
immunity was induced at low but comparable magnitudes after oral or intradermal priming, and
was enhanced following MVA-SIV boosts. T cell responses were most pronounced in intestinal
tissues and oral lymph nodes. Importantly, in addition to plasma SIV-specific IgG and IgA
antibodies, infant macaques developed mucosal SIV-specific IgA in saliva and intestinal IgA and
IgG. While future SIV and Mtb challenge studies will be needed to determine the protective
efficacy of the Mtb-SIV / MVA-SIV vaccine, infants at high risk for oral HIV acquisition by
breast-feeding and TB infection could profoundly benefit from an effective combination vaccine.
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INTRODUCTION
The coverage of antiretroviral therapy (ART) for HIV-infected mothers has increased
substantially, yet many resource-poor countries are still afflicted by rising rates of HIV
mother-to-child-transmission (MTCT) (1). Infant ART coverage remains below 30% and
ART prophylaxis does not span the entire breast-feeding period (1). The majority of
pediatric HIV infections occur in sub-Saharan Africa where tuberculosis (TB) burden is also
high. HIV-infected infants face a higher risk of TB infection (2), and pregnant women co-
infected with HIV and TB are more likely to transmit both HIV and TB to their infants (2,
3). The Bacille Calmette-Guérin (BCG) vaccine for prevention of TB infection can
disseminate in HIV-infected infants with a case fatality of 75% (4). The high morbidity and
mortality associated with HIV and TB disease in infants underscore the urgent need for a
safe neonatal vaccine to prevent pediatric HIV and TB infections.

Currently, BCG is the only live attenuated vaccine approved for administration in neonates
at birth. BCG-inherent adjuvant properties likely enhance pediatric immune responses
because a single BCG dose induces robust cellular immunity comparable to responses in
adults. These compelling facts provided the rationale for the development of combination
HIV-TB vaccines. In fact, based on murine TB efficacy data with a recombinant auxothroph
BCG vaccine expressing an African consensus HIV-1 clade A Gag immunogen
(rBCG.HIVA) (5–8), phase I clinical trials have been initiated in African neonates. The
restriction of preclinical BCG-HIV immunogenicity and safety studies to murine models or
adult macaques (5, 7–12), however, is problematic. Substantial differences in i) infant and
adult immune function, ii) immune development between neonatal mice and human
newborns, and iii) inherent limitations of BCG-derived vaccines (importantly the safety risk
for immunocompromised individuals and lack of relevant protective TB antigens), argue for
the tandem pursuit of alternative regimens.

We hypothesized that a live attenuated human-adapted Mycobacterium tuberculosis (Mtb)
vaccine similar to BCG but with an improved safety profile could be safe and protective,
even in immunosuppressed infants. We chose human-adapted Mtb H37Rv in lieu of M.
bovis-derived BCG because Mtb contains known immunodominant epitopes for humans that
are absent in BCG (13, 14). Secondly, we intentionally deleted specific H37Rv genes
important for replication and immune evasion, whereas BCG was attenuated only through
serial passaging. Rhesus macaques are an ideal and validated animal model in which to
evaluate our combination vaccine due to their extremely sensitivity to Mtb and to simian
immunodeficiency virus (SIV) (16–18), and the shared immunological, developmental and
physiological similarities between human infants and neonatal macaques (19–21). The
translational potential of our vaccine for application in human infants at risk for HIV is
supported by our data demonstrating that neonatal SIV-infected macaques could be safely
vaccinated with the live attenuated auxotroph Mtb vaccine mc26435 (15).

Towards the long-term goal of developing a pediatric HIV-TB vaccine, the current study
tested whether this highly attenuated recombinant Mtb-SIV vaccine can efficiently prime
both Mtb and SIV-specific immunity. To establish proof-of concept, we deemed the
expression of only a single SIV antigen, SIV Gag, by mc26435 sufficient. SIV Gag contains
numerous immunogenic T cell epitopes, and several vaccine studies support the importance
of SIV Gag-specific T cell responses in the control of viral replication (22–24). Indeed, our
data demonstrate that (i) a single dose of mc26435 induced both Mtb- and SIV-specific
immune responses in infant macaques, (ii) vaccine-induced SIV immunity was enhanced
and broadened by heterologous MVA-SIV Gag, Pol and Env boosts, and (iii) the combined
oral Mtb-SIV Gag prime/ intramuscular MVA-SIV regimen effectively induced mucosal and
systemic immune responses.
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MATERIALS & METHODS
Animals

Infant rhesus macaques (Macaca mulatta), obtained from the SIV-negative and type D
retrovirus-free CNPRC colony (UC Davis, CA), were nursery-reared and housed according
to the “Guide for Care and Use of Laboratory Animals” and standards by the AAALAC.
Animal protocols were approved by the UC Davis Institutional Animal Care and Use
Committee. For all interventions, animals were immobilized by 10mg/kg body weight of
ketamine-HCl (Parke-Davis, Morris Plains, NC), injected intramuscularly (IM).

