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Genome-wide association studies (GWAS) and candidate gene analyses have led to the discovery of several

dozen genetic polymorphisms associated with breast cancer susceptibility, many of which are considered well-

established risk factors for the disease. Despite attempts to replicate these same variant-disease associations in

African Americans, the evaluable populations are often too small to produce precise or consistent results. We es-

timated the associations between 83 previously identified single nucleotide polymorphisms (SNPs) and breast can-

cer among Carolina Breast Cancer Study (1993–2001) participants using maximum likelihood, Bayesian, and

hierarchical methods. The selected SNPs were previous GWAS hits (n = 22), near-hits (n = 19), otherwise well-

established risk loci (n = 5), or located in the same genes as selected variants (n = 37). We successfully replicated

18 GWAS-identified SNPs in whites (n = 2,352) and 10 in African Americans (n = 1,447). SNPs in the fibroblast

growth factor receptor 2 gene (FGFR2) and the TOC high mobility group box family member 3 gene (TOX3)
were strongly associated with breast cancer in both races. SNPs in the mitochondrial ribosomal protein S30

gene (MRPS30),mitogen-activated protein kinase kinase kinase 1gene (MAP3K1), zinc finger,MIZ-type containing

1 gene (ZMIZ1), andH19, imprintedmaternally expressed transcript gene (H19) were associatedwith breast cancer
in whites, and SNPs in the estrogen receptor 1 gene (ESR1) and H19 gene were associated with breast cancer in

African Americans. We provide precise and well-informed race-stratified odds ratios for key breast cancer–related

SNPs. Our results demonstrate the utility of Bayesianmethods in genetic epidemiology and provide support for their

application in small, etiologically driven investigations.

Bayesian analysis; breast cancer; genetics; genome-wide association studies; GWAS replication; race; single

nucleotide polymorphisms

Abbreviations: GWAS, genome-wide association study(ies); LD, linkage disequilibrium;MLE,maximum likelihood estimation; SNP,

single nucleotide polymorphism.

As of June 2013, a total of 74 single nucleotide polymor-
phisms (SNPs) met the criterion for inclusion in the National
Human Genome Research Institute’s database of genome-
wide association study (GWAS) hits, which requires a P
value of less than 10−5 in at least 1 of 25 breast cancer
GWAS (1). Most of these SNPs were consistently associated
with the disease in subsequent investigations among women
of European or Asian descent (Web Appendix 1, available at
http://aje.oxfordjournals.org/), but attempts to replicate these
findings in African-American women have been largely un-

successful (2–12). In general, the search for African-American-
–specific risk variants has made slow progress, with few in-
sights to explain the tendency for African-American women
to have more aggressive, less treatable disease subtypes (13–
16) and markedly higher breast cancer–specific mortality
than whites (32.7 vs. 23.7 deaths per 100,000 US women
per year in 2000–2009) (17).
Allele frequencies and linkage disequilibrium (LD) struc-

tures vary by race, with African Americans exhibiting gener-
ally weaker between-SNP correlations and smaller LD blocks
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(18, 19). Because each SNP represents all correlated variants,
SNPs associated with breast cancer in African Americans
correspond to a narrower genomic region than SNPs associ-
ated with the disease in whites. Therefore, studying African
Americans should help us identify causal loci and improve
our understanding of disease etiology. Unfortunately, most
of the studies of genetic breast cancer risk factors carried
out in African Americans have been small and therefore
have lacked the necessary statistical power to reliably differ-
entiate between null associations and odds ratios of 1.1–1.3, a
typical range for GWAS-identified risk variants in other
populations (1, 20).

Given existing knowledge about effect size, as well as in-
formation about the genome’s correlation structure, Bayesian
statistical methods may be useful tools for enhancing the
analysis of race-specific genetic risk factors for breast cancer.
Avariety of Bayesian-based methods have been proposed for
use in genetic epidemiology (21–27), but in the current study,
we focused on 2 of the most basic applications, hierarchical
modeling and Bayesian regression. Our goal was to obtain
valid and precise effect estimates by capitalizing on existing
information.

To further our understanding of genetic risk factors for the
disease, we examined the association between breast cancer
and several candidate SNPs by using traditional maximum
likelihood methods and both Bayesian approaches. All of
the selected SNPs were located on genes with strong prior ev-
idence of an association with breast cancer from GWAS and
candidate gene investigations. We assessed the relationship
between these SNPs and breast cancer risk using data from
the Carolina Breast Cancer Study, a population-based case-
control study of white and African-American women.

MATERIALS AND METHODS

Study population

Cases were identified using the North Carolina Central
Cancer Registry’s rapid case ascertainment program (28).
Women were eligible for the study if they were diagnosed
with invasive breast cancer in 1993–2001, were 20–74 years
of age at diagnosis, and lived in 1 of 24 North Carolina coun-
ties. Womenwith in situ disease were eligible if they had duc-
tal carcinoma in situ with microinvasion of 2 mm or more or
lobular carcinoma in situ. To ensure approximately equal rep-
resentation of African Americans and non–African Ameri-
cans, as well as both pre- and postmenopausal women, we
randomly sampled breast cancer cases at disproportionate
rates based on race and age.

Controls aged 20–64 or 65–74 years were selected from re-
cords of the North Carolina Department of Motor Vehicles
(Raleigh, North Carolina) and the Health Care Financing Ad-
ministration (Centers for Medicare & Medicaid Services,
Baltimore, Maryland), respectively. Controls were probability-
-matched to cases on race and 5-year age group (29). Women
with a history of breast cancer were ineligible. All partici-
pants provided informed consent, and study procedures were
approved by the institutional review board of the University
of North Carolina.

A study nurse administered a questionnaire to each partic-
ipant during an in-home visit. The survey included questions
on basic demographic factors, known or suspected breast
cancer risk factors, and medical and family history. Addition-
ally, the nurse drew 30 mL of blood. The overall response rate
was 77% for cases and 57% for controls. Of those enrolled,
88% of cases and 90% of controls provided sufficient blood
samples for inclusion in genotype analyses, leaving a total
sample size of 2,013 cases (1,247 white and 766 African
American) and 1,786 controls (1,105 white and 681 African
American). We excluded 166 persons who identified them-
selves as having a race/ethnicity other than African American
or non-Hispanic white.

SNP selection

Initially, we selected candidate SNPs with P values less
than 10−5 in any of 8 early breast cancer GWAS (30–37) or
2 GWAS follow-up studies (38, 39). We also evaluated sev-
eral SNPs from these initial studies that had P values less than
10−5 in discovery-phase analyses. Lastly, we retained any
SNPs already genotyped in the study population that Zhang
et al. (40) determined had “cumulative evidence of an asso-
ciation” with breast cancer or that were located in the same
gene as a previously selected variant. In total, we selected
41 GWAS-identified SNPs, including 22 GWAS hits and
19 other strongly associated SNPs, as well as 5 SNPs from
the meta-analysis by Zhang et al. (40) and 37 SNPs from in-
cluded genes.We later excluded 6 SNPs with minor allele fre-
quencies less than 1% in white participants and 10 SNPs with
minor allele frequencies less than 1% in African Americans,
leaving a total of 77 and 73 SNPs, respectively.

All study participants were genotyped for 144 ancestry in-
formative markers, which were used to estimate each partic-
ipant’s proportion of African ancestry. Inclusion of this
variable in regression models should reduce confounding
due to population stratification (41, 42).

Genotype analysis

The SNPs included in this analysis were genotyped using
either a custom GoldenGate Genotyping Assay (Illumina,
Inc., San Diego, California) or a customized TaqMan panel
(Applied Biosystems, Inc., Foster City, California). Both pro-
cesses have been described previously (43, 44). All of the
SNPs included in this analysis passed quality control evalua-
tions, including examination of individual call rates and inspec-
tion of assay intensity data and genotype clustering images.

Statistical methods

We calculated risk allele frequencies and age and African
ancestry distributions for whites and African Americans sep-
arately. We tested for departures from Hardy-Weinberg equi-
librium in white and African-American controls using
Pearson’s χ2 test, and we reinspected the genotype clustering
images of SNPs with P values less than 0.05 in either popu-
lation for signs of poor genotype differentiation. SNPs were
retained if their genotypes formed discrete clusters with min-
imal overlap.
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The relationship between each risk variant and incident
breast cancer was assessed by using logistic regression. We
estimated odds ratios and 95% confidence intervals assuming
additive genetic models. The risk allele for each SNP was se-
lected a priori based on the meta-analysis by Zhang et al. (40)
or previous GWAS (30–39). We assumed that the risk allele
was the same for African Americans and whites unless the
majority of the statistically significant associations reported
indicated otherwise (2–5, 11, 12).
All models were stratified by race and adjusted for propor-

tion of African ancestry and age at diagnosis or selection. We
centered age at 50 years and ancestry at race-specific means.
An offset term was included to account for unequal sampling
by race and age group. We will herein refer to these frequent-
ist estimates as the maximum-likelihood estimation (MLE)
odds ratios.

