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Abstract: Objectives: Although age-related brain changes are becoming better understood, midlife pat-
terns of change are still in need of characterization, and longitudinal studies are lacking. The aim of
this study was to determine if baseline fractional anisotropy (FA), obtained from diffusion tensor imag-
ing (DTI) predicts volume change over a 4-year interval. Experimental design: Forty-four cognitively
healthy middle-age adults underwent baseline DTI and longitudinal T1-weighted magnetic resonance

Contract grant sponsor: The National Institutes of Health; Con-  Disease Research Center, J5/1 Mezzanine, 600 Highland Avenue,
tract grant number: NIH R01 AGO037639, AG027161, AG021155, Madison, WI 53792, USA. E-mail: bbb@medicine.wisc.edu

P50 AG033514; Contract grant sponsor: A Merit Review Grant Received for publication 8 November 2012; Revised 21 March
from the Department of Veterans Affairs; Contract grant number:  2013; Accepted 2 April 2013.

101CX000165 DOI: 10.1002/hbm.22311

*Correspondence to: Barbara B. Bendlin, University of Wisconsin, Published. qnline 17 July 2013 in Wiley Online Library
School of Medicine and Public Health, Wisconsin Alzheimer’s (wileyonlinelibrary.com).

© 2013 Wiley Periodicals, Inc.



¢ Diffusion Parameters Predict Volume Loss ¢

imaging. Tensor-based morphometry methods were used to evaluate volume change over time. FA
values were extracted from regions of interest that included the cingulum, entorhinal white matter,
and the genu and splenium of the corpus callosum. Baseline FA was used as a predictor variable,
whereas gray and white matter atrophy rates as indexed by Tensor-based morphometry were the de-
pendent variables. Principal observations: Over a 4-year period, participants showed significant con-
traction of white matter, especially in frontal, temporal, and cerebellar regions (P < 0.05, corrected for
multiple comparisons). Baseline FA in entorhinal white matter, genu, and splenium was associated
with longitudinal rates of atrophy in regions that included the superior longitudinal fasciculus, ante-
rior corona radiata, temporal stem, and white matter of the inferior temporal gyrus (P < 0.001, uncor-
rected for multiple comparisons). Conclusions: Brain change with aging is characterized by extensive
shrinkage of white matter. Baseline white matter microstructure as indexed by DTI was associated
with some of the observed regional volume loss. The findings suggest that both white matter volume
loss and microstructural alterations should be considered more prominently in models of aging and
neurodegenerative diseases. Hum Brain Mapp 35:2044-2054, 2014.  © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Normal aging is accompanied by a progressive cognitive
decline and neural degeneration; however, the mecha-
nisms for these changes are not fully understood. Histo-
logical studies have established that there is a decrease in
the number and dendritic extent of cortical neurons [Cole-
man and Flood, 1987] and shrinkage of neurons [Terry
et al., 1987], with consequent cerebral atrophy. Although
gray matter loss is evident in aging, several studies sug-
gest that the age-related structural deterioration of white
matter [Tang et al., 1997] is central in the brain aging pro-
cess [O’Sullivan et al., 2001; Pfefferbaum et al., 2005] and
may be involved in disruption of neural networks under-
lying normal cognitive function [Grady, 2008; Greenwood,
2007]. Moreover, human white matter development is
thought to be heterochronic and regionally heterogeneous;
specifically, axons from the prefrontal and other associa-
tion areas continue to myelinate temporally longer than,
for example, sensory or motor areas [Bartzokis et al., 2004;
Benes, 2004]. Fundamental questions still remain, however,
about the temporal relationship between white and gray
matter changes in normal aging. Recently, it has been pro-
posed that white matter alterations may precede gray mat-
ter changes [Bartzokis, 2004; Bartzokis et al., 2004].