Vaccine strains and immunization regimens
The construction, attenuations and safety profiles of the Mtb H37Rv-derived vaccine strains
mc26435 and mc26020 have been described previously (15, 25–30). Briefly, in strain
mc26020, the panCD and lysA loci were deleted to generate a highly replication-attenuated
double-auxotroph strain. The double-auxotroph strain mc26435 (ΔpanCDΔleuCD) was
further modified by deleting the secA2 locus, and engineered to co-expresses a
mycobacterial codon-usage-optimized full length SIVmac239 Gag cassette. SIV Gag
expression from vaccine cultures was confirmed by immunoblot using a V5 antibody-HRP.

Infant macaques (n=8) were orally (PO) vaccinated with mc26435 at birth (3–7 days old =
week 0), IM boosted at 3 and 6 weeks with MVA-SIV expressing SIV Gag, Pol, and Env
(kindly provided Dr. B. Moss and Dr. P. Earl, NIAID, NIH, Bethesda, MD) (31–33), and
followed for 18 weeks (Group A). Age-matched control animals (n=3) were mock-
vaccinated with saline (Group B). To test how replication-attenuation affects Mtb-specific
immune responses, three infants were vaccinated both PO and intradermally (ID) with strain
mc26020 without boosting, and followed for 24 weeks (Group C).

Sample processing
Blood and saliva samples were collected prior to all interventions and throughout the study
period. Plasma was stored at −80° C for antibody measurement. At the time of euthanasia,
tonsils, lymph nodes (LN: axillary, mesenteric, retropharyngeal and submandibular), and
intestinal tissues (colon and ileum) were collected, and mononuclear cell suspensions
(MNC) were prepared as described (34). Saliva was collected using Weck-Cel sponges
(Beaver Visitec), immediately snap frozen, and later eluted as described At the terminal time
point, 2–3 grams of fresh stool were added to 0.5% BSA in 5ml sterile PBS supplemented
with 1/100 protease inhibitor cocktail (Sigma, P8340) and snap-frozen. Fecal extracts were
prepared by vortexing the thawed contents until complete homogenization, removing debris
by ultracentrifugation (4°C, 10 min), filtration (0.45μm), and concentration to 0.5ml using
an Amicon Ultra-4 50K centrifugal filter unit (Millipore).

SIV-specific antibodies and immunoglobulin (Ig) measurements
Anti-SIV IgG and IgA antibodies in plasma and fecal extracts, and salivary IgA were
measured by ELISA as described (34). Briefly, plates were coated overnight with 100ng
SIVmac251 Env rgp120 (Immune Technology, New York, NY) or 100μl 1/400 SIVmac239
lysate (Advanced Biotechnologies, Columbia, MD) per well in PBS. Antibodies against the
lysate are termed “Gag, Pol”-specific because Env protein is undetectable at the dilution
used. Total IgA or IgG in saliva or fecal extracts were measured by capture ELISA (15, 35)
using goat anti-monkey IgA (AlphaDiagnostics, San Antonio, TX) or goat anti-monkey IgG
(MP Biomedicals), respectively, to capture Ig. The following day, plates were washed,
blocked and loaded with diluted samples and a monkey serum standard containing known
amounts of Ig, SIV-specific IgA or SIV-specific IgG. After overnight incubation (4°C), the
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plates were developed with biotinylated goat anti-monkey IgA or anti-human IgG antibody
(SouthernBiotech, Birmingham, AL), and avidin-labeled peroxidase (Sigma). The SIV Env
or Gag, Pol-specific IgA or IgG antibody concentrations in each secretion were normalized
to total IgA or IgG concentration. The specific activity (ng IgA or IgG antibody per μg total
IgA or IgG) was deemed significant if it was greater than the mean + 3SD of negative
controls.