Bayesian analysis

Bayes’ theorem states that the posterior probability distri-
bution for the parameter of interest given the observed data,
f(β|D), is proportional to the likelihood of the observed data,
L(β|D), multiplied by the prior probability distribution f(β)
(45, 46). Here, the likelihood function is the same as the
MLE likelihood, with the log odds of being a case given ex-
posure Xj and covariates W modeled as follows:

ln
p

1� p

� �
¼ β0 þ βjXj þWγ:

In this application, βj is the estimated log odds ratio of being a
breast cancer case for each copy of the risk allele at SNP j, and
γ is a vector of estimated log odds ratios for age and ancestry.
To incorporate the priors, we added a second stage to the
model, βj ¼ zjπþ δj, where zj is a j × 1 vector of 1 second, π
is the prior log odds ratio, and δj is assumed to be normally dis-
tributed with mean 0 and variance τ2. For each covariate, the
prior mean (π), variance (τ2), or both can either be estimated
directly from the data or assigned by the investigator. We use
the terms “full-Bayes” to indicate that all priors were assigned
independently of the data at hand, “empirical Bayes” when all
priors were estimated from the data, and “semi-Bayes” when
some priors were assigned and others were estimated (47).
We conducted both a full-Bayes analysis and a semi-Bayes

analysis, but did not use empirical Bayes methods, because
the near-0 τ2 generated from this rich data set caused over-
shrinkage of SNP-specific effect estimates. For full-Bayes
analyses, we assigned priors for the mean and τ2 of all covar-
iates. For the semi-Bayes analysis, we assigned a fixed τ2 to
the SNP parameters, but used LD block (i.e., haplotype)–
level odds ratio estimates to inform the SNPs’ prior mean π
and did not specify priors for any other covariates.
To obtain Bayesian (i.e., full-Bayes) log odds ratios, we as-

signed a null-centered, lognormal prior with a mean of 0 and
variance τ2∼ Γ−1 (3, 0.2) to each SNP, such that 95% of the
prior mass for each SNP–breast cancer odds ratio lay between
0.64 and 1.55 when τ2 was equal to its mode (0.05). As dis-
cussed previously, this range likely includes the true value for
any single SNP–breast cancer association. Each Bayesian
model included exactly 1 SNP ( j = 1).

We also assigned null-centered, lognormal priors for age
and ancestry, giving both parameters prior variances of 0.68.
These priors reflect our belief, with moderate uncertainty,
that these mean-centered covariates are weakly associated
with breast cancer. We placed a β0 ∼ N(0, 1,000) prior on
the intercept. In the absence of other information, this vague
prior shouldgenerate posterior intercept estimates nearly iden-
tical to the MLE estimates. We assumed that all priors were
independent.
For the semi-Bayes analysis, we used hierarchical model-

ing to integrate haplotype information (22, 48–50).More spe-
cifically, we used the estimated joint effect of all of the SNPs
in an LD block to inform the prior mean (π). If there was only
1 genotyped SNP in an LD block, π and βjwere identical, and
the hierarchical estimate was very similar to the MLE esti-
mate.We assigned fixed prior variances of 0.05 for each SNP.
The above grouping approach is valid as long as an ex-

changeability assumption is met. This assumption states that,
before evaluating the relationship between the exposures and
the outcome, there was no reason to suspect that any 1 exposure
in a group had a true log odds ratio different from the others in
that group. Because none of the included SNPs are known
causal variants, and all effects are evaluated in terms of risk al-
leles, we believe this assumption is acceptable in our setting.
For Bayesian methods, we present posterior geometric

mean odds ratios (i.e., antilogs of posterior mean log odds ra-
tios) and 95% posterior intervals. For the Bayesian analyses,
we ran 30,000 samples for each SNP model, discarding the
first 1,000 draws as a burn-in and retaining every fifth draw.
We inspected autocorrelation, trace, and density plots to ver-
ify that all posterior estimates converged appropriately.
LD blocks were determined by usingmethods proposed by

Gabriel et al. (51) and conducted in Haploview, version 4.2,
software (Broad Institute, Cambridge, Massachusetts) (52).
Bayesian models were analyzed using PROC MCMC or
PROC GLIMMIX in SAS, version 9.3, software (SAS Insti-
tute, Inc., Cary, North Carolina). Example code is provided
as Web Appendix 2.
GWAS-identified SNPs were considered successfully rep-

licated if their entire 95% posterior intervals fell above the
null, as were SNPs identified in the candidate gene meta-
analysis. More formal homogeneity tests comparing our find-
ings with the meta-analysis or initial GWAS estimates were
inappropriate, because these studies did not consistently re-
port odds ratios from additive genetic models.

RESULTS

As expected, age distributions were similar for cases and
controls, regardless of race. White cases and controls were 52
and 53 years of age at selection, on average, and African-
American cases and controls were 52 years of age, on average
(Web Table 1). Whites had approximately 7% African ances-
try and African Americans had 77%. More detailed descrip-
tions of the study population have been published elsewhere
(53) (Web Appendix 3).
Table 1 shows race-stratified risk allele frequencies and

Hardy-Weinberg equilibrium P values. Seven SNPs were not
inHardy-Weinbergequilibriumbyourcriterion (P<0.05).We
retained 6 of these, because their clustering images indicated

384 O’Brien et al.

Am J Epidemiol. 2014;179(3):382–394



good differentiation, and none failed Hardy-Weinberg equi-
librium tests in both races. We excluded the seventh SNP,
rs614367 (myeloma overexpressed gene (MYEOV)), after ob-
serving disparate clusters for the homozygous rare genotype
and finding evidence of allelic dropout.

MLE odds ratios for whites and African Americans are dis-
played in Tables 2 and 3, respectively. Confidence limit ratios
and posterior limit ratios for each model are displayed to fa-
cilitate comparisons of model precision.

Among whites in our study, 18 of the GWAS-identified
SNPs successfully replicated. All of the fibroblast growth fac-
tor receptor 2 gene (FGFR2) SNPs had relatively strong, posi-
tive associations with breast cancer (odds ratios (ORs) > 1.15),
as did both of the mitochondrial ribosomal protein S30 gene
(MRPS30) SNPs, 2 of the TOX high mobility group box fam-
ilymember 3 gene (TOX3) SNPs (rs3803662 and rs4784227),
rs889312 in mitogen-activated protein kinase kinase kinase 1
gene (MAP3K1), rs704010 in zinc finger, MIZ-type contain-
ing 1 gene (ZMIZ1), and rs2107425 in H19, imprinted mater-
nally expressed transcript gene (H19). The 95% confidence
interval for rs909116 in lymphocyte-specific protein 1 gene
(LSP1) excluded the null, but the Bayesian odds ratio was at-
tenuated and did not meet our replication criteria. Three other
FGFR2 SNPs (rs3750817, rs11200014, and rs2162540)
were strongly associated with breast cancer (OR > 1.2) in
whites.

None of the SNPs selected from the candidate gene meta-
analysis replicated, though several SNPs in ataxia telangiec-
tasia mutated gene (ATM) and tumor protein p53 gene (TP53)
were strongly associated with disease (|ln OR| > 0.15). The
original GWAS and meta-analysis odds ratios are provided
in Table 2 for further reference.

The most extreme example of the difference betweenMLE
and Bayesian estimates in whites in our study was for
rs3104746 in TOX3, a rare SNP (risk allele frequency = 2%)
with the highest MLE odds ratio (OR = 1.66). Here, the
Bayesian estimate was closer to the null (OR = 1.42) and
was more precise (MLE confidence limit ratio = 2.29 vs.
Bayesian posterior limit ratio = 2.01; Web Appendix 4,
Web Figure 1).

Ten of the GWAS-identified SNPs successfully replicated
in African Americans (Table 3 and Web Figure 2). This in-
cluded 9 SNPs in FGFR2 (ORs > 1.15) and rs2046210 in es-
trogen receptor 1 gene (ESR1). Two other GWAS-identified
SNPs, rs2107425 (in H19) and rs12443621 (in TOX3), had
95% posterior intervals that excluded the null, but both
were inversely associated with breast cancer and, thus, incon-
sistent with original reports. Two additional TOX3 SNPs
(rs3104746 and rs3112562) had odds ratios greater than
1.25 via either analysis method. Some of the ATM and
ESR1 MLE odds ratios were relatively strong, but none of
the SNPs from the candidate gene meta-analysis successfully
replicated in African Americans.

The 77 SNPs evaluable in whites separated into 55 LD
blocks. The thirteen SNPs in FGFR2 formed the largest
block, followed by ATM (5 SNPs) and TP53 (3 SNPs). LD
blocks consisting of 2 highly correlated SNPs were also
genotyped in caspase 8, apoptosis-related cysteine peptidase
gene (CASP8), cyclin-dependent kinase inhibitor 2A/B
genes(CDKN2A/CDKN2B),TOX3, andcytochromecoxidase

assembly homolog 11 gene (COX11). In African Americans,
the FGFR2 SNPs formed 3 separate blocks of 5, 4, and 2
SNPs, respectively, whereas the other 3 SNPs were not
strongly linked. One of the unlinked SNPs, rs1896395, was
not evaluable in whites (risk allele frequency = 0%). TOX3
contained two 2-SNP LD blocks, and TP53 contained a sin-
gle 3-SNP block. The 2 SNPs within CASP8, CDKN2A, and
COX11 were again in high LD. None of the ATM SNPs was
strongly correlated in African Americans. In total, the 73
SNPs evaluable in African Americans formed 58 LD blocks.

Semi-Bayes odds ratios and 95% posterior intervals for the
hierarchical models are presented in Tables 2 and 3 and Web
Figures 3 and 4. In general, the hierarchical-based estimates
had comparable or slightly lower precision than the MLE
odds ratios and consistently lower precision than the Bayes-
ian estimates. According to hierarchically derived estimates,
many of the SNPs in the larger LD blocks were not associated
with breast cancer. For example, MLE and Bayesian odds ra-
tios indicated that all 13 of the highly correlated FGFR2
SNPs were strongly associated with breast cancer among
whites, whereas the hierarchical model generated near-null
estimates for these SNPs. Of the 13, rs2981579 had the stron-
gest association (OR = 1.20, 95% posterior interval: 0.85,
1.72). Similarly, MLE and Bayesian models indicated that
10 of the 14 FGFR2 SNPs were associated with breast cancer
in African Americans, whereas hierarchical modeling pro-
duced elevated associations for 1 SNP in each LD block
(rs3750817, rs2981578, and rs2420946) and for 2 of 3 un-
linked SNPs.

DISCUSSION

Because several of the SNPs analyzed here were previ-
ously reported for this study population (54), we will limit
our discussion to novel findings. Among whites, statistically
significant associations for rs10757278 (in CDKN2A/
CDKN2B) and rs3104746 (in TOX3) have never before
been reported. We also corroborated previously observed as-
sociations between breast cancer and several well-validated
GWAS-identified SNPs, including 2 MRPS30 SNPs
(rs4415084 and rs10941679) (4, 35, 39, 55–61), rs1562430
in 8q24 (35, 36, 57), and rs4784227 in TOX3 (33, 62). Addi-
tionally, we replicated several less-established GWAS-
-identified SNPs, including rs704010 in ZMIZ1 (36) and
rs3750817, rs10736303, rs1078806, and rs2981578 in
FGFR2 (30, 31). The only CASP8, ATM, or TP53 SNP to
demonstrate a statistically significant association (rs9894986
in TP53) was not associated with disease in the study by
Zhang et al. (40).

