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ABSTRACT

Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we
probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified
in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected
tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also
found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing
factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the
down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together,
our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a
limited number of splicing factors.

Keywords: alternative splicing; ovarian cancer; tumor microenvironment; RNA binding proteins; laser capture microdissection

INTRODUCTION

Ovarian cancer is the fourth most common cause of cancer-
related death in women, largely because it is typically diag-
nosed at advanced stages (Coleman et al. 2011). Like most
solid tumors, the majority of ovarian cancers are epithelial
in origin. Ovaries that are normally composed of a thin layer
of epithelial cells and a large mass of stromal cells that include
fibroblasts, smooth muscle cells, and endothelial cells are
dramatically transformed into a large epithelial mass in ad-
vanced cancer stages (Auersperg et al. 2001). In addition,
the composition of the cells surrounding the tumor (the tu-
mor microenvironment) changes as the tumor grows and
gets established (Saad et al. 2010). The tumor microenviron-
ment is composed of extracellular matrix (ECM), genetically
stable cancer-associated fibroblasts (CAFs), immune cells,
and soluble factors required for cancer progression and me-
tastasis (Agarwal et al. 2010; Mandai et al. 2011). Interplay
between tumor and adjoining stromal tissues has been ob-

served to be an important aspect of the tumorigenic process
(Yang et al. 2008; Barbolina et al. 2011). Indeed, it was shown
that epithelial ovarian cancer cells could directly induce a
CAF phenotype (i.e., changes of normal fibroblasts into
CAFs) via secretion of transforming growth factor β (Casey
et al. 2008; Iwatsuki et al. 2010). At the same time, CAFs
may secrete growth factors such as hepatocyte growth factor
to promote cancer cell proliferation and invasion (Jing et al.
2011).
Gene expression and, more recently, alternative splicing, a

highly regulated and cell-type-specific process, have been
found to be globally altered in cancer cells (Sotiriou et al.
2006; Klinck et al. 2008; Venables et al. 2009). Profiling the
global expression resulted in several sets of biomarkers capa-
ble of detecting cancer subtypes and was particularly success-
ful in differentiating between different breast cancer subtypes
(Munirah et al. 2011; Prat et al. 2012). However, most expres-
sion profiling techniques focus on changes in the levels of
gene expression and simply ignore changes in the trans-
cript architecture due to alternative splicing. Profiling the
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expression of splicing isoforms identified potential markers
for ovarian and breast cancers, and some of these were shown
to be required for cell survival in vitro (Klinck et al. 2008;
Venables et al. 2008a; Prinos et al. 2011). Hundreds of splic-
ing isoforms associated with the cell cytoskeleton and other
tissue-specific genes were associated with ovarian cancer
when RNA extracted from whole tumor tissues was com-
pared with that extracted from normal ovaries (Venables
et al. 2009). This made the distinction between cancer
and tissue-specific markers difficult (Biermann et al. 2007;
Venables et al. 2009). Indeed, a recent study suggested that
most cancer-associated alternative splicing events (ASEs)
identified by comparing whole tumor tissues are not neces-
sarily cancer-specific and mandated the use of different strat-
egies to identify cancer-associated splicing events (Venables
et al. 2013).

Recently, enriched cell populations generated by laser cap-
ture microdissection (LCM) have been useful in the identifi-
cation of tumor-specific expression markers (Rogerson et al.
2008; Tone et al. 2008). In this study, we have used this ap-
proach to identify a highly specific group of cancer-associated
ASEs by isolating tumors and their microenvironment and
comparing them with reciprocal normal tissues. Strikingly,
∼20% of the ASEs associated with the tumor microenviron-
ment were regulated by the cancer-associated splicing factors
QKI and RBFOX2. Our results indicate that cancer cells re-
program the splicing of a restricted set of functionally related
mRNAs in the tumor microenvironment.

RESULTS

Cancer-specific modulation of alternative splicing

Identifying themolecular characteristics of cancer by compar-
ing tumor and normal tissues is often hampered by tissue het-
erogeneity. Therefore, we sought to obtain relatively pure cell
populations from representative tumor and normal tissues by
laser capture microdissection (LCM). Normal ovaries and
high-grade serous ovarian tumors were dissected, and visual
inspection indicated that homogeneous populations of stro-
mal and epithelial cells were obtained from each tissue (Fig.
1A). Given the low number of epithelial cells in normal ova-
ries, Fallopian tube, which is considered the origin of serous
ovarian cancer (Kurman and Shih Ie 2010; Mehra et al.
2011), was used as a source for normal epithelium. The dis-
sected portions of the tumor microenvironment and normal
stroma were mostly composed of fibroblasts (Fig. 1A), and
only samples that had a similar number of fibroblasts, im-
mune cells, and endothelial cells were used forRNAextraction
(for details, see Materials and Methods). Therefore, despite
the overall different cellular composition of normal and tu-
mor-associated stroma, the RNA was extracted from compa-
rable cellular populations. Todemonstrate thequality of tissue
dissection, the expression levels of established epithelial and
stromal markers (Nofech-Mozes et al. 2008) were monitored

in the different dissected tissues by quantitative RT-PCR (Fig.
1B; Supplemental Table S1). As expected, all tissues (normal
and cancer) clustered according to their stromal and epithelial
status, confirming the similar cellular composition of the dis-
sected tissues. Indeed, immunohistochemical analysis of
ovarian cancer tissues confirms the predominant expression
of stromal markers in the ovarian tumor microenvironment
and the expression of the epithelial marker in ovarian cancer
cells (http://www.proteinatlas.org; data not shown). Together
these tests demonstrate the homogeneity and comparable na-
ture of the normal and cancer cell populations isolated by
LCM.
To investigate cancer-specific alternative splicing, we ex-

