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Abstract
With new technologies, multiple types of genomic data are commonly collected on a single set of
samples. However, standard analysis methods concentrate on a single data type at a time and
ignore the relationships between genes, proteins, and biochemical reactions that give rise to
complex phenotypes. In this paper, we propose a novel integrative model to incorporate multiple
types of genomic data into an association analysis with a complex phenotype. The method
combines path analysis and stochastic search variable selection into a Bayesian hierarchical model
that simultaneously identifies both direct and indirect genomic effects on the phenotype. Results
from a simulation study and application of the Bayesian model to a pharmacogenomic study of the
drug gemcitabine demonstrate greater sensitivity to detect genomic effects in some simulation
scenarios, when compared to the standard single data type analysis. Further research is required to
extend and modify this integrative modeling framework to increase computational efficiency to
best capitalize on the wealth of information available across multiple genomic data types.
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INTRODUCTION
With the wealth of data being produced by new technologies, it is becoming common to
collect multiple types of genomic data on a set of samples. Currently, standard analysis
methods concentrate on a single data type, or experiment, at a time. Few statistical methods
have been developed to maximize the use of the enormous amount of genomic data to
unravel the etiology of complex disease and drug-related phenotypes. Joint analysis of
multiple types of genomic data would likely provide novel insights, especially when the
etiology of the disease or phenotype is complex [Reif et al., 2004].

A few methods have been proposed to integrate multiple forms of genomic data, sometimes
referred to as “integrative genomics” or “genomic convergence” [Hauser et al., 2003; Schadt
et al., 2005]. Other approaches involve a multistep procedure to identify potential key
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drivers of complex traits by integrating genetic variation and mRNA gene expression data
[Li et al., 2009; Niu et al., 2010]. Schadt et al. [2005] describe a multistep method that uses
conditional correlation measures and a likelihood-based causality model selection to model
the relationship between DNA variation, mRNA expression, and clinical traits. Another type
of integrative analysis involves approaches that complete a comprehensive analysis, as
opposed to a multistep procedure. However, these approaches have mostly been described in
the context of a small number of genomic variables, such as those contained within a
pathway. Nock et al. [2007] proposed an approach based on structural equation modeling
(SEM), whereas Conti et al. [2003] used a Bayesian approach to model the complex
relationship within a small, biological pathway of interest.

Similar to these comprehensive approaches, we propose a modeling framework that
combines Bayesian pathway analysis [Congdon, 2007] and Bayesian variable selection
using stochastic search variable selection (SSVS) [Fridley, 2009; George and McCulloch,
1993] into a novel modeling framework to identify both direct and indirect genomic effects
on a complex phenotype. The novel Bayesian integrative genomic model is illustrated using
data from mRNA expression and single nucleotide polymorphisms (SNPs) within the
gemcitabine drug pathway from a pharmacogenomic study of the drug gemcitabine. We also
present simulation studies to assess the ability of the proposed model to detect simulated
effects. Finally, we compare results from the Bayesian integrative genomic model to results
from the standard “one-at-a-time” analysis using both the pharmacogenomic data and
simulated data.

METHODS AND MATERIALS
PHARMACOGENOMIC STUDY OF GEMCITABINE

To understand the pharmacogenomics of gemcitabine drug therapy, the Coriell Human
Variation Panel lymphoblastoid cell lines have been utilized extensively [Li et al., 2009; Niu
et al., 2010]. EBV-transformed B lymphoblastoid cells were derived from approximately 60
Caucasian American (CA), 60 African American (AA), and 60 Han Chinese-American
(HCA) subjects. Gemcitabine cytotoxicity data for the cell lines were collected at drug
dosages 1,000, 100, 10, 1, 0.1, 0.01, 0.001, and 0.0001 uM. The quantitative phenotype IC50
(effective dose that kills 50% of the cells) was estimated using a four parameter logistic
model [Gallant, 1987], and was used as the drug-response phenotype. A large value of IC50
indicates that a cell line is resistant to the drug, whereas a small value indicates a cell line is
sensitive to the drug.