Longitudinal in vivo brain imaging of white and gray
matter may help define the temporal relationship of brain
tissue change. Diffusion tensor imaging (DTI), in particu-
lar, has allowed investigators to examine white matter in a
way that was previously not possible [Basser, 1995; Basser
and Pierpaoli, 1996b]. Derived from DTI, fractional anisot-
ropy (FA) [Giorgio et al.,, 2010] is a quantitative index of
the directionality of water diffusion, reflecting the integrity
of the brain tissue [Basser and Pierpaoli, 1996a]. Altera-
tions in the microstructure environment, such as demyelin-
ation of axons and loss of axonal structure, reduce

directional water diffusion and thus reduce FA [Englund,
1998]. Several DTI studies of healthy aging have shown
widespread age-related reductions in FA and elevations in
diffusivity in white matter [Ardekani et al., 2007; Benedetti
et al., 2006; Charlton et al., 2008; Grieve et al., 2007]; how-
ever, across studies there is regional variability, suggesting
that the effect of aging on white matter is still in need of
clarification. Decreases in FA have been consistently
reported in large cerebral white matter regions such as the
centrum semiovale, corona radiata, frontal and parietal
pericallosal areas, and periventricular regions, whereas
less consistent findings have been detected in the splenium
of the corpus callosum, parietal white matter, and limbs of
the internal capsule [Hugenschmidt et al., 2008; Madden
et al., 2004; Pfefferbaum et al., 2005; Salat et al., 2005a].
Although it is well established that white matter integ-
rity, as indexed by FA, decreases with age, the relationship
between these microstructural changes and volume loss
remains to be fully elucidated. In a review article evaluat-
ing voxel-based morphometry (VBM) and DTI studies of
prefrontal white matter [Salat et al., 2005b], a positive cor-
relation between FA and volume was observed only in
participants of >40 years. Although another study [Fjell
et al., 2008] found moderately correlated regional white
matter volume and FA in a similar cohort, Salat et al.’s
result is consistent with the previous research [Bartzokis
et al., 2001; Courchesne et al., 2000; Raz et al., 2004], show-
ing that anterior white matter myelination peaks during
middle age and subsequently declines. The authors [Salat
et al.,, 2005b] suggest that FA may be a microstructural
marker of volumetric measures and thus reduced FA may
reflect decreased white matter volume. In contrast, a previ-
ous study [Benedetti et al., 2006] used whole-brain histo-
grams and found no correlation between mean diffusivity
and volume, as measured through magnetization transfer
magnetic resonance imaging (MRI). However, this

* 2045 o



¢Lyetal o

inconclusive result may be owing to averaging whole-
brain FA and volume, a method that may overlook re-
gional variability. Using DTI and VBM, Hugenschmidt
et al. [2008] showed that regions exhibiting decreased FA
in middle age were the same areas that exhibit white mat-
ter volume loss in older age, suggesting that microstruc-
tural FA changes may precede and predict white matter
atrophy although proving temporal ordering is difficult.

Testing the extent to which microstructural alterations
precede volume loss requires a within-subject longitudinal
approach and was a primary focus of this study. Using
imaging data acquired in a sample of healthy middle-aged
adults, the aim of this study was to understand if micro-
structural alterations, as indexed by FA, were related to
gray and white matter volume change over time. Baseline
white matter health was assessed in regions of interest
(ROIs) within multiple white matter tracts where
age-related declines in tissue integrity have been found
previously. The selected white matter regions included the
cingulum adjacent to hippocampus, entorhinal white mat-
ter, and the cingulum subjacent to the posterior cingulate,
all association fibers observed to be susceptible to age-
related deterioration in comparison to projection fibers
[Stadlbauer et al., 2008]. The ROIs also included the genu
and splenium of the corpus callosum, both of which have
been reported to have age-related FA decreases [Bhagat
and Beaulieu, 2004; Head et al., 2004; Ota et al., 2006; Pfef-
ferbaum et al., 2000, 2005; Sullivan et al., 2006]. FA was
chosen based on its reliable relationship with age-related
white matter alterations [Pfefferbaum et al.,, 2000; Salat
et al., 2005a; Westlye et al., 2010]. The relationship between
FA and white matter alteration has been observed to be
stronger in adults of >40 years [Salat et al., 2005a], similar
in age range to the present sample. Thus, we expected that
the FA signal from the preselected white matter tracts
would predict volume loss in related white matter regions
and gray matter structures, including frontal, parietal,
basal temporal, and parahippocampal regions.