amined the splicing profiles of 870 simple ASEs (cassette ex-
ons, alternative 5′ or 3′ splice sites, and intron retention
events) found in the RefSeq database (Pruitt et al. 2007) in
dissected normal and cancer tissues by quantitative RT-
PCR (Fig. 2A). Comparison of the splicing patterns obtained
from the Fallopian tube and cancer epithelia identified eight
cancer-specific ASEs, referred to hereafter as the cancer epi-
thelial signature (CES) (Supplemental Table S2). On the oth-
er hand, comparison of the tumor microenvironment to
normal stroma splicing patterns revealed five cancer-specific
ASEs, referred to hereafter as the cancer stromal signature
(CSS) (Supplemental Table S3). The splicing profiles ob-
tained from dissected tissues displayed distinct patterns that
cannot be explained by the average of the patterns obtained
from the undissected samples (Supplemental Fig. S1).
Consistently, the expression pattern of the CSS splicing
events in the normal fibroblast cell line (INOF) was similar
to that obtained in normal stroma, confirming that the dis-
sected tissues obtained from normal stroma represent nor-
mal fibroblast cells (Fig. 2B, right panel). We conclude that
the changes in alternative splicing not only distinguish tumor
from normal epithelial tissues, but also permit discrimina-
tion between the tumor microenvironment and normal
stroma.
The potential clinical usefulness of the newly identified

cancer-specific signatures was further evaluated by monitor-
ing their capacity to distinguish between undissected normal
and cancer tissues. RNA was extracted from 14 normal ovar-
ian tissues, six Fallopian tubes, and nine high-grade ovarian
cancer tumors (for details, see Supplemental Table S14). As
shown in Figure 2B (left panel), unsupervised clustering of
the tissues based on the splicing pattern of the CES ASEs
separated epithelial and stromal tissues into two distinct
groups. Indeed, the tissues extracted from normal Fallopian
tubes were clustered closer to cancer than normal tissues,
consistent with the low epithelial contents in normal ovary.
This indicates that while CES may identify cancer tissues, it
is sensitive to changes in tissue composition (epithelial/
mesenchymal). In general, the CES events discriminated
between Fallopian tubes and cancer tissues with P-values
>0.005 (t-test) with the exception of KIF13A, which distin-
guished between cancer and Fallopian tube tissues with a
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FIGURE 1. Laser capture microdissection (LCM) of normal and cancer ovarian tissues. (A) Hematoxylin and eosin stain samples from Fallopian
tubes, ovaries, and high-grade serous ovarian tumors visualized by light microscopy before and after dissection at 10× magnification. (Green) The
limits of dissected tissues; (top) the type of tissues examined. Dissected tissues with similar cell population in both normal and cancer samples
were chosen for RNA extraction. Typically, dissected Fallopian tube epithelium was composed of 90% epithelial and 10% fibroblast cells; dissected
cancer epithelium was composed of >95% epithelial and <5% fibroblast and other nonepithelial cells (e.g., endothelial and inflammatory cells); dis-
sected ovarian stroma and dissected tumor microenvironment were composed of 60%–80% fibroblast, 10%–20% endothelial, and 10%–20% inflam-
matory cells (for details, see Materials and Methods). (B) Quality of the dissected tissues. The expression of 65 stromal and epithelial markers was
monitored in eight high-grade serous ovarian cancer, eight Fallopian tube epithelia, and eight normal ovarian stroma dissected samples. Relative val-
ues were normalized to housekeeping genes as previously described (Prinos et al. 2011). The results are displayed in the form of a heatmap represent-
ing the log-transformed gene expression value of epithelial and stromal markers (x-axis) in the different tissues (y-axis). Tissue samples were classified
using unsupervised clustering of log-transformed gene expression values usingManhattan distance. (Left) The clustering dendrograms; (right) the type
of tissues; (bottom right) the color code representing the gene expression. (Red) Low expression; (blue) high expression. (∗) Themost predictive mark-
ers (P < 0.0001, t-test). Detailed description (Supplemental Table S13) and individual expression values (Supplemental Table S1) of the dissected tis-
sues are provided as Supplemental Material.
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P-value of 3 × 10−4 (t-test) (Supplemental Table S2). We
conclude that at least one of the epithelial markers identified
using dissected tissues could also efficiently discriminate be-
tween undissected normal and cancer tissues.

Interestingly, the stromal signature (CSS) events clustered
most Fallopian tubes with the mostly stromal normal ovarian
tissues in one group and cancer tissues in another (Fig. 2B,
right panel), suggesting that CSS events are not biased by the
epithelial and stromal contents, which are very different in
tissues extracted from Fallopian tubes and normal ovary.

Consistently, three out of the five CSS splicing events
(CD46, MPRIP, and PBRM1) distinguished between nor-
mal and cancer tissues with P-values <1.0 × 10−7 (t-test)
(Supplemental Table S3). This group of splicing events was
named the ovarian cancer signature (OCS) and was further
tested for its capacity to identify ductal breast cancer
(Supplemental Table S4). Two of these ASEs (CD46 and
PBRM1)were able todiscriminatebetween18normal samples
and 20 ductal breast cancers with P-values <1.0 × 10−7

(t-test),furtherconfirmingthevalueoftheOCS(Supplemental

FIGURE 2. Identification of alternative splicing events associated with ovarian tumor and its microenvironment. (A) Strategy for the identification of
cancer-specific alternative splicing patterns. Expression of the 3313 simple ASEs (i.e., cassette exons, alternative 5′ and 3′ splice sites, and intron re-
tention) annotated in the RefSeq database 36.3 (Pruitt et al. 2007) was examined using endpoint PCR amplification of five RNA samples extracted
from normal Fallopian tube tissue and ovarian cancer tissues (for details, see Materials and Methods; see raw data in http://palace.lgfus.ca/
pcrreactiongroup/list/226). Validated quantitative RT-PCR assays were developed for a total of 870 expressed ASEs, and the resulting PCR values
were used to calculate the mean quantitative splicing shift (Prinos et al. 2011) (ΔQψ =QψTUMOR −QψNORMAL) in the different normal and cancer
tissues described in Figure 1 and Supplemental Table S13. ASEs were ranked based on a t-test of the mean quantitative splicing shift, and ASEs dis-
playing statistically significant differences between normal and cancer tissues (P < 0.05, t-test) and a ΔQψ > 15 were reexamined in an independent set
of dissected tissues (for details, see Materials andMethods). The final number of validated ASEs capable of discriminating between normal and cancer
epithelium (CES) or stroma (CSS) is indicated. (B) Splicing markers detected in undissected cancer tissues and immortalized normal ovarian fibro-
blast (INOF) cell line. The quantitative percent splicing pattern (Qψ) (Prinos et al. 2011) of the CES and CSS ASEs was determined by quantitative RT-
PCR in an independent set of undissected ovarian tissues containing nine high-grade serous ovarian cancers, six Fallopian tubes, and 14 normal ovar-
ian tissues (Supplemental Table S14). In addition, we also monitored splicing in INOF as a pure source of normal ovarian fibroblast. The results are
displayed in the form of two heatmaps representing the splicing patterns of the CES (left panel) and the CSS (right panel) in the different tissues. Gene
names and the gene clusters are shown on the y-axis. The type of tissue—(OSHG) ovarian serous high grade, (OVN) normal ovary, (FT) Fallopian
tube—is indicated at the bottom, and the tissue clusters are shown on top. (Black boxes) Cancer and (white boxes) normal tissues are indicated.
(Grayscale) The epithelial content of tissues; (dark gray) high epithelial content; (light gray) low epithelial content. The color code representing
the different splicing patterns is indicated at the bottom; (dark orange) complete exon exclusion; (bright yellow) complete exon inclusion.
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Table S4). These results suggest that splicing signatures iden-
tified in the tumor microenvironment could serve as cancer
biomarkers.