Antigen-specific T cell responses
1x106 blood or tissue MNC were treated with 0.5μg anti-CD28 and anti-CD49d (BD
Biosciences, San Jose, CA) in 1ml supplemented RPMI plus i) no stimulant, ii) 5ng/ml
PMA /500ng/ml Ionomycin (Sigma, St. Louis, MO) iii) 10 μg SIVmac239 p27 Gag peptide
pool, iv) 10 μg SIVmac239 Env peptide pool (both: AIDS Research and Reference Reagent
Program), v) 25 μg purified protein derivative (Tuberculin PPD, Statens Serum Institute,
Copenhagen, Denmark), vi) 10 μl BCG vaccine (105 CFU; Statens Serum Institute), vii) 50
μg Mtb H37Rv recombinant culture filtrate protein-10 reference standard (rCFP), viii) 50 μg
Mtb H37Rv whole strain lysate, or ix) 25 μg Antigen 85b reference standard (Ag85b; all
from BEI Resources Manassas, VA). Cells were cultured for 6 hrs (37°C, 5% CO2) with 1x
Brefeldin A (eBioscience, San Diego, CA) treatment after the first hour. Cells were stained
using a fixable live/dead discriminator (Invitrogen) and antibodies against rhesus macaque
CD3, CD4, IL-2, TNF-α, IFN-γ, (BD Biosciences, San Jose, CA) and IL-17A (eBioscience).
When cell counts permitted, unstimulated MNC suspensions were stained for markers of T
cell memory (CD45RA, CCR7) and mucosal homing (CD103). All panels included
fluorescence-minus-one controls. Paraformaldehyde-fixed samples were acquired on a
LSRII instrument and analyzed using FlowJo software with Boolean gating (TreeStar,
Ashland, OR). Antigen-specific T cell responses were corrected for background responses in
unstimulated controls and are reported as percentage of CD4+ or CD8+ T cells.

Statistical analysis
Data were analyzed using Prism (GraphPad, Inc., La Jolla, CA). Correlations between IgA
in various compartments (plasma, saliva, intestine) were analyzed using the Spearman rank
test to determine the effect of antibody transudation versus mucosal antibody production.
Frequencies of CD103 positive T cell populations were compared by applying a two-tailed
Student’s t-test with Welch’s correction. P values ≤0.05 were considered significant.

RESULTS
TB-specific immunity after a single prime with attenuated Mtb

We have previously shown that mc26435 induces plasma IgG antibodies to the
mycobacterial antigen PSTS-1, albeit at significantly lower levels than the more replication-
competent strain mc26020 (15). In contrast, independent of replication capacity, the
magnitude and persistence of Mtb-specific peripheral blood T cell responses were similar in
mc26020 and mc26435 vaccinated infant macaques (Figure 1A/B, Table 1). Mtb-specific T
cell responses consisted primarily of cells producing IL-2, IFN-γ, TNF-α or IL-17 (Figure
1C, Table 1), but dual and triple polyfunctional T cells were detected at multiple time points
(Figure 1D). Although only PPD and Ag85b-specific responses were consistently evaluated
due to limited infant blood volumes, mc26435 vaccinated animals also developed rCFP10-
specific CD4+ and CD8+ T cell responses, indicating that mc26435 elicited responses to
human immunodominant epitopes that are absent in BCG (Figure 1D). Broad polyfunctional
Mtb-specific T cell responses were also elicited in multiple tissues (Figure 1E). Consistent
with the oral route of immunization, Mtb-specific T cell responses were induced in tonsils
and LN draining the oropharynx (Table 1), with the highest Mtb-specific T cell responses
developing in ileum and colon (Table 1).
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SIV-specific T cell immune responses in peripheral blood and tissues
A single oral immunization with mc26435 was sufficient to induce SIV Gag-specific T cell
responses by 3 weeks of age (Figure 2A), prior to MVA-SIV boosting. SIV Gag-specific T
cell frequencies did not increase after MVA-SIV boosts (Figure 2B), but dual and triple
cytokine-producing T cells increased in frequency and diversity (Figure 2C), suggesting
improved quality of SIV Gag responses. In addition, SIV–specific T cell immunity increased
in breadth through induction of Env-specific T cells. SIV Gag and SIV Env-specific T cell
responses were observed at multiple time points indicative of induction of SIV-specific T
cell memory in blood and tissues (Table 2).

