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Abstract

The fractional concentration of exhaled nitric oxide (FeNO) is a biomarker of airway inflammation that is being increasingly
considered in clinical, occupational, and epidemiological applications ranging from asthma management to the detection of
air pollution health effects. FeNO depends strongly on exhalation flow rate. This dependency has allowed for the
development of mathematical models whose parameters quantify airway and alveolar compartment contributions to FeNO.
Numerous methods have been proposed to estimate these parameters using FeNO measured at multiple flow rates. These
methods—which allow for non-invasive assessment of localized airway inflammation—have the potential to provide
important insights on inflammatory mechanisms. However, different estimation methods produce different results and a
serious barrier to progress in this field is the lack of a single recommended method. With the goal of resolving this
methodological problem, we have developed a unifying framework in which to present a comprehensive set of existing and
novel statistical methods for estimating parameters in the simple two-compartment model. We compared statistical
properties of the estimators in simulation studies and investigated model fit and parameter estimate sensitivity across
methods using data from 1507 schoolchildren from the Southern California Children’s Health Study, one of the largest
multiple flow FeNO studies to date. We recommend a novel nonlinear least squares model with natural log transformation
on both sides that produced estimators with good properties, satisfied model assumptions, and fit the Children’s Health
Study data well.
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Introduction

The fractional concentration of exhaled nitric oxide (FeNO) is

considered a biomarker for airway inflammation. FeNO is being

increasingly studied in the clinical, occupational, and epidemio-

logical literature [1,2,3]. Early on, it was discovered that FeNO is

highly flow rate dependent [4,5], with lower FeNO at higher flows.

Guidelines have been developed for the standardized measure-

ment of FeNO at a single 50 ml/s exhalation flow rate [6]. At the

relatively low flow rate of 50 ml/s, FeNO is primarily from

proximal airway sources [7]. Higher flow FeNO provides more

information about distal/alveolar sources, but is an imperfect

proxy for alveolar NO concentration [8]. Several mathematical

models have been developed that describe the physiology of NO in

the lower respiratory tract [9,10,11] using parameters that

quantify both proximal and distal NO contributions. A simple

and widely used two-compartment model uses differential

equations to relate FeNO at a constant flow rate ( _VV ) to three

NO parameters: maximum airway flux (J9awNO), airway tissue

diffusing capacity (DawNO), and alveolar NO concentration

(CANO) [12]. The closed form solution of this model is:

FeNO~J 0awNO
�

DawNOz

CANO{J 0awNO
�

DawNO
� �

exp {DawNO
�

_VV
� � ð1Þ

Numerous methods have been developed to estimate two-

compartment model NO parameters using data from FeNO

measured at multiple flow rates [12,13]. Analysis of multiple flow

FeNO offers a non-invasive method to quantify physiologic

parameters that cannot otherwise be assessed. This has strong

potential to inform on mechanisms of airway inflammation

relevant to diseases affecting NO metabolism and the study of

environmental exposure health effects [14]. However, there is no

standardized protocol or method for estimating NO parameters,

different methods produce different estimates [15], and the

uncertainty in parameter estimation is often ignored. The lack of

statistically validated, standardized methodology is delaying

progress in this field because results from the growing number of

studies using different methods may not be comparable.
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Multiple flow analysis was originally developed in well-controlled,

small-scale experiments (,30 participants) [16,17,18,19], although

it is being increasingly translated to medium-sized studies (100–300

participants) [20,21,22,23,24,25,26,27]. The Southern California

Children’s Health Study (hereafter referred to as CHS) is a

longitudinal cohort study on the long term effects of air pollution on

children’s respiratory health. After several years of collecting FeNO

at 50 ml/s in the CHS [28,29,30,31,32,33,34,35], multiple flow

FeNO data was collected in a pilot study [36] followed by full-scale

collection from 1640 participants [37]. The CHS contains one of

the largest multiple flow FeNO datasets to date, and these data

motivate this paper.

The primary goal of this paper is to compare statistical methods

for estimating NO parameters from the two-compartment model

and to identify a method with good statistical properties that also

quantifies uncertainty in NO parameter estimation. First, we

developed a unified framework in which to present a comprehen-

sive set of existing and novel statistical estimation methods. Then,

we compared these estimation methods using simulation studies

and CHS data. The secondary goal of this paper is to inform on

the validity of comparing results across studies using different

statistical estimation methods. We used the CHS data to assess the

sensitivity of parameter estimates to the estimation method.

Throughout this paper, we focused on the estimation of two-

compartment model parameters. For comparison we also included

two existing estimators from more complex mathematical models

[10,11] although these estimators may not be suited to the healthy

or mildly asthmatic children that compose the CHS study

population.

Methods

Ethics Statement
The protocol for collection of multiple flow FeNO in the

Southern California Children’s Health Study was approved by the

University of Southern California Health Sciences Campus

Institutional Review Board. Written informed consent was

obtained from a parent or guardian on behalf of each child

participant.

Multiple flow FeNO data in the CHS
FeNO was collected at schools in 8 Southern California

communities from March-June 2010, from 1640 middle-school

students (ages 12–15) in the active CHS cohort, using EcoMedics

analyzer systems in a protocol described previously [36,37].

Children were requested to perform 9 FeNO maneuvers, in the

following order: 3 at the conventional 50 ml/s target flow rate (to

ensure comparability with prior 50 ml/s FeNO data collected in

the CHS), and 2 at each of the following target flows: 30, 100, and

300 ml/s (to balance the need for rich multiple flow data with the

constraints on time and resources inherent to a large study of

children). Additional maneuvers were permitted when the initial

records showed technical problems or inconsistent FeNO readings,

in the technician’s judgment. Procedures conformed to standard

guidelines [6], except that NO concentration was determined from

the 3-second plateau interval with minimum coefficient of

variation, rather than the first acceptable interval. There were a

total of 16201 maneuvers with an acceptable 3 second plateau.