Cancer-specific splicing factors

To understand how the CES and CSS are produced, we
examined the expression of 328 putative splicing factors in
epithelial and stromal cells isolated from normal and cancer
tissues using quantitative RT-PCR (raw data are accessi-
ble through http://palace.lgfus.ca/pcrreactiongroup/list/227).
Comparison of the RNA levels in normal and cancer tissues
identified 23 and 32 splicing factors whose expression was
changed in the cancer epithelium and
the tumor microenvironment, respec-
tively (Fig. 3A; Supplemental Tables S5,
S6). The overlap between the tumor epi-
thelium and its microenvironment was
small (8%, four out of 51) (Fig. 3A), as
would be expected from tissues with dis-
tinct profiles of alternative splicing (Fig.
2A). The relatively small numbers of
splicing factors associated with the tumor
(7%, 23 out of 328) and its microenvi-
ronment (10%, 32 out of 328) indicates
that the changes in the expression of
splicing factors is not due to global per-
turbation of gene expression in cancer
tissues or due to differences in the cell
composition of the cancer tissues (Fig.
1A). Together these observations suggest
that cancer alters the expression of a sub-
set of splicing factors to reprogram the
splicing of a specific group of alternative
exons associated with the tumor micro-
environment.
Most of the exons associated with CES

(five out of eight) or CSS (four out of
five) are excluded in cancer samples
(Supplemental Tables S2, S3), and all
the cancer-associated splicing factors
presented in Figure 3B, with the excep-
tion of DDX39, are down-regulated in
cancer. Therefore, silencing splicing fac-
tors in cancer cell lines is expected to
create a splicing pattern similar to that
observed in cancer tissues. Accordingly,
we depleted 41 out of 51 cancer-associat-
ed splicing factors by at least twofold
using two independent siRNAs in the
model ovarian cancer cell line SKOV3ip1
(Supplemental Table S7; raw data are
accessible through http://palace.lgfus.ca/
pcrreactiongroup/list/232) and tested the
impact on the splicing pattern of both

CES and CSS ASEs. The SKOV3ip1 cell line was chosen as
a model because it is an epithelial cell line that exhibits
mesenchymal character in culture and expresses many of
the CES and CSS splicing events (Chen et al. 2001). Indeed,
the expression level of the tumor microenvironment–as-
sociated splicing factors QKI and RBFOX2 was highest in
SKOV3ip1 followed by the ovarian fibroblast cell line INOF
and was lowest in the epithelial cancer cell line OVCAR-3
(Fig. 4A). The knockdown of the splicing factors linked to
cancer epithelium affected mostly CES events (Fig. 3B), while
those repressed in the tumor microenvironment affected
CSS events in both SKOV3ip1 and INOF (Figs. 3B, 4B). As
expected, in 78% (18 out of 23) of the cases, the depletion

FIGURE 3. The expression of cancer-associated splicing isoforms is regulated by a small group of
splicing factors. (A) Strategy for the identification of cancer-associated splicing factors. The ex-
pression of all splicing factors identified in both the RefSeq database and the NCBI PubMed da-
tabase (Lu 2011) was evaluated by quantitative RT-PCR in the different normal and cancer tissues
described in Figure 1. The Venn diagram illustrates the tissue distribution of the splicing factors
capable of discriminating between cancer and normal tissues by at least twofold (listed in
Supplemental Table S6). (B) Depletion of the tumor-associated splicing factors alters the splicing
pattern of the cancer stromal signature (CSS). The cancer-associated splicing factors were deplet-
ed using siRNA in the ovarian cancer cell line SKOV3ip1. The impact on the CES and CSS ASEs
identified in Figure 2 was evaluated using quantitative RT-PCR. Exons inclusion (gray boxes) or
exclusion (black boxes) generating a quantitative splicing shift (Prinos et al. 2011) (ΔQψ =
QψKNOCKDOWN−QψCONTROL) of at least 10 was considered significant and presented in the
form of a table. For simplicity, only the ASEs regulated by at least one splicing factor and the splic-
ing factors regulating at least one ASE are shown. The expression of all splicing factors except
DDX39 was down-regulated in cancer tissues, and therefore the illustrated in vitro knockdown
of these factors are expected to induce a splicing pattern similar to that detected in cancer tissues.
(C) Illustration of the CES and CSS exon exclusion and inclusion events in the cancer epithelium
and tumor microenvironment as detected by quantitative RT-PCR (see Supplemental Tables S2,
S3). The cancer-associated genes were listed in the same order used in B, and their expression in
cancer tissues is indicated as exon exclusion (black boxes) and inclusion (gray boxes).
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of splicing factors in SKOV3ip1 altered splicing in the same
direction as that observed in cancer tissues (cf. Fig. 3, B
and C). These results demonstrate that the change in can-
cer-associated splicing is due at least in part to changes in
the expression of splicing factors.