Genotyping of SNPs on the Illumina's Infinium Human-Hap 550K and 510S BeadChips for
the cell lines was completed at the Genotyping Shared Resources at the Mayo Clinic in
Rochester, Minnesota. Quality control was completed by excluding SNPs with Hardy-
Weinberg Equilibrium (HWE) P-value < 0.001 (minimum P-value between exact test for
HWE by race [Guo and Thompson, 1992; Wigginton et al., 2005] and stratified test for
HWE [Schaid et al., 2006]), minor allele frequency <5%, or call rate <95% from further
analyses. Missing genotypes within the gemcitabine pathway were imputed prior to analyses
using the program fastPHASE [Scheet and Stephens, 2006]. This resulted in 15 genes within
the gemcitabine pathway containing 265 SNPs.

Whole genome expression data for the cell lines was obtained with Affymetrix U133 Plus
2.0 expression array chip, which contains over 54,000 probe sets. The mRNA expression
array data were normalized on the log2 scale using GCRMA methodologies [Bolstad et al.,
2003; Irizarry et al., 2003; Wu et al., 2004]. This data contained 20 probe sets for genes
within the gemcitabine pathway. The goal of this study is to complete a comprehensive
integrative analysis of both genetic variation (in the form of SNPs) and mRNA gene
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expression variation to determine their collective impact on gemcitabine response as
measured by the IC50.

STANDARD ANALYSIS APPROACH
The standard analysis approach for the analysis of multiple types of genomic data is to
complete, for each data type, the univariate association of the genomic variable with the
phenotype. Following the analysis of each genomic data type with the phenotype, to
understand these association results, expression quantitative trait loci (eQTLs) analysis is
then completed to determine the association of each SNP with the level of gene expression.
P-values for each effect type are adjusted according to Bonferroni's multiple testing
procedure. Throughout this paper, we will refer to this analysis approach as the standard all-
pairwise correlation analysis, denoted as APCA.

BAYESIAN INTEGRATIVE MODEL
To model the joint relationship of mRNA gene expression and SNP genotypes on a
quantitative phenotype (e.g. drug cytotoxicity), we propose the following Bayesian
integrative model. Let Yi be the phenotypic value for subject i (i = 1, …, N), and let SNPi =
(SNPi1, SNPi2, …, SNPiK)T represent the SNP genotypes of subject i where SNPik is the
genotype (under additive coding in terms of the number of minor alleles) for SNP k (k = 1,
…, K). Next, let GEi = (GEi1, …, GEiJ)T represent a vector of gene expression values for
subject i, where GEij is the standardized mRNA expression value for gene j (j = 1, …, J) for
subject i. The first step in specifying the Bayesian integrative model is to specify the direct
effects of the SNPs and mRNA expression on the quantitative phenotype, where the
phenotype follows a normal distribution whose mean is a function of both the SNP

genotypes and the mRNA expression levels. Let  for i = 1, …, N, where μyi =
b0 + bTSNPi + cTGEi , b = (b1, …, bK)T represents a vector of K direct SNP effects with bk
representing the direct effect of SNP k on the phenotype, c = (c1, …, cJ )T represents a
vector of J mRNA expression effects with cj representing the direct effect of the mRNA
expression value for gene j on the phenotype.

Next, we model the effect of SNPs on the phenotype via the mRNA expression levels. In
assessing the association between the SNPs and the mRNA expression levels, there are two
possibilities (1) assessment of only cis-acting SNPs (i.e. SNPs within the 5′ r 3′ genomic
region of a gene); or (2) to assess both cis- and trans-acting SNPs (i.e. SNPs not near or
within the 5′ or 3′ genomic region of the gene). Incorporating only cis-relationships in a
model reduces the model complexity, which eases model evaluation; however, this limits the
types of relationships that can be discovered and assessed. For models examining both cis-
and trans-relationships between SNPs and mRNA expression (i.e. all possible SNP-mRNA

pairs), for every subject i 1, …, N and gene j = 1, …, J, let  where

 and aj = (aj1, …,ajK)T where ajkaj1 represents the effect of SNP k on
mRNA expression value for gene j.

