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Iontophoresis is a method of non-invasive transdermal drug delivery based on the transfer of charged molecules using a low-intensity
electric current. Both local and systemic administration are possible; however, the skin pharmacokinetics of iontophoretically delivered
drugs is complex and difficult to anticipate. The unquestionable theoretical advantages of the technique make it attractive in several
potential applications. After a brief review of the factors influencing iontophoresis, we detail the current applications of iontophoresis
in therapeutics and the main potential applications under investigation, including systemic and topical drugs and focusing on the
treatment of scleroderma-related ulcerations. Finally, we address the issue of safety, which could be a limitation to the routine clinical
use of iontophoresis.

Introduction

The excellent barrier properties of the stratum corneum
(i.e. the outermost skin layer) make drug delivery into and
across the skin challenging. Iontophoresis is a method for
transdermal drug delivery based on the transfer of
charged molecules using a low-intensity electric current.
This original route of drug delivery is non-invasive and
presents several advantages in comparison to the usual
passive transdermal administration, such as faster release
of the drug into the skin, the capacity to deliver macro-
molecules and better control of the delivered dose.
Depending on the properties of the molecule, systemic
administration can also be achieved without first-pass
metabolism [1].

One of the first experiences of medication transfer by
electricity may be attributed to Hermann Munk, as early as
1879. Indeed, after a 20–25 min exposure to an electrified
strychnine solution, Munk observed spontaneous cramps
in rabbits [2]. About 40 years later, Stéphane Leduc
described methods to administer salicylic acid using an
electric current to relieve pain and accelerate wound
healing [3]. Since these early experiments, many drugs
have been tested as candidates for iontophoresis. Recent

technological advances have allowed the miniaturization
of delivery systems, opening the way to clinical perspec-
tives [4].

Two mechanisms are involved in iontophoretic trans-
port. Electromigration (also referred to as electrorepulsion)
is the movement of ions across a membrane (i.e. the skin)
under the direct influence of an electric field. Negatively
charged drugs are therefore repelled into the skin under
the cathode, whereas the transfer of positively charged
drugs occurs under the anode (Figure 1). The second
mechanism is called electro-osmosis, which can be sche-
matized as the volume flow induced by the current flow. As
the isoelectric point (pI) of human skin is around 4–4.5,
which is below its pH in physiological conditions, the skin
will be charged negatively. Application of an electric field
across the skin will therefore favour the movement of
cations. Therefore, volume flow will be directed in the
anode-to-cathode direction, facilitating the transport of
positively charged drugs (Figure 1) [5]. Electro-osmosis
also allows the diffusion of neutral molecules with anodal
iontophoresis.The respective part of the transfer explained
by electromigration or electro-osmosis depends mostly on
the physicochemical properties of the molecules and the
polarity of the applied current.
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Iontophoresis has also been studied to enable the
extraction of molecules from the skin (the technique is
often referred to as ‘reverse iontophoresis’). Although
beyond the scope of this review, iontophoretic extraction
has raised considerable interest, especially for glucose
monitoring [6].

Factors influencing iontophoresis

Faraday’s Law states that the number of moles of the trans-
ported ion depends on the time of application of the
current and its intensity (i.e. the quantity of charge
expressed in coulombs; amperes ¥ seconds). The cross-
sectional skin area in contact with the electrode should
also be taken into account; current density, i.e. the intensity
divided by cross-sectional skin area, is usually expressed
in milliamperes per square centimetre [5]. There is a high
variability in the current density used in humans, from
17 mA cm-2 [7] to 0.5 mA cm-2, which is usually considered
to be the maximal current density, for safety reasons [8].

Drug concentration is one of the factors influencing
iontophoretic transfer. However, while in some cases there
is an almost linear relationship between concentration and
flux, the flux often reaches a plateau as the concentration
increases, which means that above a given concentration
there is a saturation in the iontophoretic transport [5]. The
quantity of charge, the skin area and the drug concentra-

tion are experimental variables that can be adjusted to
modify the electrophoretic transfer.

Other parameters, such as the physicochemical proper-
ties of the molecule, cannot easily be influenced by the
operator. The size, the partition ratio and, of course, the
charge of the molecule are of primary importance [8]. In
general, small and hydrophilic molecules are transported
at a faster rate than larger, lipophilic molecules [8]. None-
theless, this rule is not exclusive, because larger molecules,
such as peptides, can be administered iontophoretically
[9]. In the same way, iontophoresis of rather lipophilic
drugs is possible (e.g. treprostinil log octanol/water parti-
tion coefficient is 4) [7].