Only three CES splicing events (TJP1, NFAT5, KIAA1217)
were affected by splicing factors that were associated with the
splicing epithelium and not the tumor microenvironment.
Furthermore, no more than one CES event was affected by
multiple splicing factors, suggesting that this set of CES
events is not regulated by common factors (Fig. 3B). Closer
examination of the effects of knocking down cancer-associat-
ed splicing factors on CSS ASEs revealed two groups of splic-
ing factors. The first group includes core spliceosomal factors
such as SNRPD2 (Schumperli and Pillai 2004) and SNRPG
(Ma et al. 2005), while the second includes alternative splic-
ing regulators RBFOX2 (Sun et al. 2012) and QKI (Novikov
et al. 2011). Both groups are underexpressed in the tumor
microenvironment and modified the splicing of three out
of five CSS ASEs in the SKOV3ip1 cell line (Fig. 3B), but
splicing factors from the first group also induced apoptosis
(data not shown), as would be expected from the knockdown
of essential splicing factors. Induction of apoptosis and gene-
ral perturbation of splicing patterns make the distinction be-
tween direct and indirect effects very difficult, and as such
this group of splicing factors was not pursued further. In con-
trast, reproducing the tumor microenvironment–associated
down-regulation of RBFOX2 or QKI in SKOV3ip1 and the
immortalized normal ovarian fibroblast (INOF) cells (Law-
renson et al. 2012), replicated the cancer-associated splicing
profile of three out of five CSS ASEs without dramatically
affecting cell viability (cf. Figs. 3B,C and 4C; data not shown).
This indicates that a part of the splicing profiles observed in
the tumormicroenvironment is reproduced by the inhibition
of RBFOX2 and QKI expression.

The tumor microenvironment–associated splicing
factors QKI and RBFOX2 regulate common
splicing targets

Todetermine the extent of overlap betweenRBFOX2 andQKI
splicing targets anduncover potentially newcancer-associated
splicing events, we compared the effects of depleting the ex-
pressionof these twoproteins on a larger set ofASEs.Wemon-
itored the splicing profiles of a total of 93 unique ASEs (Fig.
5Ai) containing 48 pre-established RBFOX2-regulated ASEs
(Venables et al. 2009) and 57 newly identified QKI-regulated
ASEs (for details, see Materials and Methods) after QKI or
RBFOX2 knockdown in SKOV3ip1 (Supplemental Table S8,
columns 3–5). As indicated in Figure 5A, 66% (37 out of 56)
of ASEs modified by RBFOX2 knockdown were also affected
by thedepletionofQKI, andhalf (37outof 74)of theQKI-reg-
ulated ASEs were perturbed by RBFOX2 knockdown. The ef-
fect of RBFOX2 and QKI knockdown on the common group
of ASEs (Fig. 5A) displayed a Pearson correlation of 0.65 (P-

value = 1.5 × 10−5), confirming their status as shared splicing
targets (Fig. 5B). This indicates that there is a broad over-
lap between QKI and RBFOX2 splicing targets. In the tumor
microenvironment, the expression of QKI and RBFOX2
is down-regulated (Supplemental Table S5), and their expres-
sion levels are correlated with the changes in alternative splic-
ing. Therefore, while RBFOX2 and QKI may individually
affect different splicing targets, collectively they converge to
regulate the splicing of a subset of the tumor microenviron-
ment–associated ASEs.
If RBFOX2 and QKI regulate splicing in the tumor micro-

environment, we expect at least some of the alternative

FIGURE 4. RBFOX2 and QKI regulate the splicing of the CSS ASEs in a
normal ovarian fibroblast cell line. (A) RBFOX2 and QKI expression
levels in epithelial and fibroblast cell line. Global expression levels of
QKI and RBFOX2 were monitored using quantitative RT-PCR in the
immortalized normal ovarian fibroblast cell line (INOF) and compared
with that obtained from the epithelial tumor cell lines OVCAR-3 and
SKOV3ip1. SKOV3ip1 is an ovarian cancer cell line from epithelial or-
igin that displays mesenchymal characters in cell culture. (B) Impact of
RBFOX2 and QKI on the splicing of the CSS ASEs in the INOF cell line.
The RNA was extracted from INOF cells transfected by two different
siRNAs against QKI (QKI-1 and QKI-2), RBFOX2 (RBFOX2-1 and
RBFOX2-2), or both QKI and RBFOX2 (RQ-1 and RQ-2). Shown is a
bar graph representing the splicing shift of the different CSS events 72
h after transfection relative to mock-transfected cells by quantitative
RT-PCR. The results are the average of three independent experiments.
(C) Illustration of the CSS exon exclusion and inclusion events in the
normal stroma and tumor microenvironment (see Supplemental
Table S3) and INOF cell line (see B) as detected by quantitative RT-
PCR. Grayscale with (black boxes) total exon exclusion and (white box-
es) total exon inclusion is presented in the form of a table.
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splicing events affectedby the knockdown
of these proteins in vitro to be associated
with cancer in vivo.Accordingly,wemon-
itored the splicing profiles of RBFOX2-
and QKI-dependent ASEs in the tumor
microenvironment. Out of 29 ASEs test-
ed, six ASEs including two that overlap
with Figure 2A (PBRM1 and MPRIP)
were associated with the tumor micro-
environment (Supplemental Table S9).
Indeed, these four additional ASEs
(APBB2, ATP11C, ITGA6, FNIP1) could
be considered potential markers for ovar-
ian cancer. However, for simplicity, they
were not incorporated in the CSS, which
refer only to ASEs identified in the origi-
nal association screen using dissected tis-
sues (Fig. 2A).Overall, 21%(six out of 29)
of the RBFOX2- and QKI-dependent
ASEs were associated with the tumor mi-
croenvironment, whereas <7% (one out
of 15) of the ASEs affected by only one
of the two splicing factors were linked to
cancer (Fig. 5C). This indicates that while
a substantial fraction of ASEs under the
control of RBFOX2 and QKI are associat-
ed with the tumor microenvironment,
a large number of RBFOX2 and QKI in
vitro splicing targets are not. Together,
these results suggest that while RBFOX2
and QKI are important regulators of
cancer-associated transcript variation,
other factors influence their capacity to
modulate the splicing of their target genes
in the tumor microenvironment. Ex-
amining the sequence surrounding the
RBFOX2- and QKI-dependent ASEs re-
vealed consensus binding motifs (Galar-
neau and Richard 2005; Auweter et al.
2006) for at least one of the two splicing
factors, in all cases except ITGA6 (Fig.
5D). This suggests that RBFOX2 and
QKI directly contribute to the splicing de-
cisions of a subset of tumor microenvi-
ronment–associated events.