In contrast, for models examining only cis-acting SNPs, let SNPij be the subset of SNPi
containing SNPs within gene j and Nj be the number of SNPs within gene j (i.e. length of the

vector SNPij) with  where  and aj = (aj1, …,
ajNj)

T, where ajk represents the cis-acting effect of SNP k on the mRNA expression for gene
j. The effect of SNPs on mRNA expression modeled in this fashion could be indirect effects
of SNPs on the phenotype acting through mRNA expression, or less desirable, eQTLs not
related to the phenotype. For the remainder of this paper, we will not make the distinction
between SNP effects on mRNA expression that are associated or not associated with the
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phenotype. The effects of SNPs and mRNA on the phenotype are referred to as “direct”
effects.

PRIOR DISTRIBUTIONS FOR THE INTEGRATIVE MODEL
Bayesian approaches to model selection and shrinkage are useful for regression-based
analysis of genomic data since the uncertainty in model choice can be incorporated into the
inferences for genomic effects. Additionally, Markov chain Monte Carlo (MCMC) and
stochastic search methods efficiently interrogate the model space without fitting all possible
models. To model SNP effects on mRNA expression and a quantitative phenotype, we use
SSVS for Bayesian model averaging with “shrinkage” of SNP effects toward zero [Conti et
al., 2003; Conti and Gauderman, 2004; Fridley, 2009; George and McCulloch, 1993; Kim et
al., 2004]. Under this SSVS prior model for the SNP effects, the prior distribution of each
SNP coefficient is a mixture of two normal distributions that represent two cases: the SNP is
selected for inclusion in the model or the SNP is not selected for inclusion in the model.
Coefficients for SNPs included in the model have a normal prior distribution centered at
zero with a large variance, while coefficients for SNPs not included in the model have a
normal prior distribution centered at zero but with a small variance (and thus will be
estimated close to zero).

For modeling the direct SNP effects (bk `s), let φ = (φ1, φ2, …,φK) be a vector of latent
indicator variables for every SNP k = 1, …, K, where φk = 1 if SNPk is included in the
modeling of the phenotype or φk = 0 if SNPk is omitted from modeling the phenotype. Next,
the latent indicators are modeled as φk|pb ~ Bernoulli (pb) with pb ~ Beta(α1, β1). To
determine appropriate prior values for the parameters α1 and β1, we followed an approach
similar to one outlined by Chen et al. [2004]. We assumed a priori that only 10% of the K
SNPs will be related to the phenotype, which suggests the mode of the prior distribution is
0.1. We further assumed that the prior mean will be 0.12, 20% larger than the prior mode,
resulting in values of α1 = 4.8 and β1 = 35.2, where α1 = (mean − 2 × mode × mean)/(mean
− mode) and β1 = [(1 − 2 × mode)(1 − mean)]/(mean − mode). Other possible priors for pb
include pb ~ Uniform(0,1) or fixing pb to a constant (e.g. pb = 0.10). Similarly, for indirect
SNP effects on the phenotype via the mRNA expression levels (ajk `s), let γj = (γj1, γj2, …,
γjK) be a vector of latent indicator variables, where γjk = 1 if SNP K is included in the
modeling of the mRNA expression level for gene j or γjk = 0 if SNP K is omitted from the
modeling of mRNA gene expression level for each gene j = 1, …, J.