We further screened these raw data to remove maneuvers with

technical problems. For this paper, we considered only data from

the 1507 participants (female: 832, male: 789) with at least one

valid maneuver at each of the 4 target flow rates (13614

maneuvers in total) to ensure a clean comparison of estimation

methods. Of the 133 children excluded, 101 had valid maneuvers

at 3 flow rates. In substantive data analyses, it may not be

necessary to exclude all these participants. Additional information

on equipment, study protocol, and raw data screening is available

in Supporting Information S1.

General estimation of NO parameters
Drawing inspiration from the excellent review of nonlinear

models for repeated measurement data by Davidian and Giltinan

[38], the various methods used to estimate two-compartment

model NO parameters from multiple measurements of FeNO

(indexed by j) at different flow rates, _VVj can be represented using a

regression model of the following general form:

Yj~f ( _VVj ,a)zej ð2Þ

For each of the methods, the outcome Yj is either FeNO (FeNOj ,

referred to as the ‘‘Pietropaoli (P)’’ formulation [17]), NO output

(FeNOj| _VVj , referred to as the ‘‘Tsoukias (T)’’ formulation [16]),

or a natural log transformation of FeNO (log(FeNOj ), in a novel

formulation). Unexplained error due to local variability in the

realization of the exhalation maneuver and instrument measure-

ment error is represented by ej . The error is assumed to be

normally distributed with mean 0 and variance s2 that is constant

across flow rates (i.e., homoscedastic). The mean function, f ,

depends on the flow rate, _VVj , and the vector of NO parameters, a,

and is a linear or quadratic approximation to the right-hand side

of Equation 1, or a function of the right-hand side of Equation 1.

Below, we present a set of existing and novel two-compartment

model based estimators and two alternative estimation methods

based on more complex mathematical models. We omit the

subscripts j for simplicity. Detailed descriptions of the calculations

for all methods and corresponding code for the freely available

statistical software R [39] can be found in Supporting Informa-

tion S1.

Linear approximation models
These models use a first order linear approximation to the

exponential function in the two-compartment model (exp(-x) <1-

x). This approximation is valid when the ratio of DawNO to _VV is

small (i.e., for adequately high flow rates for a given value of

DawNO). A further simplification comes from the assumption that

CANO is small relative to J9awNO/DawNO [12]. Given these two

assumptions, Equation 1 can be linearly approximated based on P

and T formulations with:

FeNO~CANOzJ 0awNO
�

_VVze ðlinPÞ

FeNO| _VV~J 0awNOzCANO| _VVze ðlinTÞ

Both formulations are implemented using a simple linear

regression model estimated via ordinary least squares. The

resulting regression coefficient estimates (intercept: âa0 and slope:

âa1) are interpreted as estimates of the corresponding NO

parameters. The ‘‘relatively small CANO’’ assumption excludes

DawNO from the model, which is necessary in order to express the

remaining NO parameters as functions of the two regression

coefficients. While it may be reasonable to assume that CANO is

small for many subjects [12], the practical implication of this

assumption is an inconsistency (setting CANO = 0 in only part of

the expression) which has generated criticism [13]. For this reason,

Estimation of Exhaled NO Parameters
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some researchers prefer not to make the assumption that CANO is

small. In this case, the parameter estimated from linear

approximation models should be interpreted as JawNO rather

than J9awNO. JawNO is the (non-maximal) flux of NO in the

airway compartment. We make the assumption of small CANO

here so that we are estimating J9awNO and can compare estimates

of this parameter across different estimation methods.

In the simulation study, we fit linear approximation models to

all data and then to the subset of data from target flow rates

.30 ml/s (50, 100, and 300 ml/s) since the linear approximation

is most appropriate for higher flows. For the CHS data, we fit

linear approximation models to data from target flow rates

.30 ml/s (50, 100, and 300 ml/s). We avoided using only 100

and 300 ml/s flows because estimation of a linear model is

unstable with such a small number of data points (n = 4, by design

in the CHS and the simulation study). The linear approximation

to Equation 1 is mathematically valid when the ratio of DawNO to
_VV is small (e.g., #0.1). So, the approximation is valid when the

flows are $50 ml/s and DawNO #5 pl?s21?ppb21 (or, similarly,

when the flows are $100 ml/s and DawNO #10). Hence, using

50 ml/s rather than 100 ml/s as the lower bound of flows involves

a more restrictive assumption about the upper bound of DawNO in

the study population.

Quadratic approximation models
These models use a second order quadratic approximation to

the exponential function (exp(2x)<12x+x2/2). This approxima-

tion is valid when the ratio of DawNO to _VV is moderately small

(say #0.33, e.g., for flow rates of $15 ml/s if DawNO = 5). Due to

the relaxed flow rate assumption, it is appropriate to apply the

following quadratic models to the range of flow rates in the CHS.

No assumption about small CANO is used in the following models:

FeNO~CANOz J 0awNO{CANO|DawNO
� ��

_VVz

{
1

2
DawNO J 0awNO{CANO|DawNO

� �� ��
_VV2ze

ðquadPÞ

FeNO| _VV~ J 0awNO{CANO|DawNO
� �

zCANO| _VVz

{
1

2
DawNO J 0awNO{CANO|DawNO

� �� ��
_VVze

ðquadTÞ

Both formulations are implemented using multiple linear

regression with explanatory variables that are appropriate

functions of the flow rate (quadP: inverse flow and inverse flow

squared, and quadT: flow and inverse flow) and regression

coefficients (intercept: a0 and slopes: a1 and a2) estimated using

ordinary least squares. Formulas to calculate NO parameter

estimates and their approximate standard errors (derived using the

Delta method) from standard multiple linear regression model

output are included in Supporting Information S1. As presented,

the quadratic approximation models are new but a simpler version

of the quadP model (which assumed CANO was small relative to

J9awNO/DawNO) was developed empirically in the CHS pilot

study [36], where it was noted that the fit of the linP model could

be improved by adding an inverse flow-squared term.