Consistent with oral priming, frequencies of CD103 positive central memory
(CD3+CD4+CD45RA−CCR7+, TCM) and effector/effector memory
(CD3+CD4+CD45RA+/−CCR7−, TE/EM) CD4+ T cell populations were higher in multiple
tissues of vaccinated animals compared to mock animals, including the ileum (CD4+TE/EM:
p=0.0326), colon (CD4+TE/EM: p=0.0032), and the retropharyngeal LN (CD4+TCM:
p=0.0239) draining the oropharynx (Figure 3A). Similarly, a higher percentage of ileal
CD8+ TCM expressed CD103 compared to mock animals (p=0.0028). The biological
meaning of decreased CD103+CD8+TE/EM cells in axillary LN is questionable because
CD103 is a mucosal homing marker, and CD103+CD8+TE/EM frequencies were similar in
all other tissues (Figure 3A). Due to limited cell numbers, memory and homing markers
were only evaluated on total CD4+ and CD8+ T cell populations. However, tissues with
higher CD103+ T cell frequencies generally also had higher numbers of SIV-specific T cells.
Thus, SIV-specific T cells were most pronounced in intestinal tissues (Figure 3B), but also
detectable in at least one other tissue of each vaccinated animal (Figure 3C). Responses were
directed to SIV Gag and SIV Env and consisted of single and polyfunctional T cells with
CD8+T cells being induced at higher frequencies and in more tissues than SIV-specific
CD4+T cells (Figure 3C).

Induction of systemic and mucosal SIV-specific antibodies
In contrast to SIV-specific T cell responses, anti-SIV Gag, Pol plasma IgG antibodies were
rarely detected prior to boosting, but ultimately developed in all animals after the MVA-SIV
boosts. Anti-SIV Gag, Pol- and anti-SIV Env-specific plasma IgG responses peaked at week
8 and were maintained at high levels (Figure 4A/B). Plasma SIV Env specific IgA
antibodies also peaked by 8 weeks, but subsequently declined, while SIV Gag-specific IgA
antibodies showed a more variable pattern (Figure 4A/B).

Considering the potential importance of mucosal antibodies in preventing MTCT of HIV by
breast-feeding, we measured anti-SIV Gag, Pol and anti-SIV Env-specific IgA in mucosal
compartments of vaccinated animals. Even though SIV Gag was a component of both the
mc26435 prime and the MVA-SIV boosts, anti-SIV Gag, Pol-specific IgA was present in
saliva of only 1 of 8 vaccinated animals, whereas anti-SIV Env-specific salivary IgA
antibodies developed in 4 vaccinees (Figure 4C). At euthanasia, we detected anti-SIV Env-
or anti-SIV Gag, Pol-specific IgA and IgG intestinal antibodies in 4 of 8 and 6 of 8 animals,
respectively. One of 8 animals (#41690) failed to develop SIV-specific intestinal IgG or IgA
antibodies (Figure 4D), despite high plasma antibodies to SIV Env. In fact, plasma anti-Env
IgA levels did not correlate with those in stool (p = 0.9768; R = −0.0238) or in saliva (p =
0.3333; R= −1.000), suggesting that anti-Env-specific IgA in the secretions was derived
from local mucosal synthesis rather than passive serum transudation (data not shown).
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DISCUSSION
Protective immunity against TB is thought to be primarily mediated by T cells (36–38),
while prevention of HIV infection requires broadly-neutralizing antibodies (39) and T cell
immunity to control early viral replication should HIV infection occur (24, 40). Towards the
long-term goal of developing a pediatric HIV-TB vaccine, the main study objective was to
provide proof of concept that a highly attenuated Mtb strain expressing SIV antigens could
induce both SIV and Mtb–specific immune responses in infant macaques. To prevent TB
and HIV infections, vaccine-induced memory responses need to be elicited and persist at
sites of pathogen entry and replication, i.e. the lung TB, and the oropharynx and intestinal
tract, respectively. Thus, a secondary goal was to prove that the oral mc26435 prime/ IM
MVA-SIV boost regimen could effectively induce persistent mucosal and systemic dual
immune responses.

