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Abstract

Blood flow speed is an important functional parameter. Doppler ultrasound flowmetry lacks 

sufficient sensitivity to slow blood flow (several to tens of millimeters per second) in deep tissue. 

To address this challenge, we developed ultrasonically encoded photoacoustic flowgraphy 

combining ultrasonic thermal tagging with photoacoustic imaging. Focused ultrasound generates a 

confined heat source in acoustically absorptive fluid. Thermal waves propagate with the flow and 

are directly visualized in pseudo color using photoacoustic computed tomography. The Doppler 

shift is employed to calculate the flow speed. This method requires only acoustic and optical 

absorption, and thus is applicable to continuous fluid. A blood flow speed as low as 0.24 mm·s−1 

was successfully measured. Deep blood flow imaging was experimentally demonstrated under 5-

mm-thick chicken breast tissue.

Introduction

High-resolution blood flow imaging in deep tissue offers valuable functional information for 

diagnosing and assessing many diseases [1–4]. Doppler ultrasound is a longstanding 

technology that achieves high-resolution non-invasive flow imaging at depths [1]. However, 

Doppler ultrasound suffers from two major limitations. The first is the poor sensitivity to 

blood [2]. The Doppler signal relies on ultrasound scattering from flowing blood cells, 

which is usually much weaker than the scattering from surrounding tissues. Since ultrasound 

attenuates exponentially with its frequency and propagation path length, low frequency 

ultrasound is often used to measure blood flow in deep tissue, which weakens scattering 

even further. The second limitation is that slowly flowing blood cells cause small Doppler 

shifts, which are difficult to separate from Doppler signals due to surrounding tissues. These 

limitations make Doppler ultrasound difficult to measure slow flow without contrast agents 

[2, 5, 6]. A new technique that can measure slow blood flow should find many biomedical 

applications, such as functional brain imaging, early cancer detection and treatment 

monitoring, and the detection of intraluminal atherosclerotic plagues.

In comparison, photoacoustic (PA) tomography has recently been recognized as a promising 

technique enabling high-resolution deep in vivo imaging [7–13]. PA imaging provides 
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unique optical absorption contrast beyond the ballistic regime, as well as high sensitivity to 

blood in the visible and near-infrared spectral range. PA measurement of blood flow has 

attracted growing interest [14–20]. In the ballistic and quasi-ballistic regimes (~1 mm deep 

in soft tissue), an optical beam can be effectively focused, allowing for sensing cellular-level 

features and then readily computing the flow speed. However, in the quasi-diffusive and 

diffusive regimes, fine features cannot be well resolved. Unlike ultrasound, PA signals tend 

to have weak speckles and strong boundaries [21, 22], precluding Doppler sensing in 

continuously absorbing flow. Although time-domain cross-correlation and frequency-

domain Doppler shift have been demonstrated on blood mimicking phantoms [14, 17, 19], 

neither method succeeded in whole blood flow sensing, due to the high density of blood 

cells. Therefore, high-resolution PA blood flow sensing in deep tissue remains a challenge.

To overcome these challenges in Doppler ultrasound and PA flow sensing, we developed 

ultrasonically encoded photoacoustic flowgraphy (UE-PAF) for slow blood flow imaging in 

deep tissue. In UE-PAF, sinusoidally modulated ultrasound is focused into the flowing 

medium to generate confined heat sources due to acoustic absorption. PA computed 

tomography is then utilized to image the heat propagation in the fluid, with optical 

absorption contrast and photoacoustically determined spatial resolution. Since optical 

absorption is usually orders of magnitude stronger in blood than in surrounding tissues in the 

visible and near-infrared spectral range, PA imaging of blood provides higher contrast than 

ultrasound imaging. The PA signal is sensitive to temperature, thus the heat propagation can 

be clearly imaged in flowing blood. In addition, as the heat source is modulated at a given 

frequency, its signal can be easily separated from the motion signal of surrounding tissues.

Method

We assume that the ultrasonic heating is fixed at x = 0, the flow speed is vf, the angle 

between the flow vector and the x-axis is θ, and thermal conduction is negligible during PA 

imaging. The fluid temperature in response to sinusoidal heating varies according to

(1)

where T̃ is the temperature variation from the average temperature, t is the “slow” time 

instead of the “fast” PA flight time, AT is the amplitude of the temperature variation at x, f0 

is the heating modulation frequency, and t0 is a constant. We have 

, where AT (0) is a constant, α is the thermal diffusivity, 

and β is a constant coefficient. The detailed derivation of AT (x) can be obtained in the 

supplemental materials.