Nonlinear models
As proposed previously by Silkoff et al [18], nonlinear least

squares can be used to estimate Equation 1 parameters directly

using data from all flow rates:

FeNO~J 0awNO
�

DawNOz

CANO{J 0awNO
�

DawNO
� �

exp {DawNO
�

_VV
� �

ze

ðnonLinÞ

We propose a novel alternative in which we take a natural log-

transformation of both sides:

log(FeNO)~

log J 0awNO
�
DawNOz CANO{J 0awNO

�
DawNO

� �
exp {DawNO

�
_VV

� �� �
ze

ðnonLinLogÞ

Nonlinear least squares is straightforward to implement using

the Gauss-Newton algorithm [40] included in the nls function [41]

in R. Nonlinear least squares can also be implemented in most

major software packages (e.g., PROC NLIN in SAS, the nl

command in Stata, NLR in SPSS, or using the solver tool in

Microsoft Excel). The estimation algorithm does not guarantee

convergence, but lack of convergence was rare in the CHS data. A

key input is a set of starting values for each parameter to be

estimated. We used quadP or quadT estimates as the starting

values. Supporting Information S1 includes additional details on

and code for implementing the nonLin and nonLinLog models in

R and SAS.

Constrained models
CANO represents the concentration of NO in the alveolar

compartment, so negative CANO estimates are not interpretable.

We had initially considered a duplicate set of candidate regression

models where CANO was constrained to be $0.1 using the lower

bound option in the nls function in R. When bounds are specified

in nls, the function implements constrained optimization via the

‘nl2sol’ algorithm [41,42,43]. A lower bound of 0.1 was selected

because the limit of detection for the analyzer equipment was 0.06

ppb [44]. In practice, we found that for datasets where estimated

CANO was $0.1, unconstrained and constrained models pro-

duced estimates of all NO parameters that were identical, up to

rounding error. For datasets where estimated CANO was ,0.1 in

unconstrained models, the corresponding constrained model

produced estimates of CANO equal to 0.1 (the boundary), which

slightly affected the estimates of J9awNO and DawNO. Due to the

similarity of results from unconstrained and constrained model, we

present only a constrained version of the nonLinLog model, which

we denote nonLinLogC. Supporting Information S1 includes code

for implementing nonLinLogC models in R.

Högman and Meriläinen algorithm (HMA)
For the HMA, average FeNO values at low, medium, and high

target flow rates (in the CHS: 30, 100, 300 ml/s) are input to an

iterative algorithm based on a T formulation, third order

approximation to the two-compartment model (similar to quadT,

where quadT is a second order approximation), with starting

values for CANO and J9awNO obtained from a linT model fit to

medium and high flow rate data [13,45]. The algorithm includes

Estimation of Exhaled NO Parameters
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an internal data consistency check [13,45] that ensures the

estimate of DawNO is positive and that a fourth parameter,

CawNO, can be reasonably estimated. In the standard HMA

implementation, multiple flow datasets that: (1) fail the consistency

check or (2) produce negative estimates of CANO are considered

to not have parameter estimates. However, we found that

imposing these 2 criteria produced biased parameter estimates in

our simulation studies (using the flow rates available in the CHS)

and resulted in 20.4% of CHS participants having no HMA

parameter estimates (224 participants’ datasets failed the first

consistency check and 84 ‘‘consistent’’ datasets produced negative

CANO estimates (minimum: 23.53 ppb; median: 20.55 ppb)).

Hence we did not impose these 2 criteria and rather considered all

available HMA parameter estimates. R code to implement the

HMA is provided in Supporting Information S1, but HMA can

also be readily implemented using software bundled with the

EcoMedics analyzer system. Because HMA is an iterative

algorithm with no explicit regression model form, we did not

report measures of model fit or measures of uncertainty for

parameter estimates.

Refined deterministic models
Finally, we considered two methods to estimate parameters

from two more complex mathematical models that account for: (a)

back-diffusion of NO during exhalation from the higher concen-

tration airway region to the lower concentration alveolar region

and/or (b) increasing cross-sectional area in increasingly distal

airways. The first method was developed by Condorelli et al to

estimate NO parameters from a trumpet shaped axial diffusion

model in two steps [10]. In this method—as tailored to the

CHS multiple flow data [36]—linT models are first fit to data

from 100 and 300 ml/s target flow rates to produce estimates of

CANO(linT.50) and J9awNO(linT.50). Second, Condorelli parameter

estimates are produced by applying adjustment factors

(X = 740 ml/s and Y = 1.7) in the following equations [10,36]:

CANO(Condorelli)~CANO(linTw50){
1

X
J 0awNO(linTw50)

ðCondorelli 1Þ

J 0awNO(Condorelli)~Y|J 0awNO(linTw50) ðCondorelli 2Þ

The second method was developed by Kerckx et al [46] to

estimate the alveolar NO concentration due to in-situ NO

production (not from back-diffusion) by:

CANO(Kerckx)~

CANO(linPw30){ 0:08|FeNO(50)

� �� ��
0:92

ðKerckxÞ

where FeNO(50) is the mean concentration of exhaled NO at

50 ml/s, which we assessed using the ATS/ERS method [6]

except that we allowed repeated measurements to differ by #15%

rather than 10%. Parameters estimated by the Condorelli and

Kerckx methods are not conceptualized as flow-independent. The

Condorelli and Kerckx parameter estimates are not directly

comparable to two compartment model parameter estimates since

the simpler two-compartment model neglects back-diffusion.