The pH of the solution is of primary importance,
because it will determine the ionization of the compound.
Indeed, according to the Henderson–Hasselbalch equa-
tion for weak acids, the ionic fraction increases with
increasing pH of the solution. On the contrary, undissoci-
ated weak base increases with increasing pH. Therefore,
one can calculate the percentage of ionization if the pKa of
the compound (or its pI when there are several weakly
acidic or basic groups) and the pH of the solution are
known. Practically, the pH must be carefully set and con-
trolled to ensure that the drug is ionized, while preserving
skin integrity.

Finally, the integrity of the skin surface, its thickness
and whether it is glabrous or not will influence ionto-
phoretic transfer [5]. Although few data are available in
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Figure 1
Schematic representation of iontophoretic transport. Positively charged drugs (D+) migrate under the anode, whereas negatively charges drugs (D–) migrate
under the cathode. The red and blue arrows represent anodal and cathodal electromigration, respectively. The purple arrow represents electro-osmosis
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vivo, traumatic skin injuries as well as diseases that affect
barrier function or the hydratation state of the surface of
the skin (e.g. atopic dermatitis or psoriasis) are expected
to affect permeation of iontophoretically administered
drugs. The thickness of the upper layer of the skin, the
stratum corneum, is supposed to be a major obstacle to
iontophoretic transport, which can, however, be overcome
using physical or chemical enhancers [10]. Moreover, sig-
nificant regional variations in local blood flow may influ-
ence drug clearance, high skin blood flow being associated
with increased skin drug clearance. Indeed, nonglabrous
skin contains a large proportion of arteriovenous anasto-
moses, making skin blood flow generally higher and
particularly dependent on environmental conditions,espe-
cially temperature. For example, the iontophoresis of
sodium nitroprusside on the finger pad (glabrous skin,
with a thick stratum corneum and elevated skin blood flow)
does not induce the vasodilatation observed on the
forearm (where skin is nonglabrous and thinner, with low
basal blood flow) [11].

Detailed expert reviews about the parameters influenc-
ing iontophoretic transport have been published previ-
ously [5, 8].

Pharmacokinetics

The skin pharmacokinetics of iontophoretically delivered
drugs is complex and difficult to predict. Some drugs are
supposed to be rapidly cleared from the dermis (depend-
ing on local blood flow) [11],whereas others concentrate in
the skin layers for several days [12]. Therefore, depending
on the properties of the molecule, iontophoresis may be
used for local or systemic drug administration; this stresses
the need for careful assessment of the pharmacokinetics of
each iontophoretically administered drug.

In vitro studies are usually performed using classic (i.e.
vertical) Franz cells or horizontal cells, which allow mem-
brane permeation to be investigated, e.g. in porcine skin
[13, 14]. In vivo evaluation of the pharmacokinetics of topi-
cally administered drugs is more complex. When possible,
the measurement of concentrations in blood or urine is
useful to assess systemic bioavailability and/or toxicity,
although this is not always feasible; moreover, local con-
centrations provide useful information to characterize the
kinetics of a drug better, although there is no generally
accepted method [15].

Tape-stripping consists in the sequential application
and removal of adhesive tape strips to collect thin layers
of stratum corneum [16]. As this superficial layer is the
principal barrier to the penetration of topical drugs, it has
been suggested that drug levels in the stratum corneum
can be correlated with those in the underlying skin layers
[15, 17]. However, tape-stripping has not yet been prop-
erly validated. Another major issue when studying phar-
macokinetics is that continuous quantification over the

same skin area is not possible. This implies a different skin
site for each time point, which makes the procedure more
complicated as the number of required time points
increases [15].

Microdialysis is a minimally invasive technique using a
fibre inserted in the dermis or at the dermis–hypodermis
interface. A short segment of the fibre is made of a semi-
permeable membrane, through which molecules smaller
than the cut-off value of the membrane diffuse between
the extracellular fluid and the perfused physiological solu-
tion. This technique allows continuous sampling during
topical drug delivery [15, 18, 19]. This sensitive tool has
been used to assess local bioavailability of topically deliv-
ered drugs in humans [20–22], including iontophoretically
administered compounds [23] (Figure 2).