Using this prior SSVS model for the=SNP effects, the conditional distributions for the direct
SNP effects (bk `s) and the indirect SNP effects on the phenotype via mRNA gene
expression (ajk `s) given their respective latent indicators are then given by

for k = 1, …, K, where z and w are constants specified such that w2 is small and z2 w2 is
large. For our analyses, we chose to shrink coefficient estimates less than δ = 0.005 to zero
and chose z = 50. This results in the value of w equal to 0.00179, using the formula
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 [Gilks et al., 1996]. The reader is referred to George and McCulloch
[1993] and Wakefield and Bennett [1996] for further insight and guidance on choice of z and
w.

For the remaining parameters in the Bayesian integrative genomic model, diffuse proper
prior distributions were placed on the model parameters. In particular, b0 ~ N(0, 1,000),

, , a10, …, aJ0 ~ N(0, 1,000), c ~
MVN(μGE, V), μGE ~ MVN(μ, Vμ) and V ~ Wishart(R, J) with μ = (0, …, 0)T and R = 0.1*I,
where J is the number of gene expression variables in the model and I is the identity matrix.

SIMULATION STUDY
To assess the ability of the Bayesian integrative model to detect both direct and indirect
effects, a simulation study was completed, with the simulation scenarios depicted in Figure
1. The first simulation scenario, Scenario A (Fig. 1A), includes two SNP effects on the
phenotype and on the gene expression of the corresponding gene with the gene expression of
these genes also associated with the phenotype. Scenario B (Fig. 1B) has two cis-SNP
effects on gene expression with the gene expression associated with the phenotype. The
third simulation scenario, Scenario C (Fig. 1C), consists of a SNP with both a direct-SNP
effect on the phenotype and a cis-acting effect on gene expression, with the gene expression
of this gene also associated with the phenotype. In addition to these effects, the gene
expression of a second gene is also associated with the phenotype. The last simulation
scenario is the null scenario (Scenario D) with no genomic effects on the phenotype (Fig.
1D).

Genotypic data for SNPs within five genes were simulated based on the genotypic data
collected on 60 Caucasian cell lines from the gemcitabine pharmacogenomic study. SNPs
were tagged using Haploview (http://www.broad.mit.edu/mpg/haploview/) [Barrett et al.,
2005] using a threshold for r2 of 0.64 and minor allele frequency of 0.05. This resulted in
seven SNPs within Gene 1, 15 SNPs within Gene 2, five SNPs within Gene 3, eight SNPs
within Gene 4, and four SNPs within Gene 5, with a total of 39 SNPs in the five genes.
Haplotype frequencies were estimated using the haplo.em function within the haplo.stats R
library (http://cran.r-project.org/web/packages/haplo.stats/index.html). For each cell line, the
haplotype with the greatest estimated frequency was used as the “true” haplotype, creating
an underlying population of 120 haplotypes. Six hundred haplotypes were simulated using
the hapsim library in R (http://cran.r-project.org/web/packages/hapsim/index.html) based on
this underlying haplotype population. These simulated haplotypes were then assigned to 300
simulated individuals.

Conditioned on the simulated genotypic data, mRNA expression data for five genes were

simulated for each individual according to . Finally, a
quantitative phenotype for each individual was simulated based on both SNP and mRNA

values according to . For the simulation scenarios, non-
zero coefficients for gene expression effects on the phenotype (c) were chosen to be 0.4,
whereas non-zero coefficients for SNP direct (b) and indirect (aj) effects were set to 0.88
and 0.3, respectively. For the simulations, Gene 3 and Gene 5 were considered to have
mRNA expression effects on the phenotype; SNP 2 in Gene 3 and SNP 4 in Gene 5 were
consider to have genetic effects on the phenotype, with these two SNPs also having cis-
acting effects on Gene 3 and Gene 5, respectively. The various scenarios are also depicted in
Figure 1 and Table I. For each simulation, the mRNA expression data were standardized for
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each gene prior to analysis. Data for each scenario were simulated with n = 300 subjects and
50 replicates.