METHODS
Participants

Forty-four cognitively healthy participants underwent
two MRI sessions (baseline and follow-up) as part of the
previous functional MRI studies of memory and aging. All
participants were from the Wisconsin Registry for Alzhei-
mer’s Prevention [Sager et al., 2005], which is a registry of
healthy middle-aged adults who have at least one parent
with late onset Alzheimer’s disease (AD) or no parental
family history of AD. The sample included participants
with parental family history and genetic risk for AD, spe-
cifically, positive Apolipoprotein E €4 (APOE4) status. All
participants underwent a baseline MRI and a follow-up
MRI approximately 4 years later. In addition to MRI,
participants received a neuropsychological assessment.

TABLE I. Demographic features and cognitive

performance
Total N 44
Female: N (%) 27 (61%)
Parental family history AD: N (%) 25 (56%)
APOE4 positive: N (%) 20 (45%)

56.3 = 6.9 (42-75)
15.9 + 2.4 (12-20)
3.48 + 0.88 (2.17-4.92)

Baseline age: years, SD (range)

Baseline education: years, SD (range)

Time from baseline scan to
follow-up: years, SD (range)

MMSE: mean, SD 29.6 = 0.66
WRAT-III reading: mean, SD 522 =35
BVMT-R total: mean, SD 249 + 71
BVMT-R delayed recall: mean, SD 97 £20
RAVLT delayed recall: mean, SD 10.7 = 2.9
Digit span: mean, SD 18.0 = 3.4
TMT A: mean, SD 284 + 85
TMT B: mean, SD 58.7 = 20.9
BNT: mean, SD 56.0 £ 7.8

All neuropsychological scores reported above are raw scores. AD:
Alzheimer’s disease; APOE4: apolipoprotein E, e4; BNT: Boston
Naming Test (Kaplan et al., 2001); BVMT-R: brief visuospatial
memory test-revised (Benedict, 1997); digit span (from WAIS-III)
(Wechsler, 1987); MMSE: mini mental state examination (Folstein
et al., 1975); RAVLT: rey auditory verbal learning test (Rey, 1964);
TMTA/B: trail making test A and B (Reitan, 1993); WRAT-IIIL:
wide range achievement Test-III reading subtest (Jastak, 1993).

Demographics and cognitive performance scores are listed
in Table L

Inclusion criteria for all subjects consisted of the follow-
ing: normal cognitive function determined by neuropsy-
chological evaluation, no current diagnosis of major
psychiatric disease or other major medical conditions (e.g.,
diabetes, myocardial infarction, or recent history of can-
cer), no history of head trauma, and no contraindications
for a MRI scan. Study procedures were approved by the
University of Wisconsin Health Sciences Institutional
Review Board and were in accordance with U.S. federal
regulations. All participants provided written informed
consent.

MRI Acquisition

Participants were imaged on a General Electric 3.0 Tesla
SIGNA (Waukesha, WI) MRI system with a quadrature
birdcage head coil at baseline and after 4 years. At base-
line, cardiac-gated diffusion-weighted echo planar mag-
netic resonance images were acquired using 12 optimum
noncollinear encoding directions (obtained by minimum
energy numerical optimization) with a diffusion weighting
of 1,114 s/mm2 and a non-DWT2-weighted reference
image. The effective TR was 10-13 heartbeats (~10-15 s)
dependent on the subject’s heart rate. Other imaging pa-
rameters were echo time (TE) = 78.2 ms, three averages
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(NEX: magnitude averaging), and an image acquisition
matrix of 120 X 120 over a field of view (FOV) of 240 X
240 mm?>. Three averages were acquired and the cerebrum
was covered using 39 contiguous 3-mm thick axial slices.
The acquired voxel size of 2 X 2 X 3 mm was interpolated
to 0.9375-mm isotropic dimensions (256 X 256 in plane
image matrix). The total acquisition time was between 6.5
and 8 min dependent on the heart rate. High order shim-
ming was performed prior to the DTI acquisition to opti-
mize the homogeneity of the magnetic field across the
brain and to minimize EPI distortions.

3D T1-weighted volumes were obtained at baseline and
follow-up using an inversion recovery prepared fast gradi-
ent echo pulse sequence. The whole brain was imaged in
the axial plane with the following parameters: TI = 600
ms; repetition time (TR) = 9 ms; TE = 1.8 ms; NEX = 1;
flip angle = 20°; acquisition matrix = 256 X 192 X 124,
interpolated to 256 X 256 X 124; FOV = 240 mm; slice
thickness = 1.2 mm (124 slices), receiver bandwidth =
+16 kHz; acquisition time, ~7.5 min.