The temperature variation refers to the slowly changing temperature induced by ultrasonic 

heating, rather than the instantaneous temperature rise induced by pulsed optical absorption. 

The “slow” time refers to sub-second-scale PA measurement time at each laser pulse, and 

the “fast” time is the microsecond-scale photoacoustic flight time within each PA 

measurement.
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In PA imaging, if the optical excitation is in both thermal and stress confinements, the initial 

pressure p0 can be approximated as a linear function of temperature [12, 23–25] as

(2)

where p0 denotes the magnitude of the initial pressure induced by each laser pulse, a and b 

are empirical constants, T0 is the average temperature, μa is the optical absorption 

coefficient, and F is the optical fluence. We assume that T0, μa, and F are time-invariant. 

The time-variant part of the pressure magnitude p̃0 can be written as

(3)

where .

If we measure the pressure point by point, and linearly scan the measurement point along the 

flow direction at a speed of vm, then we have x = vmt. Eq. (3) then becomes

(4)

If the amplitude Ap (vmt) varies slowly, then p̃0 (t) can be separated through envelope 

detection into an amplitude modulation signal Ap (vmt)and a sinusoidal carrier signal 

. The Doppler shift of the carrier signal from the heating 

frequency is

(5)

When vm = vf cos(θ), the Doppler shift will reduce the carrier signal to a constant of 

sin(−2πf0 t0).

In reality, it is difficult to always scan the detection point at the same speed as the blood 

flow. Instead, we can first acquire a series of two-dimensional (2D) PA images and then re-

sample the PA signals at different positions with a certain time interval during post-

processing. The artificial scanning speed can be changed by tuning the spatial and temporal 

step sizes. When the carrier signal of p̃ (t) varies minimally, the tuned scanning speed is 

equal to the flow speed.

With 2D imaging capability, the phase shift between different positions can also be used to 

determine the flow speed vf cos(θ). From Eq. (3), at positions x1 and x1+Δx, the phases of the 

carrier signals are  and , respectively. The phase 
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shift is . Simultaneous measurements of p̃0(t, x1) and p̃0 (t, x1 + Δx) 

give the phase shift of Δφ. With known f0 and Δx, the flow speed vf cos(θ)can be readily 

determined. Similarly, flow speed can also be calculated from cross-correlation between two 

consecutive 2D images. These two methods are equivalent to the above Doppler shift 

method.

Experimental setup

Figure 1 (a) shows a schematic of the UE-PAF system used in experiments. A single-

element focused ultrasound transducer is used to sinusoidally heat up a fixed confined 

volume of blood. The heat propagates with blood flow, generating a temperature gradient 

along the blood flow direction. At the same time, nanosecond laser pulses are delivered to 

the blood, inducing PA signals. The laser beam is expanded so that absorbers over a large 

area are excited simultaneously. A ring-shaped receiving ultrasound transducer array is used 

to detect the PA waves propagating in different directions. The received PA signals are then 

reconstructed using backprojection [26] to form two-dimensional images. The value of each 

pixel is proportional to its local initial pressure rise, which is linearly related to the local 

temperature. Detailed description of the experimental setup can be found in the 

supplemental materials.

Taking advantage of the full-ring receiving aperture, we can set the reconstruction x-axis to 

be along the flow direction, so that the angle θ is zero and the measured flow speed is vf. It 

should be noted that in general cases, the measured flow speed is vf cos(θ).

The heating ultrasound transducer is concave with a hole in the center for light delivery. The 

central frequency and radius for the heating transducer are 7.5 MHz and 24 mm, 

respectively. The effective heating spot within the blood tube has a diameter of ~1 mm. The 

average power of the heating ultrasound is adjusted between 2 and 5 W, so that temperature 

modulation can be observed in the PA signals. The average ultrasound intensity in the blood 

tube is estimated to be less than 500 W·cm−2.

The current experimental setup, shown in Figure 1 (a), was developed to demonstrate the 

principles. For future clinical practices, reflection-mode UE-PAF can be developed, 

allowing easy access to different anatomical sites. Figure 1 (b) shows a conceptual design of 

a reflection-mode UE-PAF probe. A two-dimensional ultrasound transducer array is used to 

dynamically focus the heating. The array has an opening in the center, so that an expanded 

laser beam can pass through. The ultrasound array is also used to receive PA signals. A 

transmit-receive switch is employed to alternate the ultrasound array between the heating 

and PA detection modes.