The ovarian tumor
microenvironment–associated splice
variants are differentially expressed
in breast cancer

It was previously suggested that RBFOX2
might be inactivated in breast cancer
through the skipping of a 40-nt C-termi-
nal cassette exon (exon 11) (Underwood

FIGURE 5. RBFOX2 and QKI regulate the expression of common splicing isoforms in the tumor
microenvironment. (A) Identification of common RBFOX2 and QKI splicing targets. RBFOX2
andQKIwere individually knocked down using two independent siRNAs in SKOV3ip1. The effect
of the different knockdowns was evaluated by endpoint PCR using a set of 48 pre-established
RBFOX2 targets and a set of 57 newly identified QKI targets (for details, see Materials and
Methods). The 93 unique ASEs responding to the knockdown of at least one splicing factor are
presented in the form of Venn diagram (i) (Supplemental Table S8, column 5). Quantitative
RT-PCR primers were designed and validated for 76 out of 93 ASEs (ii) (Supplemental Table
S8, column6), and their splicing pattern in the tumormicroenvironment or the epithelial and stro-
mal normal tissueswas tested (iii). (B) Comparison of the impact of RBFOX2 andQKI knockdown
on the splicing of 37 commonASEs. The impact of RBFOX2 andQKI knockdown on the common
set of 37 splicing targets discovered in A was plotted as a quantitative splicing shift (Prinos et al.
2011) (ΔQψ =QψKNOCKDOWN−QψCONTROL) to generate a scatter graph. The Pearson correla-
tion between the effect of RBFOX2 and QKI knockdown on splicing pattern and its P-value is in-
dicated on the top right of the graph. (C) Common RBFOX2 and QKI targets are more likely to be
associated with the tumor microenvironment than those affected by only one splicing factor. The
bar graphs represent the percentage of the RBFOX2, QKI, or common RBFOX2 and QKI splicing
targets (identified in A) associated with the tumor microenvironment as described in Figure 2A.
(D) Schematic representation of the protein binding sites near RBFOX2- and QKI-responsive ex-
ons. The position of RBFOX2 andQKI binding sites (WGCAUG andACUAAY) in seven common
RBFOX2 andQKI splicing targets associated with the tumormicroenvironment (identified in Fig.
3B and in panel Aiii) are indicated as “R” and “Q,” respectively. The existence of binding sites was
verified in five regions: 250 nucleotides (nt) from the 5′ splice site of the upstream intron (a); 250 nt
from the 3′ splice site of the upstream intron (b); within the exon (c); 250 nt from the 5′ splice site
of the downstream intron (d); or 250 nt from the 3′ splice site of the downstream intron (e).
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et al. 2005; Venables et al. 2009). Therefore, at least some
of the RBFOX2 splicing targets, including those associated
with the ovarian tumor microenvironment, are likely to
be similarly modified in breast cancer. To examine this
possibility, we compared the splicing pattern of the set of
RBFOX2- and QKI-dependent ASEs associated with the tu-
mor microenvironment in undissected ovarian and breast
tumors using quantitative RT-PCR. As expected, the splic-
ing patterns in both ovarian and breast cancers were tightly
correlated, indicating that RBFOX2 and QKI splicing tar-
gets are also repressed in high-grade breast cancer (Fig.
6A; Supplemental Table S4), and suggesting that breast
and ovarian cancer use similar mechanisms for modifying
the splicing patterns of tumor-associated ASEs. Consistently,
an independent study using a large number of breast can-
cer tissues concluded that QKI expression is reduced in
breast tumors (P-value <3.0 × 10−3, t-test) (Novikov et al.
2011). In our hands, however, the most striking difference
between tumor and normal breast tissues was not the change
in global expression but rather in the pattern of QKI splic-
ing (Fig. 6B; Supplemental Tables S10, S11). In the tumor,
the QKI-6 isoform was preferentially expressed over the
QKI-7 isoform. This change was previously shown to affect
QKI activity (Pilotte et al. 2001). Therefore, both changes
in the expression and splicing of QKI are altered depending
on the type of cancer or cancer subtype examined. Together
the data suggest that RBFOX2 and QKI play an important
role in regulating the splicing of a subset of tumor micro-
environment–associated events in both ovarian and breast
cancer.

DISCUSSION

Recent studies suggested that the majority of splicing events
identified by comparing whole normal with tumor tissues
aremostly tissue-specific events that are not necessarily linked
to cancer (Venables et al. 2013). This finding raised the ques-
tions ofwhether or not a true cancer-specific splicing program
exists and mandated a more carefully designed procedure to
identify cancer-specific splice markers. In this study, we com-
pared the splicing program of a histologically homogeneous
population of normal and cancer cells with the goal of identi-
fying cancer-specific splicing isoforms that are independent of
tissue composition. The results indicate that differences be-
tween normal and cancer tissues are much smaller than pre-
viously thought. Analyzing the expression of a subset of the
RefSeq alternative splicing events in RNA extracted from
whole ovarian tumors identified 336 cancer-associated ASEs
(Klinck et al. 2008; Venables et al. 2009), while comparison
of normal and cancer epithelial or stromal tissues identified
a total of 17 cancer-specific ASEs (Supplemental Tables S2,
S3, S9). Most of the 336 whole tumor markers affected cell-
type-specific genes including those linked to cell plasticity
(MAP3K7) and cell movement (CEACAM1) (Venables et al.
2009). On the other hand, the splicing events identified in

genes with known function using dissected cancer epithelium
were associated with tumorigenesis (Supplemental Table
S12). Splicing events associated with the tumor microenvi-
ronment did not display common cancer-related function
(Supplemental Table S12). Therefore, while whole tumor
screens identified cell-type-specific genes, comparison of
samples with similar cell composition produced gene signa-
tures that reflect the contributionof each tissue to tumor func-
tion (e.g., cell growth andmigration in the epithelium and cell
metabolism and immune response in the tumor microenvi-
ronment).Consistently, the overlap between the cancermark-
ers identified by the screens conducted using whole and
dissected tissue was limited to five ASEs. Surprisingly, the
overlap between the ASEs identified using whole tissues and
dissected stromal tissue was greater than that between whole