We are the first to report a statistically significant associa-
tion for rs3750817 in FGFR2 in African Americans. Previous
investigations of rs2046210 (in ESR1) in African Americans
produced mostly near-null odds ratios (2–6, 11, 63), but sev-
eral of the FGFR2 and TOX3 SNPs were associated with
breast cancer in 1 or more prior investigations. This includes
rs10736303 and rs2981578 (in FGFR2) (5, 8) and rs3104746
and rs3112562 (in TOX3) (9). Both rs2981578 and rs3104746
were positively associated with disease in a pooled analysis
by Chen et al. (2), but approximately 20% of these partici-
pants were drawn from our study population. In general,
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Table 1. Frequencies of Breast Cancer Risk Alleles Among Whites and African Americans in the Carolina Breast Cancer Study, by Race and

Case Status, North Carolina, 1993–2001

Gene or
Chromosomal

Region
SNP

Whites African Americans

Risk
Allele

RAF Casesa

(n = 1,247)
RAF Controlsa

(n = 1,105)
HWE

P Value
Risk
Allele

RAF Casesa

(n = 766)
RAF Controlsa

(n = 681)
HWE

P Value

1p12 rs11249433 G 0.44 0.41 0.54 G 0.14 0.10 0.01

CASP8 rs1045485 G 0.88 0.87 0.63 C 0.06 0.05 0.74

CASP8 rs17468277 C 0.87 0.87 0.63 C 0.95 0.95 0.95

2q35 rs13387042 A 0.54 0.47 0.83 A 0.74 0.73 1.00

2p rs4666451 G 0.60 0.63 0.30 G 0.78 0.77 0.12

SLC4A rs4973768 T 0.48 0.42 0.22 T 0.36 0.40 0.05

4p rs12505080 C 0.29 0.24 0.80 C 0.17 0.17 0.64

TLR1 rs7696175 T 0.45 0.45 0.91 T 0.08 0.06 0.54

MRPS30 rs4415084 T 0.43 0.42 0.18 T 0.64 0.58 0.70

MRPS30 rs10941679 G 0.29 0.30 0.76 G 0.19 0.19 0.17

5p12 rs981782 T 0.53 0.59 0.26 T 0.92 0.91 0.60

5q rs30099 T 0.10 0.10 0.40 T 0.16 0.12 0.75

MAP3K rs889312 C 0.32 0.34 0.85 C 0.33 0.36 0.08

ESR1 rs2046210 A 0.36 0.35 0.48 A 0.64 0.61 0.15

ESR1 rs851974 G 0.42 0.43 0.28 G 0.17 0.17 0.46

ESR1 rs2077647 A 0.51 0.49 0.64 A 0.52 0.51 0.16

ESR1 rs2234693 T 0.53 0.57 0.45 T 0.47 0.48 0.63

ESR1 rs1801132 C 0.76 0.76 0.43 C 0.90 0.88 0.36

ESR1 rs3020314 C 0.36 0.34 0.15 C 0.69 0.71 0.75

ESR1 rs3798577 T 0.52 0.53 0.43 T 0.57 0.54 0.27

ECHDC1 rs2180341 G 0.25 0.27 0.55 G 0.31 0.33 0.83

RELN rs17157903 T 0.13 0.12 0.06 T 0.11 0.10 0.08

8q24 rs13281615 G 0.43 0.42 0.17 G 0.44 0.43 0.58

8q24 rs1562430 T 0.59 0.57 0.78 T 0.54 0.53 0.61

CDKN2A/B rs3731257 T 0.23 0.23 0.24 T 0.09 0.11 0.89

CDKN2A/B rs3731249 A 0.03 0.03 0.90 A 0.01 0.00 0.95

CDKN2A/B rs518394 G 0.44 0.48 0.17 G 0.08 0.08 0.06

CDKN2A/B rs564398 G 0.42 0.47 0.29 G 0.08 0.08 0.02

CDKN2A/B rs1011970 T 0.19 0.15 0.62 T 0.33 0.34 0.14

CDKN2A/B rs10757278 A 0.54 0.55 0.18 A 0.81 0.82 0.77

CDKN2A/B rs10811661 C 0.17 0.20 0.02 C 0.07 0.07 0.24

ANKRD16 rs2380205 C 0.56 0.60 0.88 C 0.42 0.46 0.72

ZNF365 rs10995190 G 0.86 0.82 0.76 G 0.83 0.83 0.90

ZMIZ1 rs704010 T 0.43 0.42 0.93 T 0.11 0.08 0.82

FGFR2 rs1896395 A 0.00 0.00 0.96 A 0.20 0.20 0.04

FGFR2 rs3750817 C 0.65 0.60 0.16 C 0.91 0.88 0.83

FGFR2 rs10736303 G 0.54 0.49 0.19 G 0.87 0.84 0.75

FGFR2 rs11200014 A 0.46 0.41 0.65 A 0.20 0.21 0.75

FGFR2 rs2981579 T 0.47 0.41 0.51 T 0.62 0.61 0.10

FGFR2 rs1078806 G 0.45 0.41 0.53 G 0.21 0.21 0.99

FGFR2 rs2981578 C 0.54 0.49 0.09 C 0.87 0.84 0.45

FGFR2 rs1219648 G 0.45 0.39 0.35 G 0.44 0.41 0.57

FGFR2 rs2912774 A 0.45 0.40 0.26 A 0.59 0.55 0.07

Table continues
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the SNPs identified in the candidate gene meta-analysis were
rarer and had weaker associations than the GWAS-identified
SNPs, making it difficult to detect meaningful associations.

As expected given our choice of null-centered priors, the
Bayesian estimates were closer to the null than the MLE es-
timates. Although the 2 odds ratio estimates were very similar

Table 1. Continued

Gene or
Chromosomal

Region
SNP

Whites African Americans

Risk
Allele

RAF Casesa

(n = 1,247)
RAF Controlsa

(n = 1,105)
HWE

P Value
Risk
Allele

RAF Casesa

(n = 766)
RAF Controlsa

(n = 681)
HWE

P Value

FGFR2 rs2936870 T 0.45 0.40 0.25 T 0.60 0.56 0.14

FGFR2 rs2420946 T 0.44 0.39 0.21 T 0.54 0.52 0.03

FGFR2 rs2162540 G 0.44 0.39 0.28 G 0.54 0.52 0.41

FGFR2 rs2981582 T 0.44 0.39 0.30 T 0.49 0.49 0.96

FGFR2 rs3135718 G 0.44 0.39 0.23 G 0.58 0.54 0.65

10q rs10510126 C 0.89 0.89 0.38 C 0.89 0.90 0.21

ATM rs1800054 G 0.02 0.02 0.34 G 0.00 0.00 0.94

ATM rs4986761 C 0.02 0.01 0.68 C 0.00 0.00 0.98

ATM rs1800056 C 0.02 0.01 0.67 C 0.00 0.00 0.95

ATM rs1800057 G 0.03 0.02 0.90 G 0.01 0.01 0.91

ATM rs1800058 T 0.02 0.02 0.06 T 0.01 0.01 0.91

ATM rs1801516 A 0.15 0.14 0.17 A 0.03 0.02 0.48

ATM rs3092992 C 0.06 0.04 0.13 C 0.01 0.01 0.77

ATM rs664143 C 0.58 0.57 0.70 C 0.66 0.66 0.45

ATM rs170548 G 0.31 0.37 0.88 G 0.09 0.12 0.07

ATM rs3092993 A 0.15 0.14 0.19 A 0.03 0.02 0.48

LSP1 rs3817198 C 0.33 0.34 0.18 C 0.17 0.17 0.16

LSP1 rs909116 T 0.54 0.52 0.20 T 0.71 0.72 0.96

MYEOV rs614367 T 0.18 0.11 0.05 T 0.13 0.15 0.33

H19 rs2107425 C 0.71 0.68 0.74 C 0.48 0.53 0.42

TOX3 rs8049149 T 0.00 0.00 0.98 T 0.02 0.02 0.32

TOX3 rs16951186 T 0.01 0.01 0.75 T 0.17 0.19 0.95

TOX3 rs8051542 T 0.46 0.44 0.43 T 0.35 0.30 0.12

TOX3 rs12443621 G 0.51 0.41 0.39 G 0.47 0.51 1.00

TOX3 rs3803662 T 0.32 0.24 0.73 C 0.48 0.46 0.65

TOX3 rs4784227 T 0.29 0.22 0.62 T 0.08 0.07 0.59

TOX3 rs3104746 A 0.03 0.02 0.48 A 0.26 0.18 0.87

TOX3 rs3112562 G 0.22 0.20 0.45 G 0.52 0.46 0.88

TOX3 rs9940048 A 0.26 0.24 0.50 A 0.31 0.30 0.64

TP53 rs9894946 G 0.82 0.84 0.48 G 0.95 0.95 0.25

TP53 rs1614984 T 0.41 0.39 0.22 T 0.40 0.40 0.03

TP53 rs4968187 T 0.00 0.00 0.93 T 0.01 0.00 0.92

TP53 rs12951053 C 0.07 0.06 0.47 C 0.11 0.11 0.09

TP53 rs17880604 C 0.02 0.01 0.21 C 0.00 0.00 0.95

TP53 rs1800372 G 0.02 0.02 0.54 G 0.00 0.00 0.98

TP53 rs2909430 G 0.15 0.13 0.66 G 0.27 0.24 0.64

TP53 rs1042522 C 0.75 0.77 0.64 C 0.39 0.43 0.77

TP53 rs8079544 C 0.95 0.95 1.00 C 0.89 0.89 0.83

COX11 rs7222197 G 0.71 0.75 0.60 G 0.66 0.65 0.70

COX11 rs6504950 G 0.71 0.75 0.59 G 0.67 0.65 0.66

Abbreviations: HWE, Hardy-Weinberg equilibrium; RAF, risk allele frequency; SNP, single nucleotide polymorphism.
a Weighted by inverse sampling probability.
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Table 2. Comparison of Odds Ratios and Confidence Limit Ratios or Posterior Limit Ratios for Maximum Likelihood Estimation, Bayesian, and

Hierarchical Regression Models Among White Women (1,247 Cases and 1,105 Controls) in the Carolina Breast Cancer Study, North Carolina,

1993–2001

Locus and LD Block SNP
Reference

No.