Results and discussions

Reconstructed PA images were first averaged over all frames in several heating cycles, so 

that a stable background image could be obtained without the thermally induced 

fluctuations. Then the background image was subtracted from each subsequent PA image, 

producing a relative temperature change map of the blood, i.e., the bT̃(t, x)μa (x)F(x) term in 
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Eq. (2). The temperature map was color-coded to show the changes from the average 

temperature. Figure 2 (a) shows a typical photoacoustic image of whole blood without 

ultrasonically encoding, where no features can be resolved for flow sensing. Figure 2 (b)–(g) 

present six consecutive images showing the PA signal variations due to heat propagation in 

flowing whole blood. The heating spot is centered at the middle point of the left edge. Blood 

flows towards the positive x-axis. Parabolic thermal waves can be visualized as they 

propagate downstream. Supplementary video 1 shows a movie of the thermal wave 

propagating in blood flow. To increase the signal-to-noise ratio, the PA changes were 

averaged over multiple consecutive heating cycles.

To measure the flow speed, PA flow images were converted into thermal flow trajectories in 

a spatial-temporal (x-t) plane. As illustrated in Figure 3, for each flow image, one line along 

the flow path was extracted. Lines from consecutive frames were placed together to form the 

temporal dimension. The trajectories in the x-t plane were re-sampled along the direction of 

x = vm t. By adjusting the slope vm, we can determine the flow speed when the re-sampled 

data reach the minimum variation.

Figures 4 (a)–(c) show three representative thermal trajectory images at different flow 

speeds. As expected, the steepness of the trajectory on the x-t plane becomes smaller when 

flow speed increases. The slopes of the thermal trajectories (Δx/Δt) were determined by local 

peak detection on the x-t plane, followed by linear fitting. A coefficient that converts the 

trajectory slopes to flow speeds was calibrated by measuring a known blood flow speed. 

Different flow speeds were set from 0.24 to 11.80 mm·s−1 using a syringe pump. The 

measured flow speed was plotted in Figure 4 (d). The measurement error was estimated with 

the normalized root-mean-square deviation (NRMSD), which were 2.7% respectively.

In a blood phantom, we experimentally measured a flow speed as low as 0.24±0.01 mm·s−1, 

which was less than one fourth of the lowest speed detectable by Doppler ultrasound 

flowmetry [5]. The limiting factors on slow flow detection are thermal diffusion, the heating 

spot size, and the signal-to-noise ratio. According to Eq. (3), the slowest detectable flow has 

to be fast enough so that the fluid can travel through the heating region before the thermal 

diffusion smoothes the modulated temperature distribution below the noise level. In future 

studies, the lowest detectable flow speed can be further reduced by optimizing the heating 

spot size.

The current highest detectable flow speed is 11.8 mm·s−1, limited by the imaging frame rate 

and the field of view. The current 2D imaging speed is 1.6 second per frame. Because much 

faster frame rates have been previously demonstrated [27], the highest detectable flow speed 

can be further improved.

Owing to the 2D PA imaging capability, different flow speeds can be simultaneously 

measured. Figure 4 (e) shows the flow speed distribution across a round tube with a 1.5 mm 

inner diameter. A parabolic distribution in the radial direction is clearly identified. For future 

in vivo blood flow imaging, we can extract points along the curved blood vessels and then 

calculate the flow speed. If the flow speed changes along the vessel due to diameter change 

or for other reasons, then average flow speeds can be calculated in small segments. If the 

Wang et al. Page 5

Phys Rev Lett. Author manuscript; available in PMC 2014 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



blood flow has strong pulsation due to heart beating, we can measure averages flow speeds 

over multiple pulsation cycles. Assuming the pulsation frequency is stable and can be 

measured using other methods, we can set the ultrasound heating at a modulation frequency 

different from the pulsation. Then the pulsation will be averaged out over multiple heating 

cycles. Moreover, the pulsation in slow flowing vessels is not as strong as that in fast 

flowing vessels.