FIGURE 6. The common RBFOX2 and QKI splicing targets are dereg-
ulated in both ovarian and breast cancer. (A) The behavior of seven
common RBFOX2 and QKI splicing targets associated with the tumor
microenvironment was monitored using quantitative RT-PCR in 14
normal and 13 serous high-grade ovarian cancer tissues and their quan-
titative splicing pattern (Qψ) (Prinos et al. 2011) compared with that de-
tected in 18 normal and 20 ductal breast cancer tissues (Supplemental
Table S4). Shown are histograms representing the mean quantitative
splicing shift (Prinos et al. 2011) (ΔQψ =QψTUMOR −QψNORMAL).
(B) QKI expression is altered by different mechanisms in ovarian and
breast cancer. The expression (left panel) (Supplemental Table S11)
and splicing pattern (right panel) (Supplemental Table S10) of QKI
was monitored by quantitative RT-PCR in breast and ovarian samples
as described in A. The global expression pattern was calculated relative
to housekeeping genes as previously described (Prinos et al. 2011), and
the relative value is presented in the form of a bar graph. The splicing
pattern of QKI isoforms 6 (short) and 7 (long) was calculated as
the mean quantitative splicing shift (Prinos et al. 2011) (ΔQψ =
QψTUMOR −QψNORMAL) as previously described in A and is plotted in
the form of bar graphs. When significant, the P-value (t-test) of diffe-
rence in expression or splicing shift is displayed on top of the histogram
by asterisks ([∗] P < 0.05; [∗∗] P < 5.0 × 10−7).
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tissues and dissected cancer epithelium. The relatively low
overlap between epithelium and whole tissue–based screens
suggests that most of the ASEs identified in whole tumor
screens are generated by the marked difference in the level
of epithelial content extracted from tumor and normal ovar-
ian tissues.

Combinatorial regulation of alternative
splicing in cancer

Reducing the expression of splicing factors in any given cell
line leads to changes in a large number of ASEs, few of which
can be associated with a given condition in vivo. In our hands,
repression of QKI or RBFOX2 in vitro changed the splicing
pattern of a total of 39 common splicing targets in the
SKOV3ip1 ovarian adenocarcinoma cell line (Figs. 3B, 5A;
Supplemental Table S8, columns 3–5). However, only a small
subset of these was associated with the tumor microenviron-
ment (Figs. 2A, 5C). This may reflect differences between cell
lines grown in vitro and from patient tissues. The splicing
events affected by QKI and RBFOX2 knockdowns in vitro
might be affected by other cancer-associated splicing factors
not present in the cell lines tested. Indeed, the outcome of
any splicing target is determined by many splicing factors
thatmay vary depending on the cell line and conditions tested.
For examples, RBFOX2 and RBFOX1 splicing activities are
affected by hnRNP H1 and TFG in brain (Sun et al. 2012).
On the other hand, RBFOX2 and the neuron-specific splicing
factor NOVA regulate common splicing targets in neuronal
tissues (Zhang et al. 2010). It was also shown that the splicing
factor QKI controls the expression of other splicing factors
like hnRNP A1, suggesting that one splicing factor may lead
to a cascade of changes in splicing that goes beyond its direct
splicing targets (Zearfoss et al. 2011). In the case of ovarian
cancer, the effect of QKI on splicing appears not to be medi-
ated by hnRNPA1because, despite the fact that the expression
level of hnRNP A1 is altered in the tumor microenvironment
(Supplemental Table S5, column 3), its depletion affects the
splicing of only one common target (MPRIP) of RBFOX2
and QKI in SKOV3ip1 (Fig. 3B). In addition, knocking
downQKI in SKOV3ip1 did not significantly increase the lev-
el of RBFOX2 cancer-associated isoform and vice versa
(Supplemental Fig. S5). Therefore, while our data point to a
group of splicing targets that are specifically regulated by
QKI and RBFOX2 in the tumormicroenvironment, it is likely
that the generation of the cancer splicing program involves a
larger number of factors that together define the splicing out-
come in the tumor microenvironment.

Impact of cancer types on the expression
of the ovarian tumor microenvironment–
associated splicing events

The cancer stromal signature (CSS) discovered in ovarian
cancer was also detected in breast cancer, indicating a similar-

ity in the splicing patterns between these types of cancer. The
CSS was tested in a variety of breast cancer types including
high-grade estrogen-receptor-positive and -negative ductal
breast cancer samples (Fig. 6). Overall, the splicing profile
of these ASEs was similar to that detected in the microenvi-
ronment of ovarian tumors regardless of the estrogen recep-
tor status or cancer subtype, underlining the generality of
the newly discovered signature. Earlier study of luminal (es-
trogen-receptor-positive) and basal (estrogen-receptor-nega-
tive) breast cancer cell lines identified cancer-subtype-specific
splicing signatures (Lapuk et al. 2010; Shapiro et al. 2011).
In contrast, we did not find any statistically significant dif-
ferences in the splicing patterns of RBFOX2- and QKI-de-
pendent ASEs in estrogen-receptor-positive and -negative
breast cancer subtypes (Supplemental Table S4). This con-
tradiction might be due to differences between the minimal-
istic, in vitro growth conditions of monolayer cell cultures
and the intricate, three-dimensional complex growth of cells
in patient tissues in vivo or the number and nature of splic-
ing events examined. The expression pattern of splicing fac-
tors was also perturbed in both ovarian and breast cancer
but in different ways: In ovarian cancer, the expression of
RBFOX2 and QKI was down-regulated, while their splicing
patterns were altered in breast cancer (Fig. 6; Venables et al.
2009). Other studies of QKI expression in breast cancer sug-
gested that QKI might also be down-regulated in breast can-
cer (Novikov et al. 2011), suggesting that the expression of
QKI varies between breast cancer tumors. Therefore, while
there is similarity between the breast and ovarian cancer splic-
ing patterns, the way these patterns are produced in each type
of cancer may be different.

Regulation of alternative splicing in the tumor
microenvironment

Oncogenesis and tumor progression rely on a reciprocal auto-
crine communication program with the tumor micro-
environment (Bhowmick et al. 2004). This communication
results in a tumor microenvironment replete with inflam-
matory mediators, growth factors, matrix remodeling en-
zymes, and angiogenic factors (Tlsty and Coussens 2006).
Growth factors produced by many kinds of cancer cells in-
cluding breast and ovarian carcinomas attract fibroblasts
and stimulate their proliferation (Orimo and Weinberg
2007). Differentiation of fibroblasts in the vicinity of cancer
cells tomyofibroblasts (i.e., activated fibroblasts) is important
for tumor growth and has been observed in several in vitro
studies using ovarian cells (Schauer et al. 2011). This trans-
formation is required for tumor development since fibro-
blasts derived from the omentum, the richly vascularized
fatty subperitoneal layer surrounding the ovaries, increased
ovarian cancer cell adhesion and invasive behavior, whereas
omentum-derived mesothelial cells reduced growth of ovari-
an cancer cells (Kenny et al. 2007). In this study, we uncovered
a new layer of tumor-dependent modification of stromal
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cells defined by changes in alternative splicing. These changes
occur preferentially in the tumor microenvironment and
include differences in the splicing of genes related to di-
verse functions linked to cancer development and were asso-
ciated with changes in the expression of splicing factors.
Interestingly, the cancer-specific splicing markers that are
least sensitive to tissue composition are found in the tumor
microenvironment and not the tumor itself, suggesting that
cancer can be detected more readily by changes in the micro-
environment that may even take place early during tu-
morigenesis. However, it is currently unclear whether these
changes in stromal cells precede tumor development or
occur after the tumor is established. In vitro studies using
cell and animal models will be required to clarify this issue.
In any case, the results presented here pave the way for in-
depth studies of a new level of tumor-dependent modifica-
tion of gene expression in stromal cells. Altogether, it suggests
that cancer cells modulate their environment in a specific
and programmed fashion and that the monitoring of splicing
provides sensitive and specific markers thatmay prove to have
clinical value.