Simulation study
We generated data assuming true NO parameter values similar

to those previously reported for children [12,32]: CANO = 2 ppb,

J9awNO = 800 pl/s, and DawNO = 5 pl?s21?ppb21 and assuming

an error structure similar to that observed in the CHS. Generally,

theoretical FeNO was calculated from a two-compartment model

(Equation 1) with the NO parameter values above and then

perturbed by adding random error. Specifically, each simulated

dataset consisted of 2 FeNO values at each of the CHS target flow

rates (30, 50, 100, and 300 ml/s). We generated random normal

error with a standard deviation that decreased as a function of flow

rate (3.1, 1.4, 0.8, and 0.5 ppb for 30, 50, 100, and 300 ml/s,

respectively). These standard deviations were selected to approx-

imate the within-subject standard deviations of FeNO at a given

flow rate in the CHS data, as estimated by linear mixed models

[47] with observed FeNO as the outcome and random intercepts

for participants, fit separately for each target flow rate. Thus the

simulation scenario was based on features observed in real

multiple flow FeNO data. Under this scenario of unequal variance

in FeNO across flow rates, we expected that methods that allowed

for non-constant variance (linT, quadT, HMA, nonLinLog) would

outperform methods that assumed constant variance (linP, quadP,

nonLin). In the simulation study, we generated a total of 10,000

datasets. Then, we applied all candidate two-compartment model

estimation methods to each dataset and recorded the estimated

NO parameters to assess bias and the corresponding nominal 95%

confidence intervals (CI) to assess coverage probability. Given the

simulation sample size of 10,000 and the observed Monte Carlo

(i.e., simulation-based) standard deviations, the Monte Carlo

estimates of bias (sample mean bias across the 10,000 datasets)

have standard errors of: #0.009 ppb for CANO, #2.25 pl/s for

J9awNO, and #0.2 pl?s21?ppb21 for DawNO. Similarly, the Monte

Carlo estimates of the coverage probabilities for the nominal 95%

CI have standard errors of #0.005. We performed three

additional sets of simulation studies to assess the sensitivity our

results to the assumptions of: (1) the value of the parameter CANO

generating the data, (2) non-constant variance, and (3) the value of

the minimum flow rate. In the first set of additional simulations,

we generated datasets with CANO = 1 and CANO = 4, but holding

the other parameters constant. Our general conclusions held

across the 3 true values of CANO, so we present results only for

CANO = 2 ppb. In the second additional simulation study, we

added random normal error with 1 ppb standard deviation

(constant across flow rates), similar to a previous simulation study

[48], and found—as expected—that this scenario favored the

more refined estimation methods that assume constant variance in

FeNO (quadP, nonLin). However, this scenario clearly violated

features of multiple flow FeNO data in the CHS, so we do not

present the results here. In the third additional study, we generated

datasets where the lowest target flow rate was 20 ml/s (with

standard deviation of random error in FeNO equal to 4 ppb)

rather than 30 ml/s (with standard deviation of random error in

FeNO equal to 3.1 ppb). The results and general conclusions were

similar to the study in which the lowest flow rate was 30 ml/s and

so we do not present the results here.

Criteria for comparison
In the simulation study, NO parameters estimators were

compared using 2 criteria: (1) empirical bias, the estimated value

minus the true value and (2) 95% CI coverage, the proportion of

the 10,000 samples for which the 95% CI contained the true

value. For the CHS data, the fit of the candidate regression models

to the data was assessed using adjusted R2 since different numbers

of parameters were estimated across the different methods. While

some may prefer R2 to adjusted R2, our findings were similar using

R2 so we presented only adjusted R2 results. To evaluate the

homoscedasticity (equal variance) assumption for the error, we

Estimation of Exhaled NO Parameters
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calculated the standard deviation of standardized residuals for all

CHS participant datasets at each target flow rate (standardization

ensured the residuals were comparable across participant datasets).

To evaluate the normality assumptions for the residuals, we

calculated Shapiro-Wilk tests for normality [49] and reported the

proportion of CHS datasets for which the null hypothesis of

normality was rejected. Distributions of NO parameter estimates

were displayed using boxplots where the ‘‘whiskers’’ extend to the

most extreme data point less than 1.5 times the interquartile range

beyond the first or third quartile. Finally, we assessed the

correspondence between estimated NO parameters across models

using Spearman’s correlation (R). Given the number of CHS

participants (N = 1507), the width of the 95% CI for the

Spearman’s correlations ranged from ,0.10 for R = 0.01 to

,0.002 for R = 0.99 [50]. The HMA, Condorelli, and Kerckx

estimation methods all involved iterative or multiple step

approaches without an explicit model of the form

Yj~f ( _VVj ,a)zej , making it difficult to calculate model fit statistics

or residuals. These methods have no standard asymptotically-

derived inference and it is impractical to implement resampling-

based inference for 10,000 simulations. So, for these three methods

we only report the corresponding parameter estimate distributions

and correlations. All statistical analysis and data simulation was

performed using R [39].