Following the simulation of the synthetic datasets, each simulated data set was analyzed
using both the standard APCA and the Bayesian integrative model assessing only cis-
relationships. Each simulated data set included simulated mRNA expression data for five
genes and genotypes for 39 SNPs within the five genes. For the APCA, significant effects
were identified using a two-sided, Bonferroni-corrected P-value to account for multiple
testing. For the Bayesian integrative model, SNP effects were considered significant (or
selected) using the median model decision rule [Barbieri and Berger, 2004; Swartz et al.,
2008] (i.e. P(γjk| data) ≥ 0.50 for indirect SNP effects or P(φk| data) ≥ 0.50 for direct SNP)
and significant gene expression effects were identified according to their 95% posterior
credible interval (i.e. if posterior credible interval does not contain zero). In addition to using
the median model decision rule to determine if SNP effects were significant, we also
considered significance of the SNP effects if the P(γjk | data) ≥ 0.25 or 0.35 and P(φk| data) ≥
0.10, 0.15, or 0.25. While power and type I error rates are not clearly defined in the
Bayesian framework, each coefficient was either declared to be significant or not. Power for
the Bayesian integrative model was defined as the proportion of truly non-zero coefficients
that were declared significant, while the type I error rates were defined as the proportion of
truly zero coefficients declared significant.

RESULTS
SIMULATION STUDY

The type I error rate estimates and power estimates for Bayesian integrative model and
APCA are presented in Tables II and III, respectively. Due to the difference in significance
testing and philosophy of these two approaches, it is not possible to complete a fair “head-
to-head” comparison of the approaches. For example, in the Bayesian analysis, the choice of
prior can impact the error rates, along with there being no concept of adjustment for multiple
testing. Therefore, we present the results for these two approaches in separate tables, noting
the difference in interpretation of the results from these two contrasting approaches.

For the Bayesian integrative model, the type I error rates ranged from 0.000 to 0.068 for the
effects determined significant based on 95% credible intervals, while the type I error rates
for the APCA approach had error rates that ranged from 0.000 to 0.002. The more
conservative error rates for APCA are attributed to the Bonferroni adjustment for multiple
testing, where effects were determined to be significant if the Bonferroni adjusted P-value
was less than 0.05. However, as depicted in Table II, the choice of significance threshold for
the SNP effects modeled with the SSVS mixture prior (e.g. P(γ| data) > 0.25, 0.35, or 0.50)
greatly impacts the error rates. As the threshold in the posterior probability of the indicator
given the data is lower, more variables are selected resulting in an increase in the type I error
rate. In addition, the posterior distribution of the indicator variables is tied to the choice of
normal priors used in the SSVS (e.g. choice of z and w) and the prior used for modeling pb
and pb (e.g. pb~Unif(0,1) or pb ~ Beta(α1, β1)). If more “stringent” priors for the SNP effects
were used, a larger amount of “shrinkage” would be completed resulting in fewer variables
selected for the model.

Power estimates for the Bayesian integrative model, broken down for the various parameters
and simulation scenarios are presented in Table II. Power for the mRNA effects on the
phenotype (c3 and c5) ranged from 0.50 to 0.80. We have chosen to focus the rest of our
discussion of power on the SNP effects, where significance is determined by P(γ| data) >
0.25 or P(φ| data) > 0.15, as these thresholds produced reasonable type I error rates. For the
direct effects of SNPs on the phenotype, the power ranged from 0.56 to 0.70, while for the
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indirect SNP effects via mRNA, the power ranged from 0.68 to 0.96. The power for the
standard APCA approach is presented in Table III. In contrast, power (controlling for type I
error rate after adjustment for multiple testing at the 0.05 level) for the standard APCA
approach was considerably lower, mostly due to the adjustment for multiple testing. The
highest power was for detecting mRNA expression effects on the phenotype, as only five
genes were tested (power ranged from 0.14 to 0.30). The power of detection for either SNP-
phenotype association or cis-acting SNP-mRNA associations ranged from 0.00 to 0.12, with
multiple testing adjustments for 39 SNP association tests. In an attempt to make a “fair”
comparison of power for the APCA method and the Bayesian integrative model for
detecting SNP effects (direct or indirect), the power must be observed where the type I error
rates are similar. In this case, the significance for SNP effects would be determined using
P(γ| data) > 0.35 and P(φ| data) > 0.25. Using this condition, both methods had low power to
detect SNP-mRNA associations, along with the effect of SNP 4 in gene 5 on the phenotype
(Bayesian power = 0.06, APCA power = 0.12 for Scenario A). However, for Scenario A,
power to detect a SNP effect for SNP 2 in gene 3 was 0.60 for the Bayesian analysis and
0.10 for APCA.