Current applications
and perspectives

Iontophoresis of acetylcholine and sodium nitroprusside,
when combined with laser Doppler, have been used as
markers of microvascular endothelium-dependent and
-independent vasodilatation, respectively [24, 25]. Several
decades before being used as reactivity tests, iontophore-
sis had known therapeutic applications, particularly in
physical therapy and dermatology [1]. Indeed, tap water
has been used in the treatment of palmar-plantar and axil-
lary hyperhidrosis [26]. In the same way, the current itself
may enhance wound healing [27], as exploited in electro-
therapy (WoundEL®; DTF Medical, Saint-Etienne, France). In
this section, however, we will only focus on iontophoreti-
cally delivered drugs approved by regulatory agencies or
undergoing clinical development. Iontophoresis may be
used as a route of administration for systemic drugs or as
local therapy. Indeed, cutaneous iontophoretic delivery is
faster than the usual topical routes and allows the admin-
istration of high concentrations in the target tissue while
limiting systemic toxicity.

Systemic drugs
Fentanyl Iontophoretic delivery of fentanyl, an opioid
analgesic, through a patient-controlled transdermal
system (Ionsys®; Janssen, Beerse, Belgium) was approved in
2006 in Europe for the management of acute moderate to
severe postoperative pain. Unlike lidocaine, fentanyl is not
used topically but as a systemic drug, and iontophoresis
allows on-demand administration [28]. In a large prospec-
tive, randomized, unblinded, controlled trial comparing
iontophoresis of fentanyl with conventional patient-
controlled analgesia with morphine, the investigators did
not show any difference in efficacy [29], which was con-
firmed by analysis of pooled data from three trials [30].
However, although not statistically different, withdrawals
because of inadequate analgesia were fewer in the intra-
venous patient-controlled analgesia morphine group than
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in the fentanyl iontophoresis group (10.3 and 15.2%,
respectively; P = 0.07) [29].

However, technical issues concerning the device led to
a suspension of marketing authorization by the European
Medicines Agency in January 2009 (detailed below in the
safety section).

Treatment of migraine Among the drugs in the pipeline
which could lead to new marketing applications soon,ago-
nists of the 5-HT1 family receptors used as anti-migraine
agents (i.e. triptans) have raised interest. Indeed, subcuta-
neous (s.c.) administration of sumatriptan leads to a rapid
but transient effect, whereas oral or nasal administration
suffers from poor bioavailability. The pharmacokinetics of
iontophoretically delivered sumatriptan (4 mA for 1 h fol-
lowed by 2 mA for 3 h) in healthy subjects showed compa-
rable concentration over time areas under the curve (AUC)
to the s.c. route [31,32],but the maximal concentration was
about 30% of that by the s.c. route, whereas time to
maximum plasma concentration was 5.6- to 8.3-fold that
of the s.c. route [32]. Given that it avoids patient exposure
to a rapid increase and high plasma concentrations of
sumatriptan in comparison to s.c. administration, ionto-
phoresis may reduce typical triptan-related adverse events
(i.e. chest tightness, chest heaviness, paresthesias and
sedation/fatigue/malaise) [33]. A new drug application for
an iontophoretic device containing sumatriptan (Zecuity®,
formerly Zelrix®; NuPathe Inc., Conshohocken, PA, USA) has
been approved by the US Food and Drug Administration
(FDA) in January 2013 [34].

Other iontophoretically delivered 5-HT1 agonists, such
as zolmitriptan or almotriptan, have been studied recently;
to date, only preclinical data are available and suggest that
these molecules are appropriate candidates for ionto-
phoresis [14, 35].

Other potential applications Iontophoresis has been sug-
gested as a route of administration for nicotine in smoking
cessation [36].To our knowledge, however, there is no clini-
cal study currently assessing the efficacy and safety of
nicotine iontophoresis.

Recent investigations in animals highlighted the
potential of iontophoresis of ranitidine [37] or phenobar-
bital [38] in paediatric patients. However, to our knowl-
edge, there are no clinical data yet.

Finally, administration of proteins has raised interest in
the past few years. Iontophoresis of insulin has been exten-
sively studied since the mid-1980s, but a low penetration
rate precluded its consideration for therapeutic use [9].
Recent improvements in penetration enhancement tech-
niques and in formulation (i.e. nanovesicles) are encourag-
ing [39]. Iontophoretic delivery of other proteins, such as
calcitonin, luteinizing hormone-releasing hormone or
vasopressin, has been also investigated in the late 1990s
(expertly reviewed in reference [9]), but no clinical applica-
tions have emerged yet from these experiments.

Local treatment
Lidocaine/epinephrine Lidocaine combined with epine-
phrine was approved by the FDA as a local anaesthetic in

Anode (+)

Saline

Microdialysis fibre

Drug

Cathode (–)

Figure 2
Assessment of the dermal diffusion of a drug administered through cathodal iontophoresis using microdialysis
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2004 (Lidosite®; Vyteris Inc., Fair Lawn, NJ, USA). Combina-
tion with epinephrine aims at decreasing skin blood flow,
thus reducing skin clearance of the drug and consequently
increasing the dermal concentration [40] and prolonging
the anaesthetic action of lidocaine in a dose-dependent
manner [41]. The current density of Lidosite® is
0.35 mA cm-2, and it is applied for 10 min with a patch elec-
trode pH of 4.5, at which both lidocaine and epinephrine
are positively charged [42].