DTI and tract-based spatial statistics preprocessing

Diffusion-weighted DICOM images acquired at baseline
were converted into NIFTI format using AFNI
(http://afni.nimh.nih.gov/). FA maps were generated via
the FMRIB Software Library (FSL) (http://www.fmrib.ox.-
ac.uk/fsl/fdt/index.html, Behrens et al., 2003) using the
following procedures: (1) image distortions in the DTI
data caused by eddy currents were corrected; (2) estima-
tion of diffusion tensors was achieved using DTIFIT; (3)
three-dimensional maps of FA images were computed
from the tensors from Step 2. The FA maps were then
aligned using registration methods based on the tract-
based spatial statistics (TBSS: http://www.fmrib.ox.a-
c.uk/fsl/tbss/index.html) processing scheme. TBSS meth-
ods were employed because the method is known to
provide accurate registration of FA maps, the method
allowed us to confidently position ROIs for the extraction
of FA values, and this method of registration reduces the
inclusion of CSF voxels in the final extracted FA estimates.
TBSS performs alignment of all FA data by projecting the
original FA maps onto a mean FA skeleton. The main
steps of the procedure we employed were as follows: (a)
FA images were eroded slightly and the end slices were
zeroed to remove outliers from the diffusion tensor fitting.
(b) A nonlinear registration was estimated to align the FA
images to a 1 X 1 X 1 mm standard space. The target
image was affine transformed to Montreal Neurological
Institute (MNI) space and each subject’s FA image had its
nonlinear transform to the target and an affine transform
to MNI space applied, resulting in a transformation of the
original FA image into MNI space. (c) The mean of all FA
images was created and the image was skeletonized. (d)
The mean FA skeleton was then thresholded to produce a
binary skeleton mask that defined the set of voxels used in
all subsequent processing. (e) A “distance map” was then

created from the skeleton mask. This was used in the pro-
jection of the subjects” FA maps onto the skeleton. (f) All
of the subjects’ aligned FA data were projected onto the
mean FA skeleton using warping methods that are based
on free-form deformations and B-Splines [Rueckert et al.,
1999]. The process is achieved by filling the skeleton with
FA values from the nearest relevant tract center. This was
performed for each skeleton voxel, by searching perpen-
dicular to the local skeleton structure for the maximum
value in the subject’s FA image. (g) After projection onto
the mean FA skeleton, the skeletonized data in standard
space were used for the ROI analyses.

Regions of Interest

Each ROI was drawn on a common space skeleton mask
in FSLview (http://www.fmrib.ox.ac.uk/fsl/fslview /index.
html) and was then applied to the normalized individual
maps. ROIs drawn on the template were individually
checked to ensure correct placement on the single-subject-
normalized FA maps. Individual FA values for each ROI
were extracted by acquiring the mean value across the
tract labels of interest. ROIs were drawn bilaterally and
included the cingulum subjacent to the posterior cingulate,
cingulum adjacent to hippocampus, entorhinal white mat-
ter, and the genu and splenium of the corpus callosum
(Fig. 1). Corticospinal tract was included as a control ROI
based on the literature, suggesting these tracts, along with
primary sensory and motor cortices, are preserved during
aging relative to association cortices.

Tensor-Based Morphometry

To produce estimates of volume change from baseline to
follow-up, we employed TBM methods implemented in the
SPM5 software package (http://www filion.ucl.ac.uk/
spm/software/spmb5/). First, bias correction with eight iter-
ations, a FWHM of Gaussian smoothing set at a 60 mm cut-
off, and a medium level of regularization was applied to
both the baseline and the follow-up scans to correct for in-
tensity nonuniformity. TBM procedures followed those
described by Kipps et al. [2005]. Briefly, a high-dimensional
deformation field was used to warp the corrected late
image to match the baseline scan within subject [Ashburner
and Friston, 2000]. The amount of volume change was
indexed by the determinant of the gradient of deformation
at a single-voxel level (Jacobian determinants). The Jacobian
image represented a measure of the brain-specific volume
change between the first and the second scan. The maps
were converted to annual rate of change maps using the
formula: Annual Rate = ([Jacobian determinant][l /Interscan
duration] — 1), where “Interscan duration” was the number
of years between baseline and follow-up scans. To warp the
final TBM maps to template space, normalization parame-
ters were estimated by matching the brain-volume images
from the baseline scan with the MNI brain-volume
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Figure I.