Reference
Model Type

MLE Bayesian Hierarchical

ORa 95% CI ORb 95% CI CLR ORb 95% PI PLR ORc 95% PI PLR

1p12 rs11249433d 28 1.14 1.10, 1.19 1.09 0.96, 1.24 1.28 1.09 0.96, 1.22 1.28 1.09 0.96, 1.24 1.28

CASP8 block1 rs1045485e 33 1.12 1.08, 1.18 1.13 0.94, 1.35 1.43 1.11 0.93, 1.29 1.39 1.08 0.78, 1.49 1.90

CASP8 block1 rs17468277 1.12 0.93, 1.34 1.43 1.11 0.93, 1.29 1.38 1.04 0.76, 1.44 1.90

2q35 rs13387042d 27 1.20 1.14, 1.26 1.08 0.96, 1.22 1.28 1.08 0.96, 1.21 1.27 1.08 0.96, 1.22 1.28

2p rs4666451f 23 1.03 1.00, 1.06 1.02 0.90, 1.16 1.28 1.02 0.90, 1.14 1.27 1.02 0.90, 1.16 1.28

SLC4A7 rs4973768d 29 1.16 1.10, 1.24 1.04 0.92, 1.17 1.28 1.04 0.92, 1.17 1.28 1.04 0.92, 1.17 1.28

4p rs12505080f 25 1.15g 1.03, 1.28 1.06 0.92, 1.23 1.33 1.06 0.92, 1.21 1.31 1.06 0.92, 1.23 1.33

TLR1 rs7696175f 25 1.12g 1.00, 1.26 1.09 0.96, 1.23 1.28 1.09 0.96, 1.22 1.27 1.09 0.96, 1.23 1.28

MRPS30 rs4415084d 32 1.16 1.10, 1.21 1.23 1.08, 1.40 1.30 1.22 1.07, 1.37 1.28 1.23 1.08, 1.40 1.30

MRPS30 rs10941679f 32 1.19 1.13, 1.26 1.18 1.03, 1.36 1.32 1.17 1.01, 1.33 1.31 1.18 1.03, 1.36 1.32

5p12 rs981782d 23 1.04 1.01, 1.08 0.98 0.86, 1.11 1.28 0.98 0.87, 1.10 1.27 0.98 0.86, 1.11 1.28

5q rs30099f 23 1.05 1.01, 1.10 1.04 0.85, 1.28 1.52 1.04 0.84, 1.24 1.48 1.04 0.85, 1.28 1.52

MAP3K1 rs889312d 23 1.13 1.10, 1.16 1.19 1.04, 1.35 1.30 1.18 1.03, 1.32 1.29 1.19 1.04, 1.35 1.30

ESR1 rs2046210d 30 1.29 1.21, 1.37 1.09 0.96, 1.24 1.30 1.08 0.95, 1.22 1.28 1.09 0.96, 1.24 1.30

ESR1 rs851974 0.91 0.80, 1.03 1.29 0.91 0.81, 1.03 1.27 0.91 0.80, 1.03 1.29

ESR1 rs2077647 0.97 0.86, 1.10 1.28 0.97 0.86, 1.10 1.27 0.97 0.86, 1.10 1.28

ESR1 rs2234693 0.95 0.84, 1.07 1.28 0.95 0.84, 1.06 1.27 0.95 0.84, 1.07 1.28

ESR1 rs1801132e 33 1.05 1.00, 1.11 0.92 0.80, 1.06 1.34 0.93 0.80, 1.05 1.31 0.92 0.80, 1.06 1.34

ESR1 rs3020314e 33 1.12 1.06, 1.18 1.05 0.92, 1.19 1.29 1.05 0.93, 1.18 1.27 1.05 0.92, 1.19 1.29

ESR1 rs3798577 1.03 0.91, 1.17 1.28 1.03 0.91, 1.16 1.27 1.03 0.91, 1.17 1.28

ECHDC1 rs2180341d 24 1.41 1.25, 1.59 1.04 0.90, 1.20 1.34 1.04 0.89, 1.19 1.33 1.04 0.90, 1.20 1.34

RELN rs17157903f 25 1.11 1.00, 1.23 0.87 0.73, 1.04 1.42 0.89 0.75, 1.05 1.40 0.87 0.73, 1.04 1.42

8q24 rs13281615d 23 1.08 1.05, 1.11 1.11 0.98, 1.26 1.28 1.11 0.98, 1.24 1.26 1.11 0.98, 1.26 1.28

8q24 rs1562430d 29 1.17 1.10, 1.25 1.13 0.99, 1.28 1.29 1.12 0.99, 1.26 1.27 1.13 0.99, 1.28 1.29

CDKN2A/B rs3731257 0.93 0.81, 1.07 1.32 0.94 0.81, 1.07 1.31 0.93 0.81, 1.07 1.32

CDKN2A/B rs3731249 0.90 0.63, 1.28 2.04 0.94 0.68, 1.20 1.78 0.90 0.63, 1.29 2.04

CDKN2A/B block 1 rs518394 1.03 0.91, 1.16 1.28 1.03 0.91, 1.15 1.26 0.98 0.76, 1.27 1.28

CDKN2A/B block 1 rs564398 1.04 0.92, 1.17 1.28 1.04 0.91, 1.17 1.28 1.05 0.82, 1.36 1.67

CDKN2A/B rs1011970d 29 1.20 1.11, 1.30 1.13 0.96, 1.33 1.38 1.12 0.95, 1.30 1.36 1.13 0.96, 1.33 1.38

CDKN2A/B rs10757278 1.17 1.04, 1.33 1.28 1.16 1.01, 1.30 1.28 1.17 1.04, 1.33 1.28

CDKN2A/B rs10811661 1.00 0.85, 1.18 1.38 1.01 0.85, 1.16 1.36 1.00 0.85, 1.18 1.38

ANKRD16 rs2380205d 29 1.06 1.02, 1.10 1.01 0.89, 1.14 1.28 1.01 0.89, 1.14 1.27 1.01 0.89, 1.14 1.28

ZNF365 rs10995190d 29 1.16 1.10, 1.22 1.00 0.84, 1.20 1.43 1.00 0.85, 1.17 1.38 1.00 0.84, 1.20 1.43

ZMIZ1 rs704010d 29 1.07 1.03, 1.11 1.24 1.09, 1.41 1.29 1.23 1.08, 1.39 1.28 1.24 1.09, 1.41 1.29

FGFR2 block 1 rs3750817 1.24 1.09, 1.40 1.29 1.22 1.08, 1.37 1.28 0.97 0.81, 1.16 1.43

FGFR2 block 1 rs10736303f 23 1.25 1.18, 1.32 1.33 1.17, 1.50 1.28 1.31 1.15, 1.47 1.28 1.08 0.79, 1.48 1.88

FGFR2 block 1 rs11200014 1.30 1.15, 1.48 1.28 1.29 1.13, 1.44 1.27 0.94 0.66, 1.35 2.05

FGFR2 block 1 rs2981579d 28 1.17g 1.07, 1.27 1.33 1.18, 1.51 1.28 1.31 1.16, 1.48 1.27 1.20 0.85, 1.72 2.03

FGFR2 block 1 rs1078806f 24 1.26 1.13, 1.40 1.29 1.14, 1.46 1.28 1.28 1.14, 1.44 1.26 0.95 0.67, 1.34 1.99

FGFR2 block 1 rs2981578f 23 1.26 1.19, 1.34 1.32 1.17, 1.50 1.28 1.30 1.15, 1.45 1.26 1.11 0.81, 1.51 1.86

FGFR2 block 1 rs1219648d 25 1.27 1.18, 1.36 1.31 1.16, 1.48 1.28 1.29 1.14, 1.45 1.27 1.04 0.72, 1.51 2.10

FGFR2 block 1 rs2912774f 23 1.26 1.19, 1.34 1.30 1.15, 1.47 1.28 1.28 1.13, 1.44 1.27 0.96 0.65, 1.40 2.13
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Table 2. Continued

Locus and LD Block SNP
Reference

No.