PHARMACOGENOMIC STUDY OF GEMCITABINE
Next, we applied the Bayesian integrative model and the standard APCA approach to the
gemcitabine study using the 171 cell lines that had both SNPs (265 SNPs in 15 genes) and
mRNA expression variables (20 probe sets) measured within the gemcitabine pathway. All
analyses were adjusted for race and gender, with the phenotype gemcitabine IC50
transformed to the log scale. To enable the assessment of both cis- and trans-acting SNPs on
mRNA gene expression in the Bayesian integrative model, we further reduced the dimension
of the genotype data and the complexity of the model space as follows. We partitioned SNPs
within a gene into bins based on their correlation using a hierarchical clustering method
[Rinaldo et al., 2005] with a liberal threshold of 0.05, followed by principal components
analysis [Gauderman et al., 2007; Mardia et al., 1979] for SNPs within each bin. The first
principal component for each bin of SNPs was used in the model as the “genotypic”
variable, as opposed to the individual SNP genotypes. This dimension reduction approach
resulted in 38 genotypic factors used in both the Bayesian integrative model and the APCA.

Significant associations of the phenotype IC50 with the genetic factors and mRNA
expressions are presented in Table IV for both the Bayesian integrative model and the
APCA approaches. Based on results from the simulation study, we chose to determine
significant SNP effects if P(γjk| data) ≥ 0.25 for indirect SNP effects and P(φk| data) ≥ 0.15
for direct SNP. After using the Bonferroni adjustment to account for multiple testing within
each effect type, the APCA identified three direct gene expression effects, zero direct SNP
effects, and three indirect SNP effects. The Bayesian integrative model identified two direct
gene expression effects (both were among the three identified by the APCA), zero direct
SNP effects, and five indirect SNP effects (including the three identified by the APCA).

Table IV also includes results from a sensitivity analysis for the prior distribution of the
latent variable inclusion probabilities. Alternative priors examined included pa and
pb~Uniform(0,1) and pa = pb = 0.2. The analysis in which pa and pb~Uniform(0,1) was most
conservative (posterior inclusion probabilities indirect SNP effects range from 0.13 to 1.00),
while the analysis where pa = pb = 0.2 was the most liberal (posterior inclusion probabilities
for indirect SNP effects range from 0.51 to 1.00). The top results (ranked by posterior
probability) were similar across the three prior distributions used to model pa and pb, with
the most significant effect for expression of NT5C3L detected by all models (P = 1.42e–18,
posterior probability of selection of 1.00 for all three prior models).
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DISCUSSION
Phenotypes related to an individual's response to a drug are likely the products of complex
networks involving genetic variation, mRNA, proteins, etc. along with external
environmental factors. Advances in technology are now allowing the acquisition of these
multiple types of genomic data from a single set of samples. When combined with statistical
methods appropriate for analyzing such complex networks, this data may generate
substantial new insights into the genomic basis of complex traits and phenotypes, such as
response to cancer therapeutics. In this paper, we proposed a novel Bayesian integrative
model that combines ideas of path analysis with SSVS for a comprehensive modeling
strategy. Results from applying this model to the pharmacogenomic study of the drug
gemcitabine and simulation studies show the Bayesian integrative model is able to capture
the relationship between SNP variation, mRNA expression variation, and the complex
phenotype, if one exists.