With multiple heating spots on different vessels, an even larger flow field can be 

simultaneously measured, and this can provide higher throughput than point-by-point flow 

sensing. One possible approach is to employ an ultrasound array to dynamically heat 

multiple spots in multiple vessels. If they are far enough apart from each other, the contrast 

will not be affected. The ultrasound heating and PA detection can potentially be performed 

by the same transducer array to improve alignment and reduce footprint.

Deep flow imaging was demonstrated by measuring blood flow covered with chicken breast 

tissue. The chicken breast, placed between the blood and the heating ultrasound transducer, 

diffused the PA excitation light and attenuated the ultrasound heating. As shown in Figure 5, 

thermal trajectories were clearly visualized under 5 mm thickness. Since both heating and 

detection resolutions are acoustically defined, the spatial resolution of flow imaging scales 

approximately linearly with the depth. While the optical penetration depth of the imaging 

wavelength (800 nm) is high in biological tissue, acoustic attenuation of the heating 

ultrasound should be considered when imaging deeply. Lower frequency and higher power 

heating ultrasound transducers can be used to further extend the flow imaging depth.

During the heating, the maximum PA amplitude change was ±6.2%. Because the PA signal 

depends on temperature in an approximately linear relationship, the estimated temperature 

fluctuation was ±1.3 °C (room temperature 20 °C). Such a small short-term temperature 

change should be safe for most in vivo imaging applications. The maximum temperature 

increase was always monitored during experiments, so that we could adjust the power of the 

heating ultrasound transducer to avoid overheating.

In blood flow measurement, Doppler ultrasound senses the speed of only blood cells, not the 

plasma. In contrast, UE-PAF detects blood flow speed of all thermal carriers, including both 

plasma and blood cells, which could be different. In UE-PAF, acoustic and optical 

absorption, rather than scattering, provides imaging contrasts, which potentially enables 

label-free flow imaging of continuous absorptive media.

Conclusion

To summarize, we present an ultrasonically encoded PA flow imaging method. A 

sinusoidally modulated ultrasound transducer heats the acoustically absorptive flow media 

and generates thermally tagged features in the fluid. PA computed tomography detects the 

thermal propagations in the fluid. The Doppler shift of the thermal-tagged features is 

employed to determine the flow speed. A blood flow speed as low as 0.24 mm·s−1 was 

successfully measured. Deep blood flow was clearly imaged under 5-mm-thick chicken 

breast tissue. Based on acoustic and optical absorption, UE-PAF has enabled high-resolution 
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slow flow imaging in deep tissue, addressing a long-standing challenge in PA and 

ultrasound flow sensing. Combined with spectral imaging, UE-PAF can potentially provide 

simultaneous measurement of blood flow, oxygen saturation, and even the metabolic rate of 

oxygen, all in a single modality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(Color online) (a), Schematic of an ultrasonically encoded photoacoustic flowgraphy (UE-

PAF) system. (b) Conceptual design of a reflection-mode UE-PAF probe.
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Figure 2. 
(Color online) (a), A typical photoacoustic image of blood flow without ultrasonically 

encoding. (b)–(g), Ultrasonically-encoded photoacoustic flow images of whole blood in a 

tube. Time interval between adjacent images is 1.6 seconds. Dashed line highlights a 

parabolic heating peak propagating with blood flow. PA: photoacoustic.
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Figure 3. 
(Color online) Flow trajectories in x-t plane. Each horizontal line in the right figure is 

extracted from one photoacoustic image along the flow direction. The blue dots represent a 

trajectory of a thermally tagged feature. PA: photoacoustic.
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Figure 4. 
(Color online) (a)–(c), Representative thermal trajectories at different blood flow speeds. 

(d), Measured flow speed versus set flow speed. Error bars represent standard errors. N=8 

for each flow speed. (e), Flow speed distribution along the radial direction (y-axis) of a 

cylindrical tube. PA: photoacoustic.
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Figure 5. 
(Color online) Thermal trajectories imaged beneath chicken breast tissue. (a) Without tissue, 

average of 7 heating cycles. (b) 3-mm-thick tissue, average of 21 heating cycles. (c) 5-mm-

thick tissue, average of 35 heating cycles. The flow speed was set to 1.4 mm·s−1. The 

measured flow speeds for (a)–(c) were 1.5±0.1 mm·s−1, 1.6±0.2 mm·s−1, and 1.5±0.2 

mm·s−1 (mean ± standard error, N=8), respectively. PA: photoacoustic.
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