Reference
Model Type

MLE Bayesian Hierarchical

ORa 95% CI ORb 95% CI CLR ORb 95% PI PLR ORc 95% PI PLR

FGFR2 block 1 rs2936870f 23 1.26 1.19, 1.34 1.30 1.15, 1.47 1.28 1.29 1.13, 1.44 1.28 0.98 0.67, 1.44 2.14

FGFR2 block 1 rs2420946f 25 1.25 1.18, 1.36 1.30 1.15, 1.48 1.28 1.28 1.14, 1.45 1.27 0.99 0.67, 1.46 2.16

FGFR2 block 1 rs2162540 1.31 1.15, 1.48 1.28 1.29 1.13, 1.44 1.27 1.04 0.71, 1.52 2.10

FGFR2 block 1 rs2981582d 23 1.26 1.23, 1.30 1.30 1.15, 1.48 1.28 1.29 1.13, 1.44 1.28 1.01 0.69, 1.48 2.09

FGFR2 block 1 rs3135718f 23 1.15 1.07, 1.23 1.31 1.16, 1.48 1.28 1.29 1.14, 1.45 1.27 1.05 0.72, 1.51 2.04

10q rs10510126f 25 1.20 1.08, 1.35 1.11 0.91, 1.35 1.47 1.10 0.91, 1.31 1.43 1.11 0.91, 1.35 1.47

ATM rs1800054 1.01 0.65, 1.58 2.45 1.03 0.70, 1.42 2.03 1.01 0.65, 1.58 2.45

ATM rs1800057e 33 1.20h 1.01, 1.44 1.09 0.76, 1.56 2.06 1.08 0.78, 1.39 1.79 1.09 0.76, 1.56 2.06

ATM rs1800058 0.82 0.54, 1.25 2.33 0.90 0.62, 1.18 1.90 0.82 0.54, 1.25 2.34

ATM block 1 rs1801516 0.98 0.82, 1.17 1.43 0.99 0.84, 1.16 1.39 0.95 0.69, 1.32 1.94

ATM block 1 rs3092992 1.19 0.89, 1.60 1.80 1.16 0.87, 1.46 1.67 1.15 0.89, 1.49 1.68

ATM block 1 rs664143 1.02 0.90, 1.15 1.28 1.02 0.90, 1.14 1.27 1.10 0.92, 1.31 1.42

ATM block 1 rs170548 0.98 0.86, 1.12 1.31 0.98 0.86, 1.11 1.29 0.92 0.76, 1.11 1.50

ATM block 1 rs3092993 0.98 0.82, 1.18 1.43 0.99 0.83, 1.15 1.39 0.97 0.70, 1.35 1.94

LSP1 rs3817198d 23 1.07 1.04, 1.11 1.08 0.95, 1.24 1.30 1.08 0.95, 1.22 1.28 1.08 0.95, 1.24 1.30

LSP1 rs909116d 29 1.17 1.10, 1.24 1.14 1.01, 1.30 1.28 1.13 0.99, 1.27 1.28 1.14 1.01, 1.30 1.28

H19 rs2107425f 23 1.04 1.01, 1.08 1.54 1.30, 1.82 1.31 1.49 1.25, 1.74 1.29 1.54 1.30, 1.82 1.31

TOX3 rs16951186 1.15 1.00, 1.31 3.49 1.14 1.01, 1.30 2.26 1.15 1.00, 1.31 3.49

TOX3 rs8051542f 23 1.09 1.06, 1.13 1.12 0.99, 1.26 1.28 1.11 0.97, 1.23 1.27 1.12 0.99, 1.26 1.28

TOX3 rs1244362f 23 1.11 1.08, 1.14 1.17 1.04, 1.33 1.28 1.16 1.03, 1.31 1.27 1.17 1.04, 1.33 1.28

TOX3 block 1 rs3803662d 23 1.20 1.16, 1.24 1.27 1.11, 1.46 1.31 1.25 1.10, 1.42 1.29 1.14 0.91, 1.43 1.58

TOX3 block 1 rs4784227d 26 1.25 1.20, 1.31 1.26 1.09, 1.44 1.32 1.23 1.07, 1.41 1.31 1.11 0.88, 1.41 1.60

TOX3 rs3104746 1.66 1.10, 2.51 2.29 1.42 0.97, 1.94 2.01 1.66 1.10, 2.51 2.29

TOX3 rs3112562 0.99 0.86, 1.15 1.34 0.99 0.86, 1.13 1.32 0.99 0.86, 1.15 1.34

TOX3 rs9940048 1.03 0.89, 1.19 1.33 1.03 0.89, 1.17 1.32 1.03 0.89, 1.19 1.33

TP53 rs9894946 0.84 0.72, 0.99 1.38 0.86 0.73, 1.00 1.36 0.84 0.72, 0.99 1.38

TP53 rs1614984 1.03 0.91, 1.17 1.28 1.03 0.92, 1.15 1.26 1.03 0.91, 1.17 1.28

TP53 rs12951053e 33 1.15 1.04, 1.26 1.09 0.85, 1.39 1.63 1.08 0.83, 1.32 1.58 1.09 0.85, 1.39 1.63

TP53 rs17880604 0.82 0.51, 1.33 2.62 0.92 0.61, 1.26 2.06 0.82 0.51, 1.33 2.62

TP53 block 1 rs1800372 0.88 0.55, 1.40 2.57 0.95 0.64, 1.30 2.03 0.95 0.68, 1.32 1.94

TP53 block 1 rs2909430 1.11 0.93, 1.33 1.43 1.10 0.92, 1.29 1.41 1.16 0.91, 1.49 1.51

TP53 block 1 rs1042522 0.98 0.85, 1.13 1.33 0.99 0.85, 1.12 1.31 1.06 0.89, 1.26 1.40

TP53 rs8079544 1.24 0.95, 1.63 1.72 1.19 0.92, 1.50 1.63 1.24 0.95, 1.63 1.72

COX11 block 1 rs7222197f 29 1.12 1.04, 1.20 0.98 0.85, 1.12 1.32 0.98 0.86, 1.12 1.29 0.99 0.72, 1.36 1.89

COX11 block 1 rs6504950f 31 1.05 1.03, 1.09 0.98 0.85, 1.12 1.32 0.98 0.84, 1.11 1.31 0.99 0.72, 1.36 1.89

Abbreviations: CI, confidence interval; CLR, confidence limit ratio; GWAS, genome-wide association study; LD, linkage disequilibrium; MLE,

maximum likelihood estimated; OR, odds ratio; PI, posterior interval; PLR, posterior limit ratio; SNP, single nucleotide polymorphism.
a Odds ratios from initial GWAS or candidate gene meta-analyses (if met criteria for cumulative evidence of association); all odds ratios for

log-additive genetic models, unless otherwise specified. Those without values are not GWAS hits and were not included in the candidate gene

meta-analysis.
b Adjusted for age at diagnosis (cases) or selection (controls) and proportion of African ancestry.
c Adjusted for age at diagnosis (case) or selection (controls), proportion of African ancestry, and other SNPs in LD block.
d Previous GWAS hit.
e Cumulative evidence of an association in the meta-analysis by Zhang et al. (40).
f Other GWAS-identified gene.
g Odds ratio estimated using general genetic model.
h Odds ratio estimated using dominant genetic model.
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Table 3. Comparison of Odds Ratios and Confidence Limit Ratios or Posterior Limit Ratios for Frequentist, Basic Hierarchical, and Bayesian

Regression Models Among African American Women (766 Cases and 681 Controls) in the Carolina Breast Cancer Study, North Carolina,

1993–2001

Locus and LD Block SNP
Reference

No.

Reference
Model Type

MLE Bayesian Hierarchical

ORa 95% CI ORb 95% CI CLR ORb 95% PI PLR ORc 95% PI PLR

1p12 rs11249433d 28 1.14 1.10, 1.19 1.26 0.99, 1.60 1.61 1.22 0.96, 1.48 1.53 1.26 0.99, 1.60 1.61

CASP8 block 1 rs1045485e 33 1.12 1.08, 1.18 0.93 0.67, 1.29 1.93 0.96 0.69, 1.22 1.77 1.12 0.39, 3.17 8.05

CASP8 block 1 rs17468277 1.09 0.78, 1.54 1.99 1.07 0.78, 1.38 1.78 1.20 0.41, 3.53 8.68

2q35 rs13387042d 27 1.20 1.14, 1.26 1.02 0.86, 1.22 1.43 1.02 0.86, 1.20 1.39 1.02 0.86, 1.22 1.43

2p rs4666451f 23 1.03 1.00, 1.06 1.15 0.96, 1.39 1.45 1.13 0.95, 1.34 1.41 1.15 0.96, 1.39 1.45

SLC4A7 rs4973768d 29 1.16 1.10, 1.24 0.90 0.77, 1.06 1.38 0.91 0.77, 1.04 1.35 0.90 0.77, 1.06 1.38

4p rs12505080f 25 1.15g 1.03, 1.28 1.09 0.88, 1.34 1.52 1.08 0.88, 1.30 1.48 1.09 0.88, 1.34 1.52

TLR1 rs7696175f 25 1.12g 1.00, 1.26 1.39 1.04, 1.86 1.79 1.29 0.99, 1.66 1.68 1.39 1.04, 1.86 1.80

MRPS30 rs4415084d 32 1.16 1.10, 1.21 1.13 0.97, 1.33 1.38 1.13 0.96, 1.30 1.35 1.13 0.97, 1.33 1.38

MRPS30 rs10941679f 32 1.19 1.13, 1.26 1.00 0.82, 1.22 1.49 1.01 0.83, 1.19 1.43 1.00 0.82, 1.22 1.49

5p12 rs981782d 23 1.04 1.01, 1.08 1.11 0.84, 1.46 1.74 1.09 0.84, 1.36 1.61 1.11 0.84, 1.46 1.74

5q rs30099f 23 1.05 1.01, 1.10 1.22 0.98, 1.52 1.55 1.19 0.96, 1.44 1.50 1.22 0.98, 1.52 1.55

MAP3K1 rs889312d 23 1.13 1.10, 1.16 0.95 0.80, 1.13 1.41 0.96 0.81, 1.11 1.37 0.95 0.80, 1.13 1.41

ESR1 rs2046210d 30 1.29 1.21, 1.37 1.22 1.04, 1.43 1.38 1.20 1.03, 1.39 1.35 1.22 1.04, 1.43 1.38

ESR1 rs851974 0.93 0.76, 1.14 1.50 0.94 0.78, 1.13 1.45 0.93 0.75, 1.14 1.50

ESR1 rs2077647 1.07 0.92, 1.25 1.37 1.07 0.92, 1.23 1.34 1.07 0.92, 1.25 1.37

ESR1 rs2234693 0.96 0.82, 1.13 1.37 0.97 0.83, 1.12 1.35 0.96 0.82, 1.13 1.37

ESR1 rs1801132e 33 1.05 1.00, 1.11 1.19 0.93, 1.52 1.64 1.16 0.91, 1.42 1.55 1.19 0.93, 1.52 1.64

ESR1 rs3020314e 33 1.12 1.06,1.18 1.00 0.84, 1.19 1.41 1.01 0.85, 1.17 1.37 1.00 0.84, 1.19 1.41