Results

Simulation study
Figure 1 shows the distribution of NO parameter estimates

across the 10,000 simulated datasets. As shown in Table 1,

quadratic, nonlinear, and HMA estimators had negligible bias for

CANO (absolute value of estimated bias ,0.05 ppb). Nonlinear

model estimators had the smallest estimated bias for J9awNO (,10

pl/s) and DawNO (,0.9 pl?s21?ppb21). Linear model estimators

were biased (positive bias for CANO and negative bias for J9awNO)

with smaller bias for T formulation models than for P formulation

models and smaller bias when fitting the models to data only from

50, 100, and 300 ml/s flows rather than all flows. When imposing

the 2 consistency criteria, HMA estimators had larger bias

(estimated bias of 20.30 ppb for CANO, 71 pl/s for J9awNO,

and 7.7 pl?s21?ppb21 for DawNO). As shown in Figure 2, linP,

quadP, and nonLin models produced conservative nominal 95%

CI for CANO, with estimated coverage probabilities ranging from

0.98 to 0.99. T formulation models produced anti-conservative

nominal 95% CI for CANO, with estimated coverage probabilities

of 0.84 for linT, 0.88 for linT.30, and 0.91 for quadT. The only

models that appeared to have appropriate 95% CI coverage

probabilities for all 3 parameters were nonLinLog and nonLin-

LogC (for both methods the estimated coverage probabilities were:

0.94 for CANO, 0.95 for J9awNO, and 0.94 for DawNO). Hence

the nonLinLog and nonLinLogC models best satisfied the two

Figure 1. Distributions of NO parameter estimates from different models, simulated data. Boxplots of estimated NO parameters from
10,000 simulated datasets. The true NO parameter values are: CANO = 2 ppb, J9awNO = 800 pl/s, and DawNO = 5 pl?s21?ppb21.
doi:10.1371/journal.pone.0085471.g001

Table 1. Simulation study estimates of bias (mean and 95% confidence interval for the mean).

Estimation Method CANO, ppb J9awNO, pl/s DawNO, pl?s21?ppb21

linP 0.39 (0.38,0.41) 279 (281,278)

linT 0.17 (0.16,0.17) 261 (262,260)

linP . 30 0.18 (0.17,0.19) 256 (257,254)

linT . 30 0.11 (0.10,0.12) 248 (249,247)

quadP 0.01 (0.00,0.03) 225 (229,220) 24.4 (24.8,24.0)

quadT 0.01 (0.00,0.02) 214 (218,211) 22.6 (22.9,22.4)

nonLin 20.05 (20.07,20.03) 10 (6,15) 0.7 (0.3,1.0)

nonLinLog 20.05 (20.06,20.03) 9 (5,12) 0.9 (0.6,1.1)

nonLinLogC 20.05 (20.06,20.03) 8 (5,12) 0.8 (0.5,1.1)

HMA 20.04 (20.05,20.02) 8 (5,11) 3.5 (3.3,3.7)

doi:10.1371/journal.pone.0085471.t001
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criteria of producing unbiased NO parameter estimates and

appropriate measures of uncertainty about the parameter

estimates under this simulation scenario.

CHS data
After data screening, there were 6 to 12 valid FeNO maneuvers

per participant. The geometric mean (and standard deviation) of

FeNO was 23.6 (2.1), 15.5 (2.1), 9.2 (2.0) and 4.0 (1.9) ppb at the

30, 50, 100, and 300 ml/s target flow rates, respectively (Figure 3,

left-hand panel). The actual mean flow rates achieved during the

minimum CV plateau were closest to the target for lower flows

(mean at each target was 29.1, 48.1, 96.7, and 286.9 ml/s,

respectively). For a typical CHS participant, nonlinearity in FeNO

as a function of flow was reduced through the application of P or T

formulation data transformations (Figure 3, right-hand panel).

Figure 4 shows that T formulation models displayed relatively

poor fit to the CHS datasets (adjusted R2: median = 0.87 to 0.91

and 10th percentile = 0.58 to 0.73) when compared to P

formulation and nonlinear models (adjusted R2: median = 0.98

to 0.99 and 10th percentile = 0.94 to 0.97). All the methods for

which we could calculate residuals appeared to adequately satisfy

the normality assumption (proportion of CHS datasets for which

normality was rejected ranged from 0.021 (for linT.30) to 0.051

(for linT), which was similar to the Type I error rate of 0.05). Only

the nonLinLog and nonLinLogC models had good fit and satisfied

the homoscedasticity assumption (Table 2).

Figure 5 shows that most NO parameter estimates spanned a

relatively narrow range of values, despite a considerable number of

outlying values (the estimation method-specific interquartile ranges

of estimates ranged from 1.1 to 1.5 ppb for CANO, 641.5 to

1155.2 pl/s for J9awNO, and 11.6 to 19.8 pl?s21?ppb21 for

DawNO). The distributions of J9awNO estimates were very similar

across two-compartment model estimators, while Condorelli

estimates tended to be higher due to the adjustment upwards to

account for back-diffusion.

In methods without a constraint on CANO, negative CANO

estimates were less frequent in linear approximation methods and

more frequent in methods adjusting for back-diffusion. There were

14 negative CANO estimates for linP.30, 15 for linT.30, 87 for

quadP, 67 for quadT, 145 for nonLin, 98 for nonLinLog, 85 for

HMA (given that negative estimates were not excluded a priori),

Figure 3. FeNO versus flow rate in the CHS. The fractional concentration of exhaled nitric oxide as a function of flow for 1507 CHS participants
(left) and for a single participant, under transformations for regression modeling (right). For this participant, the nonLinLog estimates were:
CANO = 1.5 ppb, J9awNO = 687.8 pl/s, and DawNO = 4.1 pl?s21?ppb21.
doi:10.1371/journal.pone.0085471.g003

Figure 2. 95% confidence interval coverage. Proportion of 95%
confidence intervals that covered the true NO parameter value from
10,000 simulated datasets.
doi:10.1371/journal.pone.0085471.g002
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534 for Condorelli, and 245 for Kerckx. An alternative

implementation of the Condorelli method that adjusts for airway

volume and which should be more appropriate for children (see

Supporting Information S1) [10,36] produced 841 negative

CANO estimates, which was considerably more than the method

presented here, although this method was developed for adults.