White matter ROlIs (shown in red) overlayed on the FA tem-
plate image (skeletonized FA underlayed in light gray). The bilat-
eral ROIs included: (A) cingulum bundle subjacent to posterior
cingulate (119 voxels, MNI coordinates: *+11,—45, 28), (B) cing-
ulum adjacent to hippocampus (60 voxels, MNI coordinates:
+20, —42, —2), (C) entorhinal white matter (96 voxels, MNI

template, these were then applied to the Jacobian image
[Ashburner and Friston, 1999]. Finally, the normalized TBM
maps were smoothed using an 8-mm isotropic Gaussian
kernel.

Statistical Analyses

To test the extent to which participants showed tissue
change over a 4-year period, tissue maps were thresholded
to either (1) values above zero to reflect tissue atrophy, or
(2) values below zero to reflect contraction. One-way t-
tests were used to determine significant regions of change.
To test the extent to which FA obtained at baseline pre-
dicted volume change, individual FA estimates from each
ROI were entered into a multiple regression analysis,
where the independent predictor variable was baseline
FA, and the dependent variable (volume change) was the
participant’s TBM map thresholded above zero (reflecting
tissue atrophy). For all models, the covariates were base-
line age and gender. Results were considered significant at
P 0.001 (uncorrected).

RESULTS

Participants with parental family history of AD or posi-
tive APOE4 status did not differ with respect to

coordinates: =24, —26, —19), (D) corticospinal tract (31 vox-
els, MNI coordinates: =10, —20, —24), (E) splenium (49 voxels,
MNI coordinates: =1, —35, 14), and (F) genu (48 voxels, MNI
coordinates: *4, 23, — ) of the corpus callosum. (A—C) Sagittal
view, (D) coronal view, and (E, F) an axial view.

demographic characteristics or neuropsychological test
performance compared to those with no AD risk factors.

There was a significant change in volume for more than
4 years. As summarized in Table II and shown in Figure 2,
significant volume contraction was observed predomi-
nantly in frontal, temporal, and cerebellar regions. These
results survived family wise error correction (FWE) P 0.05.
In contrast, a voxel-wise analysis revealed no areas of sig-
nificant expansion (P 0.001, uncorrected).

With regard to FA, there was no significant effect of AD
risk factors. The mean FA values extracted from bilateral
ROIs were as follows: 0.70 (=0.06) from the corticospinal
tract, 0.71 (+0.03) from the genu, 0.54 (+0.06) from the
entorhinal white matter, 0.53 (=0.03) from the cingulum
subjacent to the posterior cingulate bundle, 0.51 (*0.04)
from the cingulum adjacent to hippocampus, and 0.87
(+0.03) from the splenium. No significant differences were
found between the left and the right hemisphere per each
of the investigated ROIs and thus left and right were aver-
aged for the remaining analyses.

As summarized in Table III, baseline FA in entorhinal
white matter, and genu and splenium of the corpus cal-
losum predicted atrophy (P 0.001, uncorrected) as indexed
by the TBM maps (Fig. 3). With the exception of the right
cerebellar hemisphere volume loss predicted by splenium
FA, the majority of tissue contraction was primarily in
white matter regions, specifically within the superior
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TABLE Il. Regions of tissue contraction for more than 4 years (P 0.05, FWE corrected)

MNI coordinates of peak voxel

Peak-level

Location Cluster size X y z T-statistic
R Medial orbital gyrus 12,841 16 32 —28 11.10
R cingulate gyrus 1,263 6 —22 48 9.22
R superior frontal gyrus WM 498 8 —4 66 8.56
L posterior orbital gyrus WM 502 —32 38 -20 8.37
L posterior corona radiata 492 —18 —48 30 8.20
R cerebellar hemisphere 318 20 —26 -22 8.06
L superior frontal gyrus WM 346 —-10 4 62 7.84
CSF space ventral to L inferior temporal gyrus 299 =50 =30 -32 7.81
R cuneus 99 4 —78 40 7.11
R precentral gyrus 69 6 —30 72 7.01
CSF space ventral to R fusiform gyrus 35 18 4 —46 6.77
L fusiform gyrus WM 55 -32 —42 —-16 6.77
L lingual gyrus WM 179 —16 —68 -8 6.58
L cerebellar hemisphere 94 -26 =72 -26 6.45
R precentral gyrus WM 32 14 —18 64 6.38
R middle temporal gyrus 67 62 —48 —4 6.19
R fusiform gyrus 21 60 -60 =20 6.17
R supramarginal gyrus 76 62 —40 38 6.16
CSF space anterior to L cerebellar hemisphere 58 =20 =30 —46 6.16
R middle frontal gyrus 71 46 38 24 6.07
R middle frontal gyrus 34 28 62 20 5.93