ESR1 rs3798577 1.02 0.88, 1.19 1.36 1.02 0.89, 1.18 1.33 1.02 0.87, 1.19 1.36

ECHDC1 rs2180341d 24 1.41 1.25, 1.59 0.98 0.83, 1.15 1.39 0.98 0.84, 1.14 1.36 0.98 0.83, 1.15 1.39

RELN rs17157903f 25 1.11 1.00, 1.23 1.07 0.83, 1.37 1.64 1.07 0.85, 1.31 1.54 1.07 0.83, 1.37 1.64

8q24 rs13281615d 23 1.08 1.05, 1.11 1.00 0.86, 1.18 1.38 1.01 0.85, 1.17 1.37 1.00 0.86, 1.18 1.38

8q24 rs1562430d 29 1.17 1.10, 1.25 1.00 0.86, 1.17 1.36 1.00 0.87, 1.16 1.34 1.00 0.86, 1.17 1.36

CDKN2A/B rs3731257 0.88 0.67, 1.15 1.71 0.91 0.71, 1.14 1.60 0.88 0.67, 1.15 1.71

CDKN2A/B block 1 rs518394 1.01 0.76, 1.35 1.76 1.02 0.78, 1.28 1.64 1.01 0.73, 1.40 1.76

CDKN2A/B block 1 rs564398 1.01 0.75, 1.35 1.79 1.01 0.77, 1.27 1.66 1.00 0.72, 1.40 1.96

CDKN2A/B rs1011970d 29 1.20 1.11, 1.30 0.95 0.81, 1.11 1.38 0.96 0.82, 1.10 1.34 0.95 0.81, 1.11 1.38

CDKN2A/B rs10757278 0.91 0.75, 1.12 1.50 0.93 0.76, 1.09 1.44 0.91 0.75, 1.12 1.50

CDKN2A/B rs10811661 1.00 0.74, 1.35 1.83 1.01 0.76, 1.28 1.67 1.00 0.74, 1.35 1.83

ANKRD16 rs2380205d 29 1.06 1.02, 1.10 0.97 0.83, 1.13 1.37 0.98 0.84, 1.13 1.34 0.97 0.83, 1.13 1.37

ZNF365 rs10995190d 29 1.16 1.10, 1.22 1.06 0.87, 1.29 1.49 1.05 0.86, 1.23 1.44 1.06 0.87, 1.29 1.49

ZMIZ1 rs704010d 29 1.07 1.03, 1.11 1.05 0.80, 1.36 1.69 1.04 0.80, 1.28 1.61 1.05 0.80, 1.36 1.69

FGFR2 rs1896395 1.01 0.83, 1.23 1.48 1.02 0.84, 1.20 1.44 1.01 0.83, 1.23 1.48

FGFR2 block 1 rs3750817 1.74 1.34, 2.26 1.69 1.61 1.22, 2.02 1.66 1.38 1.05, 1.83 1.74

FGFR2 block 1 rs10736303f 23 1.25 1.18, 1.32 1.39 1.12, 1.74 1.56 1.33 1.07, 1.61 1.51 1.08 0.83, 1.39 1.67

FGFR2 block 1 rs11200014 1.04 0.86, 1.26 1.47 1.04 0.85, 1.23 1.45 0.97 0.70, 1.34 1.92

FGFR2 block 1 rs2981579d 28 1.17g 1.07, 1.27 1.22 1.04, 1.42 1.36 1.19 1.03, 1.37 1.33 1.10 0.93, 1.31 1.41

FGFR2 block 1 rs1078806f 24 1.26 1.13, 1.40 1.06 0.88, 1.29 1.47 1.06 0.87, 1.25 1.43 1.00 0.72, 1.38 1.92

FGFR2 block 2 rs2981578f 23 1.26 1.19, 1.34 1.42 1.14, 1.77 1.56 1.36 1.10, 1.65 1.51 1.23 0.99, 1.53 1.54

FGFR2 block 2 rs1219648d 25 1.27 1.18, 1.36 1.19 1.02, 1.39 1.37 1.18 1.01, 1.35 1.33 1.01 0.82, 1.24 1.51

FGFR2 block 2 rs2912774f 23 1.26 1.19, 1.34 1.27 1.09, 1.49 1.37 1.25 1.06, 1.43 1.35 1.09 0.80, 1.49 1.85

FGFR2 block 2 rs2936870f 23 1.26 1.19, 1.34 1.27 1.09, 1.48 1.37 1.25 1.07, 1.44 1.34 1.09 0.80, 1.48 1.84

FGFR2 block 3 rs2420946f 25 1.25 1.18, 1.36 1.17 1.00, 1.37 1.37 1.16 1.00, 1.35 1.35 0.95 0.72, 1.25 1.73

Table continues
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for many of the SNPs assessed here, the degree of attenuation
was strongest when the SNP’s minor allele frequency was
low. These results demonstrate how Bayesian methods are
less vulnerable to extreme observations, and why Bayesian
methods are particularly advantageous when data are sparse
or there is a high probability of spurious associations. In this
way, Bayesian methods may be a less conservative alternative
to standard multiple comparisons adjustment methods.

Because the hierarchical models included more parameters
than the MLE or Bayesian models, they did not improve pre-
cision. However, these methods can help to differentiate in-
dividual effects of highly correlated SNPs. For example, it is
unlikely that all 13 evaluable FGFR2 SNPs are strongly asso-
ciated with breast cancer in whites. Rather, 1 or 2 causal var-
iants within the LD block probably drive all of the observed
associations. In such scenarios, hierarchical models can

Table 3. Continued

Locus and LD Block SNP
Reference

No.

Reference
Model Type

MLE Bayesian Hierarchical

ORa 95% CI ORb 95% CI CLR ORb 95% PI PLR ORc 95% PI PLR

FGFR2 block 3 rs2162540 1.23 1.05, 1.44 1.36 1.21 1.04, 1.40 1.34 1.27 0.96, 1.66 1.37

FGFR2 rs2981582d 23 1.26 1.23, 1.30 1.19 1.02, 1.39 1.37 1.18 1.00, 1.35 1.35 1.19 1.02, 1.39 1.37

FGFR2 rs3135718f 23 1.15 1.07, 1.23 1.26 1.08, 1.46 1.35 1.24 1.07, 1.43 1.33 1.26 1.08, 1.46 1.35

10q rs10510126f 25 1.20 1.08, 1.35 1.04 0.82, 1.32 1.61 1.04 0.82, 1.25 1.53 1.04 0.82, 1.32 1.61

ATM rs1801516 1.22 0.77, 1.95 2.54 1.14 0.76, 1.58 2.08 1.22 0.77, 1.95 2.54

ATM rs664143 0.95 0.81, 1.11 1.38 0.96 0.82, 1.10 1.35 0.95 0.81, 1.11 1.38

ATM rs170548 0.86 0.67, 1.11 1.66 0.90 0.70, 1.10 1.57 0.86 0.67, 1.11 1.66

ATM rs3092993 1.22 0.77, 1.95 2.54 1.14 0.76, 1.58 2.08 1.22 0.77, 1.95 2.54

LSP1 rs3817198d 23 1.07 1.04, 1.11 1.01 0.82, 1.24 1.52 1.01 0.84, 1.21 1.47 1.01 0.82, 1.24 1.52

LSP1 rs909116d 29 1.17 1.10, 1.24 1.00 0.84, 1.19 1.42 1.01 0.84, 1.17 1.39 1.00 0.84, 1.19 1.42

H19 rs2107425f 23 1.04 1.01, 1.08 0.84 0.71, 0.98 1.38 0.86 0.73, 0.98 1.35 0.84 0.71, 0.98 1.38

TOX3 rs8049149 0.92 0.54, 1.56 2.87 0.98 0.64, 1.35 2.10 0.92 0.54, 1.56 2.87

TOX3 rs16951186 0.90 0.74, 1.09 1.49 0.92 0.76, 1.10 1.45 0.90 0.74, 1.09 1.49

TOX3 rs8051542f 23 1.09 1.06, 1.13 1.14 0.97, 1.35 1.39 1.13 0.97, 1.30 1.35 1.14 0.97, 1.35 1.39

TOX3 rs12443621f 23 1.11 1.08, 1.14 0.86 0.74, 1.01 1.36 0.88 0.75, 1.00 1.34 0.86 0.74, 1.01 1.36

TOX3 block 1 rs3803662d 23 1.20 1.16, 1.24 1.06 0.90, 1.23 1.37 1.05 0.91, 1.21 1.34 1.11 0.94, 1.31 1.39

TOX3 block 1 rs4784227d 26 1.25 1.20, 1.31 1.25 0.93, 1.67 1.80 1.19 0.90, 1.51 1.67 1.28 0.96, 1.71 1.77

TOX3 block 2 rs3104746 1.54 1.27, 1.86 1.46 1.49 1.22, 1.75 1.43 1.39 1.14, 1.71 1.50

TOX3 block 2 rs3112562 1.28 1.09, 1.50 1.37 1.26 1.09, 1.46 1.35 1.12 0.94, 1.33 1.41

TOX3 rs9940048 1.10 0.93, 1.31 1.40 1.10 0.92, 1.29 1.39 1.10 0.93, 1.31 1.41

TP53 rs9894946 0.96 0.68, 1.36 2.01 0.98 0.70, 1.28 1.82 0.96 0.68, 1.37 2.01

TP53 rs1614984 1.07 0.92, 1.25 1.36 1.07 0.91, 1.22 1.34 1.07 0.92, 1.25 1.36

TP53 block 1 rs12951053e 33 1.15 1.04, 1.26 1.03 0.80, 1.32 1.64 1.03 0.81, 1.25 1.55 1.01 0.77, 1.32 1.71

TP53 block 1 rs2909430 1.06 0.89, 1.25 1.40 1.06 0.89, 1.22 1.37 1.04 0.84, 1.28 1.52

TP53 block 1 rs1042522 0.98 0.83, 1.15 1.38 0.98 0.83, 1.13 1.36 1.00 0.82, 1.22 1.50

TP53 rs8079544 0.89 0.69, 1.15 1.66 0.92 0.72, 1.12 1.57 0.89 0.69, 1.15 1.66

COX11 block 1 rs7222197f 29 1.12 1.04, 1.20 1.14 0.97, 1.33 1.38 1.12 0.95, 1.29 1.36 1.07 0.77, 1.47 1.90