The model with a constraint on CANO, nonLinLogC, produced

estimates of CANO equal to the lower bound of 0.1 ppb for 119

CHS participants (113 of whom had an estimated CANO of ,0.01

in the nonLinLog model).

The median values of estimated DawNO were similar across

estimation methods (quadP: 8.6 in pl?s21?ppb21, quadT: 10.3,

nonLin: 10.4, nonLinLog: 12.3, nonLinLogC: 12.0, HMA: 12.6).

Recall that the linear approximation required for the linear models

was valid for higher flow rate data and relatively low DawNO.

From the nonLinLog model, the estimated DawNO was less than 5

pl?s21?ppb21 for only 417 CHS participants (27.7%) and less than

10 pl?s21?ppb21 for only 637 participants (42.2%). Hence,

assuming the nonLinLog model produced appropriate estimates

of DawNO, the majority of the CHS study population would

require FeNO to be measured at multiple target flows higher than

100 ml/s in order to apply a linear model where the linear

approximation assumption was valid (e.g., target flows of 200, 250,

300 ml/s, but recall that the CHS only has data at 300 ml/s).

Finally, all CHS participants had positive estimates of DawNO

from the HMA algorithm, even though we did not impose the

internal data consistency criterion.

Next we assessed the sensitivity of NO parameter estimates to

the estimation method. Comparing across two-compartment

model estimation methods, estimates of CANO tended to have

lower correlation than estimates of J9awNO (minimum Spearman’s

correlation: 0.48 for CANO and 0.91 for J9awNO) (Tables 3 and 4).

Estimates of CANO were more highly correlated within models of

the same class (Spearman’s correlation: 0.91 for linear models,

0.75 for quadratic models, and $0.78 for nonlinear models).

Spearman’s correlation between CANO estimates from two

established estimation methods, nonLin and HMA, was only

moderate (0.54). For each of the 3 parameters, HMA estimates

were most strongly correlated with quadT, nonLinLog, and

nonLinLogC estimates (Tables 3–5), which could be expected

because the HMA estimation algorithm is based on a third order

approximation to a T formulation of the two-compartment model.

For a given estimation method, participants’ estimates of CANO

and J9awNO were approximately uncorrelated for quadratic and

nonlinear models and HMA (Spearman’s correlation: 0.02 for

quadP, 0.07 for quadT, 20.08 for nonLin, 20.04 for nonLinLog,

20.01 for nonLinLogC, and 20.004 for HMA), but weakly to

moderately correlated for methods based on linear approximations

(Spearman’s correlation: 0.53 for linP.30, 0.47 for linT.30, and

20.56 for Condorelli).

Availability of parameter estimates
NO parameter estimates were available for all participants using

models estimated by ordinary least squares (linear and quadratic

approximation models), nonLin and nonLinLogC models, and the

Condorelli method. The nonLinLog model failed to converge for 9

CHS participants. The HMA algorithm failed to produce

estimates for 1 participant. Kerckx estimates were not available

for 66 participants who had inadequate data at the 50 ml/s flow

rate for calculation of ATS/ERS mean FeNO at 50 ml/s. This

section included all available parameter estimates for each

estimation method.

Discussion

In this paper, we developed a unifying framework for a

comprehensive set of existing and novel estimators of two-

compartment model NO parameters and compared these

candidate methods. We used simulated data to assess properties

of bias and inference, and used CHS data—one of the largest

multiple flow FeNO datasets to date—to assess model fit, model

assumptions, and the sensitivity of parameter estimates to the

choice of estimation method. A novel nonlinear least squares

model with natural log-transformation (nonLinLog or nonLin-

LogC) produced unbiased NO parameter estimates with appro-

priate measures of uncertainty, had excellent fit to the CHS data,

and satisfied modeling assumptions. Although popular for their

simplicity of implementation, linear approximation methods—

using the flow rates available in the CHS—relied on an

assumption necessary for the linear approximation that was

invalid for most CHS participants (since DawNO was .5

pl?s21?ppb21 for 72.3% of CHS participants), produced biased

Figure 4. Model fit in the CHS. Boxplots of adjusted R2 for each of
the multiple flow datasets from the 1507 CHS participants, by
estimation method, to compare model fit*.
*The x-axis has been scaled to 2000x and labeled on the original scale to
clearly display differences in adjusted R2 near the upper bound of 1.
doi:10.1371/journal.pone.0085471.g004

Table 2. Standard deviations* of the pooled set of
standardized residuals from Children’s Health Study
participants’ datasets for each model and target flow rate.

Target flow rate (ml/s)

Model 30 50 100 300

linP .30 NA 1.1 0.8 0.7

linT .30 NA 0.7 0.8 1.3

quadP 1.4 1.0 0.8 0.6

quadT 0.8 0.9 0.9 1.5

nonLin 1.0 0.8 0.7 0.5

nonLinLog 0.7 0.8 0.8 0.9

nonLinLogC 0.7 0.8 0.8 0.9

*The assumption of homoscedasticity (equal variance) is satisfied if the standard
deviations are approximately the same across flow rates.
doi:10.1371/journal.pone.0085471.t002
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NO parameter estimates, and failed to fractionate multiple flow

FeNO into independent proximal (J9awNO) and distal (CANO)

contributions to FeNO. Estimates of J9awNO were highly

correlated across estimation methods, and hence were robust to

the estimation method. However, estimates of CANO had

relatively modest correlation across methods, and hence were

sensitive to the estimation method. Because J9awNO is highly

correlated with conventional FeNO at 50 ml/s, one of the primary

goals of multiple flow analysis is estimation of CANO. The

sensitivity of CANO estimates to the estimation method raises

important concerns about the validity of comparing CANO

estimates from studies that used different estimation methods.