In a randomized, open-label, crossover study con-
ducted in children undergoing repeated procedures
requiring peripheral intraveous access, pain relief after
10 min of lidocaine/epinephrine iontophoresis (Ionto-
caine®; Abbott Laboratories, Abbott Park, IL, USA) was
similar to that found after 60 min of local anaesthesia with
lidocaine/prilocaine cream [43].Two of 22 children discon-
tinued iontophoresis before the complete dose was
delivered because of intolerable tingling, itching and dis-
comfort from the procedure [43]. In a randomized, double-
blind study comparing iontophoresis of lidocaine/
epinephrine with that of placebo, erythema at the site of
iontophoresis was observed in about 50% of adults and in
60% of children, whatever the group. In most cases, it was
mild, but still detectable after 24 h in about 6.5% of the
adults [44]. Additional adverse events included mild
oedema, itching and urticaria [44].

The pharmacokinetics of lidocaine iontophoresis have
been assessed in animals and in humans. In a study using
microdialysis in animal models, iontophoresis of lidocaine
at 0.15 mA cm-2 resulted in a 40-fold increase in dermal
lidocaine concentrations in comparison to passive drug
delivery [45]. In children, lidocaine plasma concentrations
were below the lower limit of detection (<5 ng ml-1; or
below 10 ng ml-1 for one observation after three applica-
tions) [46].

Current clinical investigations Iontophoretic delivery of
terbinafine has been proposed in the treatment of ony-
chomycosis [47]. Preliminary data in humans compared
terbinafine patches with (100 mA cm-2, the active electrode
polarity being positive) or without current during 4 weeks
(6–8 h overnight, every day, 5 days a week). Clinical
improvement was observed in the iontophoresis group
compared with control subjects from the second follow-up
visit [48]. At the end of follow-up, mycological improve-
ment (i.e. decrease in fungal elements) was also observed
in patients from the iontophoresis group compared with
control subjects [48]. The investigators hypothesized that
deeper penetration of the drug into the nail bed under the
influence of the electric field was responsible for these
encouraging results [48]. Despite the prolonged treatment
with elevated intensity, iontophoresis of terbinafine was
well tolerated. Besides a tingling sensation, local irritation
was reported by only two of 20 patients at the first appli-
cation of the patch, and none of them stopped the therapy
[48]. Nonetheless, iontophoresis was performed over a

small area (1 cm2) on the toenail, which is less sensitive
than plain skin.

Iontophoresis of antiviral agents was proposed in the
treatment of herpes labialis as early as the mid-1980s.
Indeed, the efficacy of topical cream is limited by low pen-
etration of the drug into the basal epidermis. A single
10 min iontophoretic application of 5% acyclovir cream
was superior to placebo in the time to healing [49]. Further
research using a modified, self-administered, iontophoretic
device (SoloVir®) was conducted in 2007 but, to our knowl-
edge, the results have not been published (clinicaltri-
als.gov identifier: NCT00469300), and the development of
SoloVir® was stopped [50].

Among other local therapies being investigated, a
study comparing the efficacy and safety of iontophoreti-
cally administered azelaic acid twice weekly to topical
cream twice daily in women with melasma is ongoing
(clinicaltrials.gov identifier: NCT00848458).

Finally, iontophoresis of corticosteroids has been
extensively studied, especially since the marketing of new
devices (e.g. EyeGate® delivery system) which enable
drug delivery to both the anterior and posterior seg-
ments of the human eye. Recent controlled studies
suggest that dexamethasone administered through oph-
thalmic iontophoresis may be an effective treatment of
dry eye [51], but this is beyond the scope of this review.
On the skin, however, a pilot study reports the potential
benefit of dexamethasone iontophoresis for temporo-
mandibular joint involvement in juvenile idiopathic
arthritis [52]. In contrast, dexamethasone iontophoresis
was not effective in the treatment of mild to moderate
carpal tunnel syndrome [53].