Indeed, our results show that a single oral immunization with mc26435 is sufficient to
induce broad and persistent Mtb and SIV-specific T cell responses in blood and tissues. Mtb-
specific T cell responses were elicited to multiple TB antigens, including CFP, a known
immunodominant antigen in humans that is absent in BCG (14). Although we did not
include a BCG control group in this first study, evidence from mouse studies shows that
strain mc26435 is as immunogenic as BCG (manuscript in preparation, Ranganathan et al.).
Furthermore, PPD-specific CD4+ and CD8+T cell frequencies in infant macaques after a
single oral mc26435 immunization are comparable to PPD-specific ELISPOT responses
(3,000–5000 SPU/106 PBMC or 0.3–0.5% PBMC) elicited by an auxotrophic recombinant
BCG-SIV vaccine and by standard BCG in adult macaques (9). Some mc26435-vaccinated
animals had predominantly IL-17A-producing Mtb-specific T cells in tissues. The role of
IL-17 in TB is still controversial, but some studies suggest a protective role of Th17 cells in
the lung (38, 41–44). The current study lacked the analysis of Mtb-specific lung responses,
but future studies will thoroughly assess the quantity, quality and breadth of the lung
responses to determine the potential of mc26435 vaccination to protect against TB infection.

SIV-specific tissue T cell responses were measured in sites draining the oropharynx, in the
intestinal tract as an important site for vaccine-induced SIV immunity to prevent CD4+ T
cell depletion, and the axillary LN as representative distal site following oral priming. SIV-
specific T cell responses were most consistently induced in intestinal tissues and the tonsils.
Interestingly, intestinal tissues and lymph nodes draining the oral cavity also contained
significantly higher frequencies of CD103+ memory CD4+ and CD8+ T cells compared to
mock-immunized infants indicative of mucosal homing. Support for the successful induction
of mucosal immunity was further provided by the presence of SIV-specific IgG and IgA
antibodies in intestine and mucosal IgA in saliva. Because the SIV Env immunogen was
only present in the MVA-SIV boosts and because the intestinal antibodies had specificity for
SIV Env and SIV Gag, Pol antigens, likely the mucosal (PO) prime and systemic (IM)
boosts contributed to the development of the intestinal antibody response. The role of IgA in
protection against oral SIV infection remains to be demonstrated conclusively. In the HIV
Thai vaccine trial, systemic HIV Env-specific IgA antibodies correlated with an increased
risk of HIV acquisition (45). However, mucosally-induced SIV Env-induced antibodies
persisting at mucosal sites might be important for protection against oral HIV infection in
infants. Passive immunization studies demonstrated that systemic administration of antiviral
IgG, which transudates into the saliva, could confer protection against oral infection by high
in vitro neutralization and/or ADCVI activity (46–48). Experiments assessing different
vaccine-induced antibody functions will be essential in future studies (49). Oral SIV
challenge studies will be needed to determine the relative contribution of SIV-specific T cell
responses, SIV-specific salivary and intestinal IgA, and intestinal IgG responses in
preventing or controlling infection.
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In conclusion, The results of the current study, in combination with our previous safety
assessment of mc26435 in infant macaques, provide the basis for future development of
auxotrophic Mtb strains candidates as feasible and safe platform for a pediatric combination
HIV-TB vaccine. Further optimization of this approach will include the testing a cocktail of
attenuated Mtb strains expressing SIV Env, Gag and Pol and boosting Mtb-specific
responses. While an attenuated Mtb prime/ heterologous viral boost vaccine strategy may
not be sufficient to render sterilizing immunity, this approach may reduce viral transmission
rates or viral loads in infants that do become infected. Future SIV and Mtb challenge studies
will evaluate the efficacy of this or other combination vaccines, but if successful, they could
confer protection against both HIV and TB during the early period of life, and potentially
through adolescence and into adulthood.
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1. Auxotroph Mtb is a safe platform for a combination HIV-TB vaccine at birth.