MATERIALS AND METHODS

Tissue selection

Clinically homogeneous (high-grade, high-stage, and chemonaïve)
tumors were selected for both dissected and undissected analyses.
Tissue sourcing was performed as previously described (Klinck
et al. 2008; Venables et al. 2008a) and separated into six sample
sets (see Supplemental Tables S13–S15):

1. the active ASEs set containing one Fallopian tube, one lowmalig-
nant potential, one serous ovarian cancer grade 1, one serous
ovarian cancer grade 3, and one ovarian clear cell carcinoma;

2. the LCM discovery set containing four normal ovarian stroma,
four Fallopian tube epithelia, four cancer epithelia, and four tu-
mor microenvironment samples;

3. the LCM validation set containing four normal ovarian stroma,
four Fallopian tube epithelia, four cancer epithelia, and four tu-
mor microenvironment samples;

4. the fresh frozen (FF) and formalin-fixed, paraffin-embedded
(FFPE) matched sample sets containing mirror images of four
undissected normal ovaries and four undissected ovarian serous
carcinomas;

5. the undissected serous ovarian sample set composed of 14 undis-
sected normal ovaries, six Fallopian tube epithelia (FT), and 13
undissected ovarian serous carcinomas; and

6. the undissected ductal breast sample set composed of 18 normal
breast tissues and 20 ductal breast cancer samples.

Dissected regions were selected based on the epithelium (hema-
toxylin) and stromal cell (eosin) specific staining patterns. Cancer
epithelial cells were selected based on their morphology (cylindrical
or cubic cells with round to ovoid nuclei) and the absence of necro-
sis. Cells in the tumor microenvironment were selected based on
their morphology (spindle cells with spindle nuclei) from the region
adjacent to tumors visualized at 10× magnification.

Cell culture, transfection, RNA extraction,
and quantitative RT-PCR

Cell culture, transfection, RNA extraction, and quantitative RT-PCR
were performed as previously described (Brosseau et al. 2010;
Prinos et al. 2011) except for FFPE and LCM samples. LCM samples
isolated using several successive 8-µm cuts from FFPE blocs of each
LCM sample were deposited on membrane slides (Molecular
Machines & Industries). In general, one to three cuts were used
for ovarian stroma and cancer epithelia, while three to five and
eight to 15 cuts were used for tumor microenvironment and
Fallopian tube, respectively. Dissected tissues with similar cell pop-
ulations in both normal and cancer samples were chosen for RNA
extraction. Typically, dissected Fallopian tube epithelium was
composed of 90% epithelial and 10% fibroblast cells; dissected
cancer epitheliumwas composed of >95% epithelial and <5% fibro-
blast and other nonepithelial cells (e.g., endothelial and inflamma-
tory cells); dissected Fallopian tube stroma, dissected ovarian
stroma, and dissected tumor microenvironment were composed
of 60%–80% fibroblast, 10%–20% endothelial, and 10%–20% in-
flammatory cells. LCM slides were stained with hematoxylin and eo-
sin (Fischer) and were dissected using MMICellCut (Molecular &
Machines Industries). Samples with the same cell type and tissue
source were pooled. RNA extraction was performed using the
RNeasy FFPE kit (Qiagen) with the following modifications:
Dissected materials were incubated in Aqua DePar 1× (Davis
Diagnostics) for 15 min at 95°C, then lysed by incubation in tris-
guanidinium thiocyanate 4 M (Sigma-Aldrich) and 10 µL of pro-
teinase K (Qiagen) for 15 min at 55°C followed by 15 min of
incubation at 80°C. Finally, demodification was achieved by the ad-
dition of NH4Cl (Sigma-Aldrich) to a final concentration of 2.5 M
and incubation for 20 min at 95°C. DNase treatment was performed
using an RNase-free DNase set (Qiagen). The resulting RNA
(250 ng/reaction) was subjected to a single round of 25 PCR cycles
of amplification using the Sigma-Aldrich whole transcriptome
amplification kit (Sigma-Aldrich). The resulting DNA libraries
were purified using the QIAquick PCR purification kit (Qiagen)
and diluted to a final volume of 12.5 mL. Global (Prinos et al.
2011) and isoform-specific (Brosseau et al. 2010) quantitative RT-
PCR primers were designed and validated as previously described
(Brosseau et al. 2010). The reliability of the gene expression assay
using RNA samples from archived material was evaluated by com-
paring global gene expression (Supplemental Fig. S2A), technical
duplicates of amplification (Supplemental Fig. S2B), and splicing
pattern (Supplemental Fig. S3) obtained from the fresh-frozen
(FF) and fresh-frozen formalin-fixed, paraffin-embedded (FFPE)
matched sample set and different methodology (e.g., quantitative
RT-PCR vs. endpoint PCR) (see Supplemental Figs. S2C, S3). The
quality of the tissue dissection was verified visually (Fig. 1A) and
through the expression of known cell-type markers (Fig. 1B). The
expression levels of the different markers did not vary greatly
between tissues of the same type, confirming the absence of random
sample-to-sample variations in cell type (Fig. 1B; Supplemental
Table S1). Furthermore, the changes in gene expression observed
in tumor samples were gene-specific and not marker type-specific
(e.g., epithelial or stromal) (see Fig. 1; Supplemental Table S1),
confirming that any changes observed in cancer tissues are not
due to variation in the level of cell type contaminations. All
raw PCR data are available through http://palace.lgfus.ca/data/
related/844.
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Primer design and alternative splicing screens