L, Left; R, Right; WM, white matter. Cluster size is expressed in number of voxels.

Figure 2.
Regions of tissue contraction for more than 4 years (P < 0.05, FWE corrected). As shown in
the 3D render (A) and sagittal cross-section (B), there was significant contraction in temporal
stem white matter for more than 4 years. Additionally, as shown in the coronal sections (C),
there was significant contraction in large portions of bilateral subcortical white matter and the
cerebellum. The color bar represents T-values.

* 2049



¢Lyetal o

R Cerebellar Hemisphere Volume Loss
Predicted by Baseline Splenium FA

rA2= 0245

T . .

Rate of Atrophy (mm*3)

Baseline Splenium FA

R Inferior Temporal Gyrus WM
Volume Loss Predicted by Baseline Genu FA

rA2 = 0.334

Hale ci‘mrophy (mm"@}

Baseline Genu FA

Figure 3.

Regions (A) where baseline FA from the splenium (green), ento-
rhinal white matter (orange), and genu (blue) predict volume
loss from baseline to follow-up (P < 0.001, uncorrected). The
statistical map is overlaid on coronal sections of the “CH2”
template available in MRlcron (Rorden, 2007). The correlation
between (B) baseline splenium FA and cerebellar hemisphere

longitudinal fasciculus (SLF), anterior corona radiata, and
the temporal stem, all regions predicted by baseline ento-
rhinal FA. In addition, atrophy in the white matter of the
inferior temporal gyrus was predicted by baseline genu
FA. Baseline FA in the corticospinal tract, cingulum adja-
cent to hippocampus, and cingulum subjacent to the poste-
rior cingulate did not predict any regions of volume loss.

volume loss was r* = 0.25, P < 0.001 and (C) baseline genu FA
and inferior temporal gyrus WM volume loss was r> = 0.33,
P <0.001. Data points represent individual participants. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

DISCUSSION

The results of this study indicate that for more than a 4-
year period, middle-aged adults show significant shrink-
age of white matter. Further, midlife measures of FA—a
putative marker of white matter integrity—predict longitu-
dinal rates of white matter atrophy. Although T1-weighted
imaging in this study and other studies appears to be

TABLE Ill. Regions of tissue contraction (P 0.001, uncorrected) predicted by baseline FA

MNI coordinates of peak
voxel

Baseline ROI where Cluster Peak-level

FA was extracted size Location X y z T-statistic R?
Entorhinal 36 R anterior corona radiata 28 18 12 4.0 0.25
Entorhinal 22 R temporal stem 32 4 —14 3.9 0.21
Entorhinal 27 L superior longitudinal fasciculus =30 —46 30 3.66 0.21
Genu 91 R inferior temporal gyrus WM 36 4 —28 4.59 0.33
Splenium 42 R cerebellar hemisphere 16 -72 —36 4.6 0.25

L, Left; R, Right; WM, white matter. Cluster size is expressed in number of voxels.
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sensitive to gross volume loss, techniques such as DTI are
sensitive to microstructural alterations, and the results
suggest that they may, in fact, be predictive of subsequent
volume loss.

One of the largest areas of atrophy was observed in the
white matter of the inferior temporal gyrus, as predicted
by genu FA. Additionally, entorhinal FA was associated
with atrophy in temporal stem. This is in accordance with
prior findings, with both volume [Raz et al., 2004] and ani-
sotropy [Head et al., 2004; Salat et al., 2005a] in the tempo-
ral lobes showing moderate decline with age. This decline
is second to the frontal cortices and is followed by smaller
decreases in the parietal and occipital lobes, suggesting an
anterior to posterior gradient. A volumetric cross-sectional
study in men showed a quadratic relationship between
age and white matter volume in the temporal lobes, with
white matter volume increasing to the age of 47 years and
declining subsequently [Bartzokis et al., 2001]. The mean
age of the current cohort was 56 years at baseline, suggest-
ing that the majority of the cohort had crossed over the
peak of myelination in this brain region, and was on a
downward trajectory over the subsequent 4 years. The
nonlinear nature of white matter development over the
life-span contrasts with the linear decline of gray matter
volume throughout most of adulthood, and this is impor-
tant to take into consideration in the studies of midlife
white matter change.