In the specification of the prior model, we chose to use SSVS priors only for the SNP effects
(direct and indirect) and not the mRNA effect, due to the small number of expression probe
sets (in relation to the number of SNPs) included in the analysis. The model could be
extended to also include SSVS priors on the mRNA expression effects. However, this would
add an additional layer of complexity and computation time. Additional care in model
specification and interpretation of results from this more complex model would also be
needed, particularly in the context of the SNP indirect effects on the phenotype via mRNA.

Implementing the Bayesian integrative model for a comprehensive analysis offers several
advantages. First, prior biological knowledge can be easily incorporated into the model
thought the prior model specification. The incorporation of biological information will aid in
the integrative model's ability to detect biologically relevant loci related to complex traits.
Second, inference for a function of effects, such as the collective indirect effect of SNP k on

the phenotype ( ), can be conducted easily using MCMC and posterior credible
intervals. Third, uncertainty related to selection of important genotype variables is accounted
for as a form of Bayesian model averaging. The implementation of the Bayesian integrative
model via MCMC is straightforward, however it comes with a high computational cost. The
computational burden of the MCMC simulation limits the number of SNP or mRNA
expression variables that can be included in association studies. Similar to previous
proposed approaches involving SEM [Nock et al., 2007] or Bayesian approaches [Conti et
al., 2003], our Bayesian integrative model is only able to handle a few hundred SNP and
mRNA expression variables, such as those within a given pathway. However, as
demonstrated with the gemcitabine study presented in this paper, one can reduce the
dimensionality of genetic datasets to create manageably complex models. To follow-up the
results from the Bayesian integrative model, standard regression techniques can be applied
using the significant, possibly modified, genotype or gene-expression variables identified.

In conclusion, this paper presented a novel Bayesian integrative model for modeling the
complex relationship between genetic variation in the form of SNPs and mRNA expression
variation, and their collective impact on a complex phenotype. Further research is needed to
develop integrative analysis approaches for the study of complex diseases and phenotypes.
In particular, further research is required to extend and modify this integrative modeling
framework to increase computational efficiency and extend this model to other data types to
capitalize on the wealth of information available across multiple genomic data types.
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Fig. 1.
Diagram depicting the four simulation scenarios. (A) Scenario A includes two cis-acting
SNP effects on gene expression and the phenotype; (B) Scenario B has two cis-acting SNPs
on gene expression, with the gene expression associated with the phenotype; (C) Scenario C
consists of a cis-acting SNP effect on gene expression and the phenotype with the
expression of this gene also associated with the phenotype, along with the gene expression
of a second gene associated with the phenotype; (D) Scenario D is the null scenario (no
genomic effects on the phenotype).
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TABLE I

Parameter values used in the simulation scenarios. Scenarios A, B, and C had genomic effects, while Scenario
D was the null scenario (no genomic effects simulated)

Scenario

Effect type Parameter A B C D

Direct SNP SNP 2 in Gene 3; b24 0.88 0 0.88 0

SNP 4 in Gene 5; b39 0.88 0 0 0

Indirect SNP cis-acting SNP 2 in Gene 3; a3,2 0.3 0.3 0.3 0

cis-acting SNP 4 in Gene 5; a5,4 0.3 0.3 0 0

Direct mRNA Gene 3; c3 0.4 0.4 0.4 0

Gene 5; c5 0.4 0.4 0.4 0
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TABLE II

Power and type I error rate estimates for the Bayesian integrative model for the three genetic models
(Scenarios A, B, and C) and a null simulation scenario (Scenario D). Estimates are based on 50 simulations