The previously described LISA platform (LISA) (Klinck et al. 2008)
was updated with RefSeq database build 36.3 (Pruitt et al. 2007) and
used for automatic identification of ASEs and the design of isoform-
specific PCR primers as described before (Venables et al. 2009).
ASEs with strong evidence of the expression of both splicing iso-
forms (active ASEs) were identified by endpoint PCR using four in-
dividual ovarian tissues (one clear cell, one low malignant potential,
one serous grade 1, and one serous grade 3) and one Fallopian tube
tissue as previously described (Venables et al. 2009). Isoform-specif-
ic quantitative RT-PCR primers were designed for all active ASEs
and validated using a universal human reference RNA as described
earlier (Brosseau et al. 2010). Primer pairs showing no PCR ampli-
fications were subsequently tested using RNAs extracted from the
FFPE pool that include two normal ovaries and two serous ovarian
cancer tissues, totalizing 1740 validated primer pairs (covering 870
ASEs). The screen for cancer-specific ASE markers was performed
in two steps: (1) the discovery screen, which consists of surveying
870 ASEs in the LCM discovery sample set and (2) the validation
screen, which assesses the expression of all ASEs obtained from
the discovery screen in an independent LCM sample set. Splicing
pattern (Qψ) values were calculated as described elsewhere
(Prinos et al. 2011). In the discovery screen, ASEs were selected
for further studies if they were expressed with a splicing shift
(ΔQψ =QψTUMOR MICROENVIRONMENT −QψOVARIAN STROMA or
QψCANCER EPITHELIUM −QψFALLOPIAN TUBE EPITHELIUM) of at least
15 in at least three out of four tissues. A t-test was used to rank
ASEs, and an arbitrary cut-off was applied at P < 0.05. In the valida-
tion screen, ASEs were considered cancer-associated if they were
expressed in at least three out of four tissues with a splicing shift
(ΔQψ =QψTUMOR MICROENVIRONMENT −QψOVARIAN STROMA or
QψCANCER EPITHELIUM −QψFALLOPIAN TUBE EPITHELIUM) of at least
15. The validity of the markers identified in this screen and their ca-
pacity to detect cancer were further evaluated using a third indepen-
dent set of undissected ovarian serous tumors. ASEs association
with cancer was considered specific if they displayed a splicing shift
(ΔQψ =QψOVARIAN CANCER−QψNORMAL OVARY or QψOVARIAN

CANCER−QψNORMAL FALLOPIAN TUBE) of at least 15 and a P <
0.005 (t-test). Data clustering were performed using R statistical
software (http://www.r-project.org).

Splicing factors screen

Search of the NCBI literature database PubMed (Lu 2011) re-
trieved 389 spliceosome-associated genes. Validated quantitative
RT-PCR assays were successfully developed for 328 out of the
389 splicing factors tested. The splicing factors discovery screen
consisted of surveying the global expression of all 328 splicing fac-
tors in the LCM discovery sample set by quantitative RT-PCR.
Gene expression levels relative to housekeeping genes (Prinos
et al. 2011) were determined, and those that vary between the tu-
mor microenvironment and ovarian stroma, between cancer epi-
thelium and Fallopian tube epithelium by at least twofold in at
most one normal and at least three cancer samples or at most
one cancer and at least three normal tissues were selected and val-
idated using LCM validation sample set (Supplemental Table S5).
Genes with expression that varies by at least twofold in tumor mi-
croenvironment/ovarian stroma or cancer epithelium/Fallopian
tube epithelium in at most one normal and at least three cancers

or at most one cancer and at least three normal tissues were con-
sidered associated.

Identification of splicing factor–dependent
ASEs in cell lines

The expression levels of the 51 cancer-associated splicing factors
were determined using quantitative RT-PCR in the SKOV3ip1 cell
line (Chen et al. 2001). A raw Ct of 30 or less for a 1-ng cDNA input
was considered as “expressed.” Forty-one splicing factors were ex-
pressed and successfully knocked down with two nonoverlapping
siRNAs in SKOV3ip1 or immortalized normal ovarian fibroblast
(INOF) (Lawrenson et al. 2012) (see Supplemental Table S7 for
sequences). RNA was harvested 72 h after transfection, and the
quality of knockdown was evaluated by quantitative RT-PCR
(Supplemental Table S7) or Western blot (Supplemental Fig. S4).
RNA extracted from cells where splicing factors were knocked
down by at least twofold or more was used to monitor the impact
on 13 cancer-associated ASEs by quantitative RT-PCR. ASEs dis-
playing quantitative splicing shift (ΔQψ) of at least 10 between the
knockdowns and mock transfection were considered significant.
All cancer-associated ASEs regulated by at least one splicing factor
and splicing factors regulating at least one ASE are shown in
Figure 3B (the raw data are accessible through http://palace.lgfus.
ca/pcrreactiongroup/list/229). The splicing patterns of ASEs affected
by QKI and RBFOX2 knockdown in SKOV3ip1 were retested in the
INOF cell line using the same method.

Identification of RBFOX2- and QKI-dependent ASEs

To determine QKI-responsive ASEs, QKI was knocked down
using two independent siRNAs in the SKOV3ip1 cell line. Effec-
tive knockdown of at least twofold was confirmed by quantitative
RT-PCR, and the splicing patterns (ψ values) of 382 alternative cas-
sette exons (ACE) were monitored by high-throughput endpoint
PCR. A splicing shift (Δψ) of at least 10 between the mock trans-
fection and each siRNA was considered significant (Supplemental
Table S8). The effect of QKI on RBFOX2 splicing targets was eval-
uated using an established set of 48 RBFOX2 splicing targets (Ven-
ables et al. 2009) as described above (Supplemental Table S8). The
tendency of RBFOX2 and QKI co-regulated exons to be associated
with the tumor microenvironment was evaluated as described in
Figure 2A.

Western blot analysis

Proteins were extracted from SKOV3ip1 cells 72 h post-transfection
and separated on SDS-PAGE and visualized via immunoblotting
as described previously (Venables et al. 2008b). QKI detection was
performed using polyclonal rabbit anti-QKI 1:1000 (Novus
Biologicals). RBFOX2 detection was performed using Flag-Tag
M2 (CloneM2) (1 µg/mL) (Sigma-Aldrich). Each blot was decorated
with an anti-GAPDH antibody (Novus Biologicals) to correct for to-
tal protein content in different lanes.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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