Another significant region of atrophy, predicted by sple-
nium FA, was located in the right cerebellar hemisphere,
which is consistent with several findings of age-related
decreases in total cerebellar volume, cerebellar white mat-
ter, and other cerebellar structures [Jernigan et al., 2001;
Liu et al., 2003; Luft et al., 1999; Raz et al., 2001; Sullivan
et al.,, 2000; Walhovd et al., 2005]. Moreover, longitudi-
nally, the cerebellum shows pronounced longitudinal
shrinkage with advancing age [Raz et al., 2005, 2010;], pos-
sibly beginning to decline during the fifth decade of life,
reflecting an exponential fit (Luft, 1999).

We observed a region of volume loss in the SLF, pre-
dicted by baseline entorhinal FA. This tract is a heavily
myelinated white matter bundle that connects the anterior
and posterior regions of the cerebrum, sending projections
to the temporal lobes [Wakana et al., 2004]. Findings of
longitudinal changes in the SLF converge with a longitudi-
nal DTI study showing reduced FA in the SLF in healthy
elderly subjects [Teipel et al.,, 2010], as well as in older
individuals with mild cognitive impairment [Cho et al.,
2008]. Age-related decreases in FA of the SLF has been
shown to be associated with poorer performance in a
number of cognitive tasks involved in set-shifting [Perry
et al., 2009], episodic memory [Lockhart et al., 2012], exec-
utive function [Sasson et al., 2012], and word finding [Sta-
matakis et al, 2011]. In addition, late-life-depressed
individuals exhibited greater white matter hyperintensity
burden in this region [Sheline et al., 2008]. Although atro-
phy reflected by the TBM maps was not correlated with
neuropsychological performance (likely owing to limited

variability in this cognitively healthy sample), this volume
loss may predict cognitive changes as the cohort ages, and
will be tested at future follow-ups. In addition to the SLF,
entorhinal FA was associated with atrophy in anterior co-
rona radiata. These results replicate findings in a multimo-
dal imaging study in younger individuals where
significant quadratic relationships between white matter
volume and age were observed in the superior corona
radiata bilaterally and in the left SLF [Giorgio et al., 2010].
Overall, baseline entorhinal FA was associated with the
majority of regions of longitudinal atrophy observed in
this study. Althoough specific pathways in humans have
not been well characterized, study in nonhuman primates
suggest that the entorhinal region is widely connected
with association cortices [Insausti et al., 1987], linking the
hippocampus to the association areas of the frontal, parie-
tal, temporal, and occipital lobes [Van Hoesen and Pan-
dya, 1975].

Interestingly, baseline corticospinal FA, the control ROI,
did not predict any areas of atrophy. The results are in ac-
cordance with the observations that primary motor and
sensory cortices are relatively spared during aging. A
recent study [Jang, 2011] has shown corticospinal tract FA
decreases with age, whereby participants who are 50 years
and older show lower FA compared to participants in the
third decade of life. The results of our study suggest that
changes in microstructural parameters of the corticospinal
tract may occur in the absence of volume loss and may
not predict downstream volume change, at least during a
4-year interval in middle-aged years. Moreover, baseline
FA within the cingulum adjacent to hippocampus and
cingulum subjacent to the posterior cingulate did not pre-
dict any volume loss. These negative findings may suggest
that the microstructural integrity of the cingulum does not
decline as rapidly during middle age.