COX11 block 1 rs6504950f 31 1.05 1.03, 1.09 1.13 0.96, 1.32 1.37 1.12 0.95, 1.28 1.35 1.07 0.77, 1.47 1.90

Abbreviations: CI, confidence interval; CLR, confidence limit ratio; GWAS, genome-wide association study; LD, linkage disequilibrium; MLE,

maximum likelihood estimated; OR, odds ratio; PI, posterior interval; PLR, posterior limit ratio; SNP, single nucleotide polymorphism.
a Odds ratios from initial GWAS or candidate gene meta-analyses (if met criteria for cumulative evidence of association); all odds ratios for

log-additive genetic models, unless otherwise specified. Those without values are not GWAS hits and were not included in the candidate gene

meta-analysis.
b Adjusted for age at diagnosis (cases) or selection (controls) and proportion of African ancestry.
c Adjusted for age at diagnosis (cases) or selection (controls), proportion of African ancestry, and other SNPs in the LD block.
d Previous GWAS hit.
e Cumulative evidence of an association in the meta-analysis by Zhang et al. (40).
f Other GWAS-identified gene.
g Odds ratio estimated using general genetic model.
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effectively accommodate correlated exposures and provide
stable SNP- and haplotype-level odds ratios, whereas models
that evaluate all the SNPs simultaneously in a single-level
model will often produce unstable or nonconvergent esti-
mates (22, 48, 64).
Unfortunately, although we believe these methods would

be beneficial in larger studies, we did not have sufficient
power to reliably differentiate between the strongest FGFR2
SNP odds ratios and the null when so many SNPs were as-
sessed simultaneously. Analyses of SNPs in the other multi-
-SNP LD blocks were relatively more precise, but also largely
inconclusive. The hierarchical models performed better in
African Americans, with rs3750817, rs2981578, rs2420946,
and rs3104746 demonstrating notably stronger associations
than the other SNP(s) in their respective LD blocks. This per-
formance improvement is likely attributable to the anticipated
racial differences in LD block size.
We believe our specifications of prior means and variances

are reasonable. First, aside from mutations in BRCA1/
BRCA2, it is unlikely that a single SNP has a large effect
on breast cancer risk (20). Second, as long as the covariate
priors are appropriately specified, Bayesian analysis with
null-centered priors will bias effect estimates toward the
null (65). Lastly, we believe that correlated SNPs within an
LD block meet the criteria for exchangeability.
After we accounted for our sampling mechanisms, the only

observed discrepancy between study cases and other North
Carolina cases was that African Americans with later stage
disease were underrepresented in our study (66). Therefore,
odds ratios could be biased if the evaluated SNP is related
to disease aggressiveness or medical care utilization. With re-
gard to genotyping, whites were more likely to provide blood
samples than African Americans, but blood donation status
did not differ by case status, disease stage, or other known
risk factors.
The inclusion of in situ cases could bias estimates of SNPs

associated with disease aggressiveness or progression, but
given strong evidence that invasive and in situ tumors have
similar risk profiles (16, 67), we chose to retain these individ-
uals. Analyses limited to invasive cases yielded similar re-
sults (Web Table 2).
This was a racially diverse, population-based sample with

well-validated data. The inclusion of a relatively large sample
of African-American women allowed us to investigate racial
differences in genetic risk factors and, accordingly, provide
information that may help pinpoint causal variants. Although
the results for SNPs that violated Hardy-Weinberg equilib-
rium should be interpreted with caution, the quality control
measures used during the genotyping process should have re-
duced the number and impact of genotype misclassification.
In this analysis, we replicated several previously identified

breast cancer susceptibility loci in whites and African Amer-
icans by using bothMLEandBayesianmethods. Ourfindings
offer additional evidence that these SNPs or chromosomal re-
gions play an important role in breast cancer etiology. The
SNPs that replicated in African Americans are especially in-
structive, because they refine the genomic region containing
the causal variant. Our use of Bayesian methods to incorpo-
rate external information further augments the utility of these
results. We believe that fine-mapping studies and smaller,

etiologically driven investigations may derive even greater
benefit from these better-informed, more stable approaches.

ACKNOWLEDGMENTS

Author affiliations: Department of Epidemiology, Univer-
sity of North Carolina Gillings School of Global Public
Health, Chapel Hill, North Carolina (Katie M. O’Brien,
Stephen R. Cole, Charles Poole, Jeannette T. Bensen,
Lawrence S. Engel, Robert C. Millikan); Lineberger Com-
prehensive Cancer Center, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina (Katie M. O’Brien,
Jeannette T. Bensen, Robert C. Millikan); and Department of
Biostatistics and Carolina Population Center, University of
North Carolina Gillings School of Global Public Health,
Chapel Hill, North Carolina (Amy H. Herring).
This work was supported by the University Cancer Re-

search Fund of North Carolina, the National Cancer Institute
Specialized Program of Research Excellence in Breast Can-
cer (grant NIH/NCI P50-CA58223 to K.M.O., J.T.B., and
R.C.M.), the Lineberger Comprehensive Cancer Center
Core Grant (NIH/NCI P30-CA16086 to K.M.O., J.T.B.,
and R.C.M.), and a Cancer Education and Career Develop-
ment Program institutional training grant from the National
Cancer Institute at the National Institutes of Health (NIH/
NCI 5R25CA057726-20 to K.M.O.).
Wewould like to acknowledge the University of North Car-

olina BioSpecimen Processing Facility for our DNA extrac-
tions, blood processing, storage, and sample disbursement,
the University of North Carolina Mammalian Genotyping
Core for sample genotyping, and Jessica Tse for her technical
assistance.We also thank the staff of the Carolina Breast Can-
cer Study.
Conflict of interest: none declared.

REFERENCES

1. Hindorff LA, MacArthur J, Morales J, et al. A catalog of
published genome-wide association studies. Bethesda, MD:
National Human Genome Research Institute, National Institutes
of Health; 2013. (www.genome.gov/gwastudies). (Accessed
January 13, 2013).

2. Chen F, Chen GK, Millikan RC, et al. Fine-mapping of breast
cancer susceptibility loci characterizes genetic risk in African
Americans. Hum Mol Genet. 2011;20(22):4491–4503.

3. Hutter CM, YoungAM,Ochs-BalcomHM, et al. Replication of
breast cancer GWAS susceptibility loci in the Women’s Health
Initiative African American SHARe Study. Cancer Epidemiol
Biomarkers Prev. 2011;20(9):1950–1959.

4. Campa D, Kaaks R, Le Marchand L, et al. Interactions between
genetic variants and breast cancer risk factors in the breast and
prostate cancer cohort consortium. J Natl Cancer Inst. 2011;
103(16):1252–1263.

5. Zheng W, Cai Q, Signorello LB, et al. Evaluation of 11 breast
cancer susceptibility loci in African-American women. Cancer
Epidemiol Biomarkers Prev. 2009;18(10):2761–2764.

6. Stacey SN, Sulem P, Zanon C, et al. Ancestry-shift refinement
mapping of the C6orf97-ESR1 breast cancer susceptibility
locus. PLoS Genet. 2010;6(7):e1001029.

392 O’Brien et al.

Am J Epidemiol. 2014;179(3):382–394

www.genome.gov/gwastudies
www.genome.gov/gwastudies
www.genome.gov/gwastudies


7. Rebbeck TR, DeMichele A, Tran TV, et al.
Hormone-dependent effects of FGFR2 and MAP3K1 in
breast cancer susceptibility in a population-based sample of
postmenopausal African-American and European-American
women. Carcinogenesis. 2009;30(2):269–274.

8. Udler MS, Meyer KB, Pooley KA, et al. FGFR2 variants and
breast cancer risk: fine-scale mapping using African American
studies and analysis of chromatin conformation. Hum Mol
Genet. 2009;18(9):1692–1703.

9. Ruiz-Narvaez EA, Rosenberg L, Rotimi CN, et al. Genetic
variants on chromosome 5p12 are associated with risk of breast
cancer in African American women: the Black Women’s
Health Study. Breast Cancer Res Treat. 2010;123(2):525–530.

10. Ruiz-Narváez EA, Rosenberg L, Cozier YC, et al.
Polymorphisms in the TOX3/LOC643714 locus and risk of
breast cancer in African-American women. Cancer Epidemiol
Biomarkers Prev. 2010;19(5):1320–1327.

11. Palmer JR, Ruiz-Narvaez EA, Rotimi CN, et al. Genetic
susceptibility loci for subtypes of breast cancer in an African
American population. Cancer Epidemiol Biomarkers Prev.
2013;22(1):127–134.

12. Huo D, Zheng Y, Ogundiran TO, et al. Evaluation of 19
susceptibility loci of breast cancer in women of African
ancestry. Carcinogenesis. 2012;33(4):835–840.

13. Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer
subtypes, and survival in the Carolina Breast Cancer Study.
JAMA. 2006;295(21):2492–2502.

14. Huo D, Ikpatt F, Khramtsov A, et al. Population differences in
breast cancer: survey in indigenous African women reveals
over-representation of triple-negative breast cancer. J Clin
Oncol. 2009;27(27):4515–4521.

15. Lund MJ, Trivers KF, Porter PL, et al. Race and triple negative
threats to breast cancer survival: a population-based study in
Atlanta, GA. Breast Cancer Res Treat. 2009;113(2):357–370.

16. Millikan RC, Newman B, Tse C, et al. Epidemiology of basal-like
breast cancer. Breast Cancer Res Treat. 2008;109(1):123–139.

17. Surveillance Epidemiology and End Results. US cancer
morality statistics. Bethesda, MD: National Cancer Institute,
National Institutes of Health; 2013. (http://seer.cancer.gov/
canques/mortality.html). (Accessed January 9, 2013).

18. Haiman CA, Stram DO. Exploring genetic susceptibility to
cancer in diverse populations. Curr Opin Genet Dev. 2010;
20(3):330–335.