2. An Mtb-SIV vaccine induces SIV and TB immune responses in newborn
macaques.

3. The novel pediatric SIV-TB vaccine induces systemic and mucosal immune
responses.

4. Anti-HIV salivary IgA, intestinal IgG and IgA may prevent oral HIV
acquisition.
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Figure 1. Mtb-specific T cell responses in PBMC
Panel A and Panel B: CD4+ and CD8+ T cytokine responses after in vitro BCG or PPD
stimulation of longitudinally collected blood samples from a representative animal
vaccinated with strain mc26020 (Panel B) or with strain mc26435 (Panel C), respectively.
Note, only single-functional responses are shown. Panel C: Polyfunctional T cell responses
in a representative animal in longitudinally collected blood samples. Panel D: T cell
responses are induced against a number of Mtb-specific antigens (PBMC data from a
representative animal). Panel E: The percentage of animals with vaccine-induced single and
polyfunctional PPD-specific T cell responses in tissues. T cells were isolated from selected
tissues (tonsil, submandibular LN, ileum, colon and axillary LN) from all animals in Group
B. Using a gray scale gradient, the percentage of vaccinated animals that have PPD-specific
cytokine producing T cells in all 5 tissues (indicated as ‘5’) is indicated in black, whereas
animals lacking PPD-specific responses in all 5 tissues (indicated as ‘0’) are shown in white.
Data are stratified by CD4+ and CD8* T cells. CFP, Mtb culture filtrate protein; lysate, Mtb
whole cell lysate; BCG, bacille Calmette-Guérin vaccine strain; Ag85b, antigen 85b.
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Figure 2. SIV-specific peripheral blood T cell responses
Panel A: Cytokine production following SIV Gag stimulation in peripheral T cells at week 3
for all mc26435-primed animals in Group B. Panel B: CD4+ (left panel) and CD8+ (right
panel) T cell cytokine production in response to in vitro SIV Gag stimulation in
longitudinally collected blood samples of a representative animal after vaccination. Panel C:
SIV-specific single, dual and triple positive cytokine responses in peripheral blood CD4+

(left panel) and CD8+ (right panel) T cells at weeks 3 (post-prime, pre-boost), 8 (post-
boosts) and 16. Distinct cytokines or combinations thereof are indicated by different colors
in the graph legend.
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Figure 3. Homing and SIV-specific T cell responses in tissues
Panel A: Animals primed with strain mc26435 and boosted with MVA-SIV (gray bars) have
higher percentages of memory and effector T cells expressing CD103 compared to
unvaccinated animals (white bars). Memory and effector/effector memory cells were defined
within the CD4+ or CD8+ T cell populations as CD45RA−CCR7− (TCM) or
CD45RA+/−CCR7− (TE/EM), respectively, before measuring CD103 expression. Statistical
significance using a one-tailed t-test was calculated using log-transformed values. Shown
are mean values ± SEM. Tissues are abbreviated as follows: tonsil (TON), submandibular
lymph node (SUB), retropharyngeal lymph node (RET), ileum (ILE), colon (CO),
mesenteric lymph node (MES), axillary lymph node (AX), and PBMC. Panel B: CD4+ (left
panel) and CD8+ (right panel) T cell single cytokine production in response to in vitro SIV
Gag stimulation of tissue cell populations. Each bar represents the sum of all single cytokine
responses in the relevant tissue (see legend for cytokine color coding). Shown are data for
all animals that were vaccinated orally with strain mc26435 and boosted with MVA-SIV.
The three bars for each animal represent from left to right: colon (C), ileum (I), and tonsil
(T). Panel C: The percentage of animals with vaccine-induced single and polyfunctional T
cell responses to SIV Gag (left panel) or SIV Env (right panel). T cells were isolated from
tonsil, submandibular LN, retropharyngeal LN, ileum, colon, mesenteric LN, and axillary
LN of all vaccinated animals. Data are stratified for single and dual cytokine producing
CD4+ and CD8* T cells. Using a gray scale gradient, animals with T cells from all seven
tissues producing no cytokine(s) in response to SIV are indicated by ‘0’ (white) and animals
with all seven tissues producing cytokine(s) are shown as ‘7’ (black).
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Figure 4. SIV-specific plasma and mucosal IgG and IgA antibodies
Panel A and Panel B: Anti-SIV Gag, Pol or anti-SIV Env IgG (left graphs) and IgA (right
graphs) antibody development in plasma following oral priming with strain mc26435 plus
MVA-SIV boosts. Note that IgG values are represented on a log scale and IgA values are
plotted linearly. Panel C: SIV Gag, Pol (left panel) and Env (right panel) specific activity for
IgA in saliva following priming with strain mc26435 plus MVA-SIV boosts. Panel D: The
specific activity for intestinally-secreted anti-SIV Gag, Pol (black) and anti-SIV Env (gray)
IgA (left) and IgG (right) antibodies following priming with strain mc26435 plus MVA-SIV
boosts. Intestinal antibodies were only measured at the time of euthanasia. One (*) or two
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stars (**) above bars indicate that antibody measurements for anti-SIV Env or anti-SIV Gag,
Pol, respectively, exceeded mean background levels ± 3SD.
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