The large number of negative CANO estimates from the

Condorelli method (and, to a lesser extent, the Kerckx method)

suggest that the existing implementations of these methods may

not be appropriate for the CHS study population or may over-

correct for back-diffusion, mirroring concerns raised elsewhere

[51].

While many of our candidate estimation methods have been

developed and applied previously (linP [17], linT [9,16], quadP

with more assumptions [36], and nonLin [15,18]), the nonLinLog

and nonLinLogC models are novel to this application. Nonlinear

models are popular in applications where processes are described

by differential equations (e.g., pharmacokinetics). A nonlinear

model (nonLin) had been proposed previously for multiple flow

FeNO [18], but it has not been widely adopted and it has

limitations that we acknowledge here. The nonLinLog model was

inspired by the typical analytic approach to FeNO data measured

at the conventional 50 ml/s flow rate. These data are approxi-

mately log-normally distributed and are typically log-transformed

prior to modeling via linear regression. Log-transformation cannot

be implemented in linear or quadratic approximation models

because the resultant regression coefficients would no longer be

interpretable as NO parameters. Log-transforming both sides in

the nonLinLog model is a straightforward approach that allows us

to simultaneously addressed the two issues of: (1) right skew in

FeNO at a given flow and (2) non-constant variance across flows,

while retaining the physiologic interpretation of the model

parameters. Two alternative approaches could have been used

to address violations of the equal variance assumption: (1)

weighted least squares, although this method assumes known

weights which would have to be calculated from appropriate

reference data, or (2) formal modeling of the variance structure in

addition to the mean structure in the nonlinear regression model

[52].

Our results agree with and extend the results of previous studies

comparing NO parameter estimation methods. An earlier

simulation study (500 datasets generated under assumptions

similar to our second ‘‘sensitivity’’ simulation scenario) investigated

bias—but not inference—for linear approximations of the two-

compartment model and found that the median bias for estimators

of CANO and J9awNO was smaller for the T formulation than for

the P formulation [48]. We observed the same pattern in our

simulations. An advantage of the T formulation is that it more

heavily weights FeNO from higher flow rates, where the linear

approximation is most valid [48]. However, for quadratic

approximation models, where the approximation is valid for lower

flow rates, we found a negligible difference in bias between

formulations. Nonlinear models are appropriate for data from all

flow rates and had negligible bias. Roy et al [15] compared NO

parameter estimates, model fit (sum of squared error), and the

impact of considering select flow rates across a number of different

models using data from adults (35 healthy and 50 with chronic

obstructive pulmonary disease) and found that a nonlinear model

fit the observed data better than a model based on the HMA

method, similar to our finding of higher adjusted R2 in P

formulation or nonlinear models than for T formulation models.

FeNO is typically measured multiple times at each target flow

rate with the goal of assessing reproducibility. For the HMA, mean

FeNO at a given flow rate is calculated from the multiple

maneuvers and mean FeNO is used to estimate NO parameters

[45]. We prefer using maneuver-specific FeNO values rather than

mean FeNO at a given target flow rate for two reasons: (1) if, for a

given target flow rate, the actual flow rates from two maneuvers

are different, then the FeNO values should also be different and (2)

if the number of acceptable maneuvers differ across target flow

rates (CHS data is unbalanced across target flow rates by design

Figure 5. Distributions of NO parameter estimates from
different models, CHS data. Boxplots displaying the distribution
of estimated NO parameters from multiple flow datasets for 1506* CHS
participants.
*Excludes one participant with extreme parameter estimates from the
quadT model (CANO: 2.9, J9awNO: 29896.0, and DawNO: 23400.3) but
reasonable estimates from the other models.
doi:10.1371/journal.pone.0085471.g005
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and from missing data due to technical problems), then using mean

FeNO calculated with different sample sizes imposes heteroscedas-

ticity in the data, since for independent and identically distributed

Yj , j = 1,…n, var
Pn

j~1 Yj

�
n

� 	
~var Yj

� ��
n.

NO parameters have physiological interpretations, so parameter

estimates should lie within a range of plausible values. Negative

estimates of CANO have been obtained in previous studies using

two-compartment models [36] or trumpet with axial diffusion

models [10,53]. Under unconstrained estimation of a positive

parameter, sampling variation alone can produce negative

estimates, as we observed in the simulation study where ‘‘true’’

CANO was 2 ppb. A statistical approach to ensure plausible

parameter estimates is to impose constraints, as in the non-

LinLogC method. However, we observed that all 98 negative

CANO estimates from the unconstrained nonLinLog model were

assigned the lower bound of 0.1 in the constrained nonLinLogC

model. Additional information may be gained through careful

study of participants with negative or boundary estimates of

CANO. Negative or boundary CANO estimates could reflect: (a)

inadequately performed exhalation maneuvers or otherwise

invalid data values, (b) inadequacies of parameter estimation

methods, and/or (c) inadequacies of the underlying mathematical

models to adequately represent a complex physiological process

that might vary according to patient characteristics. In future

research, comparing participants with negative or boundary

CANO estimates to those with positive estimates may provide

insight into the problem.