19. Hinch AG, Tandon A, Patterson N, et al. The landscape of
recombination in African Americans. Nature. 2011;476(7359):
170–175.

20. Hunter DJ. Lessons from genome-wide association studies for
epidemiology. Epidemiology. 2012;23(3):363–367.

21. Hung RJ, Brennan P, Malaveille C, et al. Using hierarchical
modeling in genetic association studies with multiple markers:
application to a case-control study of bladder cancer. Cancer
Epidemiol Biomarkers Prev. 2004;13(6):1013–1021.

22. Conti DV, Witte JS. Hierarchical modeling of linkage
disequilibrium: genetic structure and spatial relations. Am J
Hum Genet. 2003;72(2):351–363.

23. Stephens M, Balding DJ. Bayesian statistical methods for
genetic association studies. Nat Rev Genet. 2009;10(10):
681–690.

24. Newcombe PJ, Reck BH, Sun J, et al. A comparison of
Bayesian and frequentist approaches to incorporating external
information for the prediction of prostate cancer risk. Genet
Epidemiol. 2012;36(1):71–83.

25. Quintana MA, Berstein JL, Thomas DC, et al. Incorporating
model uncertainty in detecting rare variants: the Bayesian risk
index. Genet Epidemiol. 2011;35(7):638–649.

26. Wakefield J. Bayes factors for genome-wide association studies:
comparison with P-values. Genet Epidemiol. 2009;33(1):79–86.

27. Fridley BL, Serie D, Jenkins G, et al. Bayesian mixture models
for the incorporation of prior knowledge to inform genetic
association studies. Genet Epidemiol. 2010;34(5):418–426.

28. Aldrich TE, Vann D, Moorman PG, et al. Rapid reporting of
cancer incidence in a population-based study of breast cancer:
one constructive use of a central cancer registry. Breast Cancer
Res Treat. 1995;35(1):61–64.

29. Weinberg CR, Sandler DP. Randomized recruitment in
case-control studies. Am J Epidemiol. 1991;134(4):421–432.

30. Easton DF, Pooley KA, Dunning AM, et al. Genome-wide
association study identifies novel breast cancer susceptibility
loci. Nature. 2007;447(7148):1087–1093.

31. Gold B, Kirchhoff T, Stefanov S, et al. Genome-wide
association study provides evidence for a breast cancer risk
locus at 6q22.33. Proc Natl Acad Sci U S A. 2008;105(11):
4340–4345.

32. Hunter DJ, Kraft P, Jacobs KB, et al. A genome-wide
association study identifies alleles in FGFR2 associated with
risk of sporadic postmenopausal breast cancer. Nat Genet.
2007;39(7):870–874.

33. Long J, Cai Q, ShuX, et al. Identification of a functional genetic
variant at 16q12.1 for breast cancer risk: results from the
Asia Breast Cancer Consortium. PLoS Genet. 2010;6(6):
e1001002.

34. Stacey SN, Manolescu A, Sulem P, et al. Common variants on
chromosomes 2q35 and 16q12 confer susceptibility to estrogen
receptor–positive breast cancer. Nat Genet. 2007;39(7):
865–869.

35. Thomas G, Jacobs KB, Kraft P, et al. A multistage
genome-wide association study in breast cancer identifies two
new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet.
2009;41(5):579–584.

36. Turnbull C, Ahmed S, Morrison J, et al. Genome-wide
association study identifies five new breast cancer susceptibility
loci. Nat Genet. 2010;42(6):504–507.

37. ZhengW, Long J, Gao Y, et al. Genome-wide association study
identifies a new breast cancer susceptibility locus at 6q25.1.Nat
Genet. 2009;41(3):324–328.

38. Ahmed S, Thomas G, Ghoussaini M, et al. Newly discovered
breast cancer susceptibility loci on 3p24 and 17q23.2. Nat
Genet. 2009;41(5):585–590.

39. Stacey SN, Manolescu A, Sulem P, et al. Common variants on
chromosome 5p12 confer susceptibility to estrogen receptor–
positive breast cancer. Nat Genet. 2008;40(6):703–706.

40. Zhang B, Beeghly-Fadiel A, Long J, et al. Genetic variants
associated with breast-cancer risk: comprehensive research
synopsis, meta-analysis, and epidemiological evidence. Lancet
Oncol. 2011;12(5):477–488.

41. Thomas DC, Witte JS. Point: Population stratification: A
problem for case-control studies of candidate-gene
associations? Cancer Epidemiol Biomarkers Prev. 2002;11(6):
505–512.

42. Barnholtz-Sloan JS, McEvoy B, Shriver MD, et al. Ancestry
estimation and correction for population stratification in
molecular epidemiologic association studies. Cancer
Epidemiol Biomarkers Prev. 2008;17(3):471–477.

43. Nyante SJ, Gammon MD, Kaufman JS, et al. Common genetic
variation in adiponectin, leptin, and leptin receptor and
association with breast cancer subtypes. Breast Cancer Res
Treat. 2011;129(2):593–606.

44. Bortsov AV,Millikan RC, Belfer I, et al. μ-Opioid receptor gene
A118G polymorphism predicts survival in patients with breast
cancer. Anesthesiology. 2012;116(4):896–902.

Breast Cancer Genetics, Race, and Bayesian Methods 393

Am J Epidemiol. 2014;179(3):382–394

http://seer.cancer.gov/canques/mortality.html
http://seer.cancer.gov/canques/mortality.html
http://seer.cancer.gov/canques/mortality.html
http://seer.cancer.gov/canques/mortality.html
http://seer.cancer.gov/canques/mortality.html
http://seer.cancer.gov/canques/mortality.html
http://seer.cancer.gov/canques/mortality.html


45. Gill J. Bayesian Methods: A Social and Behavioral Sciences
Approach. 2nd ed. New York, NY: CRC Press; 2002.

46. Greenland S. Bayesian perspectives for epidemiological
research. II. Regression analysis. Int J Epidemiol. 2007;36(1):
195–202.

47. Greenland S. Bayesian perspectives for epidemiological
research: I. Foundations and basic methods. Int J Epidemiol.
2006;35(3):765–775.

48. Chen GK, Witte JS. Enriching the analysis of genomewide
association studies with hierarchical modeling. Am J Hum
Genet. 2007;81(2):397–404.

49. Greenland S. Principles of multilevel modelling. Int J
Epidemiol. 2000;29(1):158–167.

50. Hung RJ, Baragatti M, Thomas D, et al. Inherited
predisposition of lung cancer: a hierarchical modeling approach
to DNA repair and cell cycle control pathways. Cancer
Epidemiol Biomarkers Prev. 2007;16(12):2736–2744.

51. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of
haplotype blocks in the human genome. Science. 2002;
296(5576):2225–2229.

52. Barrett JC. Haploview: visualization and analysis of SNP
genotype data. Cold Spring Harb Protoc. 2009;2009(10):71.

53. Hall IJ, Moorman PG, Millikan RC, et al. Comparative
analysis of breast cancer risk factors among African-American
women and white women. Am J Epidemiol. 2005;161(1):
40–51.

54. Barnholtz-Sloan JS, Shetty PB, Guan X, et al. FGFR2 and other
loci identified in genome-wide association studies are
associated with breast cancer in African-American and younger
women. Carcinogenesis. 2010;31(8):1417–1423.

55. Milne RL, Goode EL, García-Closas M, et al. Confirmation of
5p12 as a susceptibility locus for progesterone-receptor–
positive, lower grade breast cancer. Cancer Epidemiol
Biomarkers Prev. 2011;20(10):2222–2231.

56. Li J, Humphreys K, Heikkinen T, et al. A combined analysis of
genome-wide association studies in breast cancer. Breast
Cancer Res Treat. 2011;126(3):717–727.

57. Fletcher O, Johnson N, Orr N, et al. Novel breast cancer
susceptibility locus at 9q31.2: results of a genome-wide
association study. J Natl Cancer Inst. 2011;103(5):425–435.

58. Huang Y, Ballinger DG, Dai JY, et al. Genetic variants in the
MRPS30 region and postmenopausal breast cancer risk.
Genome Med. 2011;3(6):42.

59. Milne RL, Gaudet MM, Spurdle AB, et al. Assessing
interactions between the associations of common genetic
susceptibility variants, reproductive history and body mass
index with breast cancer risk in the breast cancer association
consortium: a combined case-control study. Breast Cancer Res.
2010;12(6):R110.

60. Bhatti P, Doody MM, Rajaraman P, et al. Novel breast cancer
risk alleles and interaction with ionizing radiation among US
radiologic technologists. Radiat Res. 2010;173(2):214–224.

61. Higginbotham KS, Breyer JP, McReynolds KM, et al. A
multistage genetic association study identifies breast cancer risk
loci at 10q25 and 16q24. Cancer Epidemiol Biomarkers Prev.
2012;21(9):1565–1573.

62. Udler MS, Ahmed S, Healey CS, et al. Fine scale mapping of
the breast cancer 16q12 locus. Hum Mol Genet. 2010;19(12):
2507–2515.

63. Cai Q, Wen W, Qu S, et al. Replication and functional genomic
analyses of the breast cancer susceptibility locus at 6q25.1
generalize its importance in women of Chinese, Japanese, and
European ancestry. Cancer Res. 2011;71(4):1344–1355.

64. MacLehose RF, Dunson DB, Herring AH, et al. Bayesian
methods for highly correlated exposure data. Epidemiology.
2007;18(2):199–207.

65. Hamra GB, Maclehose RF, Cole SR. Sensitivity analyses for
sparse-data problems—using weakly informative bayesian
priors. Epidemiology. 2013;24(2):233–239.

66. Furberg H, Millikan R, Dressler L, et al. Tumor characteristics
in African American and white women. Breast Cancer Res
Treat. 2001;68(1):33–43.

67. Kerlikowske K. Epidemiology of ductal carcinoma in situ.
J Natl Cancer Inst Monogr. 2010;2010(41):139–141.

394 O’Brien et al.

Am J Epidemiol. 2014;179(3):382–394



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