Relationship assessed Type I error rates Power

Scenario Scenario

Parameter A B C D Parameter A B C

Phenotype and mRNA expression c's 0.053 0.053 0.060 0.068 c3 0.62 0.50 0.72

c5 0.80 0.64 0.56

Indicator for SNP and mRNA expression

relationship
a γ γ3,2 (SNP 24)

0.25 0.053 0.045 0.043 0.013 0.25 0.84 0.78 0.68

0.35 0.000 0.000 0.000 0.000 0.35 0.02 0.00 0.00

0.50 0.000 0.000 0.000 0.000 0.50 0.00 0.00 0.00

γ5,4 (SNP 39)

0.25 0.90 0.96 –

0.35 0.00 0.00 –

0.50 0.00 0.00 –

Indicator for SNP and phenotype relationship
b φ φ 24

0.10 0.999 0.998 0.999 0.997 0.10 1.00 – 1.00

0.15 0.039 0.005 0.027 0.011 0.15 0.70 – 0.56

0.25 0.001 0.000 0.000 0.000 0.25 0.60 – 0.00

0.50 0.000 0.000 0.000 0.000 0.50 0.00 – 0.00

φ 39

0.10 1.00 – –

0.15 0.64 – –

0.25 0.06 – –

0.50 0.00 – –

a
Significance determined if P(γ| data) > 0.25, 0.35, or 0.50.

b
Significance determined if P(φ| data) > 0.10, 0.15, 0.25, or 0.50.
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TABLE III

Power and type I error rate estimates for the APCA for the three genetic models (Scenarios A, B, and C) and a
null simulation scenario (Scenario D). Estimates are based on 50 simulations and the Bonferroni adjusted P-
values

Relationship assessed Type I Error Rates Power

Scenario Scenario

A B C D Parameter A B C

Phenotype and mRNA expression 0.000 0.000 0.000 0.000 c3 0.18 0.14 0.26

c5 0.30 0.16 0.16

SNP and mRNA expression 0.001 0.001 0.001 0.000 a3,2 0.04 0.02 0.04

a5,4 0.10 0.00 –

Phenotype and SNP 0.002 0.000 0.000 0.000 b24 0.10 – 0.06

b39 0.12 – –
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TABLE IV

Associations detected in the gemcitabine study using the Bayesian integrative model or the all-APCA
approaches. Results from different prior model specifications for pa and pb are presented for the Bayesian
integrative model. Effects determined to be significant at the 0.05 level from the APCA (after adjustment for
multiple testing) are included with bolded P-values. For the Bayesian integrative model, genomic variables are
included if (1) the 95% credible interval for the direct mRNA expression effects did not contain zero; (2) the
P(γjk | data) ≥ 0.25 with the Beta prior for the indirect SNP effect; or (3) the P(φk| data) ≥ 0.15 with Beta prior
for the direct SNP effect

Effect type
mRNA gene
expression
variation

Genetic variation APCA p-value
p ~ Beta posterior
probability or
95% CI

p ~ Uniform
posterior
probability or 95%
CI

p = 0.2 posterior
probability or
95% CI

SNP—mRNA
association or
indirect SNP
effect

SLC28A1 CMPK1 4.94e–4 0.35 0.22 0.65

SLC28A2 NT5C1B 5.77e–3 0.25 0.13 0.53

CMPK1 CMPK1 4.06e–4 0.37 0.20 0.70

CDA RRM2 3.97e–3 0.28 0.17 0.51

NT5C3L NT5C3L 1.42e–18 1.00 1.00 1.00

mRNA
expression-—
IC50
association or
direct mRNA
effect

SLC29A1 — 2.79e–3 (−0.225, 0.066) (−0.225, 0.065) (−0.226, 0.067)

DCK — 2.65e–3 (−0.266, −0.004) (−0.267, −0.003) (−0.267, −0.003)

NT5C3 — 9.75e–6 (0.035, 0.266) (0.034, 0.266) (0.035, 0.267)
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