This study has several strengths. We provided a unifying

framework for an extensive set of methods used to estimate the

parameters of the two-compartment model. We developed and

evaluated a novel nonlinear least squares model with natural log

transformation. We derived the approximate variance of calculat-

ed parameter estimates for the quadratic approximation models,

so that estimates of uncertainty are available for all regression-

based estimation methods. We developed and provided code for

nonlinear models and HMA in the freely available statistical

software R. We applied the estimation methods to one of the

largest sets of multiple flow FeNO data to date. The CHS data was

collected according to strict protocol by well-trained field staff,

using state of the art online collection techniques, and with

detailed screening and review of raw data. We performed the first

comprehensive assessment of the statistical properties of two-

compartment model parameter estimation methods using simu-

lated data sets under several scenarios (emphasizing one motivated

by CHS data), and assessed model fit and the sensitivity of

parameter estimates across models using CHS data. Finally, we

explored the issue of negative CANO estimates which has been

largely overlooked in the literature.

This study also has limitations. First, we focused on methods to

estimate parameters from the basic – but robust – two

compartment mathematical model of NO exchange [9], which

has a simple closed form solution to the set of governing equations

Table 3. Spearman’s correlation of CANO estimates across models for the CHS data.

Model linP .30 linT .30 quadP quadT nonLin nonLinLog nonLinLogC HMA Condorelli Kerckx

linP .30 1

linT .30 0.91 1

quadP 0.75 0.71 1

quadT 0.63 0.82 0.75 1

nonLin 0.67 0.65 0.98 0.75 1

nonLinLog 0.57 0.74 0.77 0.98 0.78 1

nonLinLogC 0.57 0.75 0.77 0.98 0.79 1.00 1

HMA 0.48 0.74 0.54 0.94 0.54 0.90 0.91 1

Condorelli 20.01 0.25 0.25 0.58 0.29 0.60 0.60 0.67 1

Kerckx 0.55 0.53 0.73 0.56 0.71 0.57 0.58 0.42 0.48 1

doi:10.1371/journal.pone.0085471.t003

Table 4. Spearman’s correlation of J9awNO estimates across models for the CHS data.

Model linP.30 linT.30 quadP quadT nonLin nonLinLog nonLinLogC HMA Condorelli

linP.30 1

linT.30 0.99 1

quadP 0.95 0.94 1

quadT 0.97 0.98 0.95 1

nonLin 0.95 0.94 0.99 0.96 1

nonLinLog 0.96 0.97 0.96 1.00 0.97 1

nonLinLogC 0.96 0.97 0.96 0.99 0.97 1.00 1

HMA 0.95 0.98 0.91 0.99 0.92 0.98 0.97 1

Condorelli 0.99 1.00 0.94 0.98 0.94 0.97 0.97 0.98 1

doi:10.1371/journal.pone.0085471.t004
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(Equation 1) but neglects axial diffusion for simplicity. In our

simulation studies, we assumed data were generated from the two-

compartment model, so the observed statistical properties may not

hold for data for which a two-compartment model is inadequate.

Simulations involving generating data from the TMAD model or

estimation of parameters from the multiple airway compartment

extension of the TMAD model [11] were beyond the scope of this

paper. Second, we evaluated estimation methods assuming

multiple flow FeNO data from target flow rates in the CHS (30,

50, 100, and 300 ml/s), which reflect a range of flows that can

reasonably be collected in our child study population. Some of the

estimation methods considered had clear restrictions on the range

of appropriate flow rates (linear approximation models: linP, linT),

while other estimation methods had no theoretical limitations on

flow rates (HMA, nonLin, nonLinLog). It could be possible that

the set of CHS target flow rates favored the nonLinLog method

over other methods. Our sensitivity analysis (simulation study with

a low flow rate of 20 ml/s rather than 30 ml/s) suggests that the

relative statistical performance of the methods was not affected by

a slight decrease in the lower bound on flow rates. There is no

standard protocol for the set of flow rates for multiple flow FeNO

collection, but an interesting area for future research would be to

determine the optimal set of reasonable flow rates at which to

collect a small set of FeNO measurements to use for NO

parameter estimation in large studies. Third, the fact that

convergence is not guaranteed for nonlinear least squares models

was not a major problem in the CHS (convergence failed for only

9 of 1507 participants for nonLinLog), but missing parameter

estimates could potentially limit the generalizability of studies of

determinants of NO parameters estimated by nonLin or non-

LinLog models. Finally, the statistical theory underlying the

calculation of inference (e.g., confidence intervals) relies on the

properties of larger sample sizes, but each regression model was fit

to a dataset with a small number of observations (N = 8 in the

simulation study and 6#N#12 in the CHS). We may have

observed better 95% confidence interval coverage than could be

expected with real data because the unexplained error in the

simulated data was generated from a normal distribution.

In conclusion, we recommend the novel nonLinLog or

nonLinLogC method (nonlinear least squares models with natural

log-transformation of both sides) for estimation of two-compart-

ment model parameters from multiple flow FeNO data. These

methods can be readily used to quantify the uncertainty in

parameter estimation, have good statistical properties in our

simulation studies, have no theoretical limitations in terms of valid

flow rates, and can be implemented in any software capable of

fitting nonlinear least squares regression (e.g., R, SAS, Stata,

SPSS, or using the solver tool in Microsoft Excel). CANO is often

of primary interest in multiple flow FeNO analyses, but we

demonstrated that CANO estimates are sensitive to the estimation

method. This sensitivity highlights the need for an appropriate,

standardized statistical method for NO parameter estimation.

Widespread adoption of the nonLinLog or nonLinLogC method

would produce more comparable two-compartment model

parameters estimates across studies and would allow researchers

to better acknowledge the statistical uncertainties in parameter

estimation.
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