The largest areas of atrophy were primarily in frontal
and temporal white matter, findings which complement a
cross-sectional study from Hugenschmidt et al. (2008),
where FA had significant relationships with several areas
of white matter volume loss, including temporal and pari-
etal regions of the corona radiata, the length of the corpus
callosum, and centrum semiovale [Hugenschmidt et al.,
2008]. In addition, our results are consistent with the con-
vergence of research showing cerebral white matter to
have an anterior—posterior gradient of decline [Buckner,
2004; Head et al., 2004; Raz, 2000]. This decline in prefron-
tal white matter follows an inverted-U trajectory, with a
linear increase in young adulthood, a plateau in middle
age and significant contraction starting in the fifth decade
of life [Bartzokis et al., 2001; Courchesne et al., 2000; Raz
et al., 2004], the average age of our participants. This rate
of decline increases with age [Raz et al., 2005], which is in
line with other age-related acceleration in other indices of
white matter integrity, such as MRI relaxation times [Bart-
zokis, 2004; Bartzokis et al., 2003] and ratio of small to
large myelinated axons [Tang et al., 1997]. These studies
suggest that certain brain regions that are late to mature

* 2051



¢Lyetal o

and which contain a high ratio of thinly myelinated fibers
(e.g., prefrontal cortex) may be more susceptible to age-
related atrophy.

Several of the white matter changes found in aging are
likely to affect the measurements of water diffusion anisot-
ropy. Histopathological studies have shown that aging is
associated with white matter deterioration that include
myelin pallor [Kemper, 1994], loss of myelinated fibers
[Marner et al., 2003; Meier-Ruge et al., 1992; Pakkenberg
and Gundersen, 1997], and in nonhuman primates, malfor-
mation of myelin sheaths [Peters and Sethares, 2002]. Fur-
ther, nonhuman primate studies also show that age is
associated with decreases in synapses, dendritic spines,
and myelin sheath degradation in the upper layers of neo-
cortex [Peters, 2002a, 2002b]. These histological studies
reveal localized splitting of myelin lamellae causing spher-
ical cytoplasmic cavities or “balloons” within the myelin
sheath, and continued myelin production constructing
double myelin sheaths, where fluid may build up between
layers. Furthermore, as suggested by Bartzokis [2004], this
later myelination is more vulnerable, and age-related
declines in membrane cholesterol—a hydrophobic mole-
cule—make myelin more water permissive. All of these
changes are candidates for influencing measurements of
diffusion anisotropy, in addition to being candidates for
predicting later volume loss. Additional histopathological
studies will be needed to determine how closely micro-
structural changes link to overt volume loss; however,
only brain imaging studies—while limited in their ability
to directly measure pathology—are currently the sole
approach to mapping out in vivo changes longitudinally.

Our findings must be interpreted in light of several limi-
tations. As our sample incorporates individuals with vary-
ing risk for AD, we cannot rule out the possibility that our
findings are Alzheimer’s risk specific. However, partici-
pants carrying risk factors for Alzheimer’s did not differ
with regards to demographics, neuropsychological scores,
or baseline FA measures. Although our results showing
white matter contraction for more than 4 years survived
correction for multiple comparisons, our models showing
the predictive value of FA are reported at an uncorrected
threshold and thus, we cannot rule out the possibility of
Type 1 error. Despite this, the exploratory analyses con-
verge on white matter volume loss and thus are less likely
to be owing to chance. We should also note that while we
used DTI measures as the predictor variables in our study
design, we cannot definitively conclude that microstruc-
tural alterations precede volume loss. The temporal order-
ing of microstructural and volumetric changes over the
lifespan is still in need of further characterization. Finally,
although other DTI indices, such as axial or radial diffu-
sion, do inform about axonal morphology and myelin
characteristics, respectively, we decided to only use FA
owing to its consistency in the normal aging literature and
reflection of several factors, such as changes in axon den-
sity, myelination, axonal membrane integrity, fiber orienta-
tion, and other alterations.

CONCLUSIONS

To our knowledge, this is the first study demonstrating
that white matter alterations collected at baseline are asso-
ciated with future longitudinal white matter volume loss
in cognitively normal adults. Following these individuals
as they enter the “golden years” will help in further flesh-
ing out the time course of structural brain changes and
also determine whether any of the individual variability in
atrophy in middle age is owing to preclinical diagnosis of
age-related neurodegenerative disease. Although longitu-
dinal studies on age-related neurodegenerative diseases
including AD are still needed to evaluate patterns of
degeneration in pathological processes, this study suggests
that DTI may be useful for characterizing the distribution
and time course of alterations that occur in the brain with
normative aging, improving models of disease progres-
sion, and will likely be important for early diagnosis and
for monitoring the efficacy of treatments.
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