Besides tap water iontophoresis, which has been used
for years in hyperhidrosis, Clostridium botulinum toxin
type A (BTX-A) was successfully administered iontopho-
retically (100 IU diluted in 3 ml of saline; 1.1–2.2 mA cm-2

for 5 min) to two patients with severe palmar hyperhidro-
sis [54]. A small (n = 8), double-blind, randomized, placebo-
controlled study performed by the same group showed
reduced palmar sweating in the BTX-A group at 14 days
post-treatment [55]. A preliminary randomized study com-
paring iontophoretically administered vs. intradermal
injections of botulinum toxin treatment in patients with
palmar hyperhidrosis recently showed that injections are
more effective but more painful for the administration
of BTX-A [56]. A larger trial is currently ongoing (clinicaltri-
als.gov identifier: NCT01262339) and will provide further
data.

Perspectives in scleroderma-related ulcerations Systemic
sclerosis (scleroderma) is characterized by microvascular
dysfunction leading to irreversible tissue ischaemia, asso-
ciated with scarring, ulceration and sometimes gangrene.
Iloprost, a prostacyclin (PGI2) analogue used intravenously,
is the only drug approved for the treatment of existing
digital ulcers [57]. However, the therapeutic effect of
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prostaglandin analogues is counterbalanced by poten-
tially serious systemic adverse effects related to their
potent vasodilator properties, such as severe headaches,
flushing, tachycardia and systemic hypotension [57].

Iontophoresis of vasodilators has been proposed as a
possible therapy for scleroderma-related ulcerations [58,
59]. Indeed, it could permit a significant drug concentra-
tion to be attained locally, while limiting systemic expo-
sure, thus decreasing the risk of adverse drug events.
Preliminary data on rats have revealed a sustained increase
in skin blood flux after 20 min cathodal iontophoresis
(85 mA cm-2) of two PGI2 analogues, treprostinil and ilo-
prost [60].These results were confirmed for treprostinil in a
subsequent clinical study, showing a large and sustained
increase in cutaneous blood flow after a 20 min cathodal
iontophoresis (17 mA cm-2) of treprostinil in healthy volun-
teers [7]. In the extension of this work, the dermal and
systemic pharmacokinetics of treprostinil iontophoresis is
currently being investigated (clinicaltrials.gov identifier:
NCT01554540).

Given that bosentan, an endothelin receptor antago-
nist, has also been shown to be effective in the prevention
of digital ulcers in scleroderma [61, 62], iontophoresis of
endothelin receptor antagonists was also tested, unsuc-
cessfully, in animals and in humans [63].

Limitations

Safety
Cutaneous adverse events Iontophoresis induces a sensa-
tion of tingling or itching, depending on the density of
the applied current. Besides these uncomfortable but
harmless effects, skin irritation is the most common local
adverse effect of cutaneous iontophoresis. It occurs at both
the anode and the cathode. Erythema is the most fre-
quently described adverse effect, with a variable frequency
according to the iontophoresis protocols [44, 64]. It was
shown to occur consistently after 3 h iontophoresis at
250 mA cm-2, was rated as very slight (grade 1) and lasted
up to 3 h after removal of iontophoresis [64]. Using the
same protocol, oedema was observed in half of the
patients, and both erythema and oedema were enhanced
by non-occlusive pretreatment with a surfactant [64]. Skin
irritation spontaneously and rapidly resolves,does not lead
to permanent skin damage and does not disturbs the
barrier function of the skin [64].

Although rare, burns have been observed, mainly due
to operator error and the incorrect choice of electrodes/
formulation composition. Indeed, the electrochemistry at
bare metal or graphite electrodes involves electrolysis of
water, which induces changes in the pH of the skin by
generating H+ and OH- at the positive and negative elec-
trodes, respectively [65].Variations in pH beyond the buffer
capacities of the skin may lead to burns. High current
density or prolonged application, as well as positioning of

the electrodes over skin defects (which decrease skin
resistance) increase the risk of burns. Burns are generally
more serious under the cathode, due to involvement of
OH- and rise in pH [1]. Indeed, an alkaline phase erodes the
epidermis and reduces skin resistance, making skin erosion
worse [65]. Therefore, an appropriate choice of buffer con-
centration in the formulation is needed to reduce the risk
of burns. A better solution is to use Ag–AgCl rather than
bare metal or carbon active electrodes, because they func-
tion at a lower potential and do not operate by water
electrolysis.

Other cutaneous adverse effects have occasionally
been described, such as galvanic urticaria [66, 67].
However, this was observed at high current intensities up
to 24 mA, in the treatment of hyperhidrosis [67].

Several simple recommendations can decrease the risk
of skin injury, such as avoiding pressure on the electrodes
(not taping, binding or compressing either electrode) and
ensuring that the electrode is uniformly wetted [68].
Indeed, most of the commercially available electrodes are
made of small sponges in contact with the skin. After
dampening the sponge with the drug solution, it conducts
the current. Therefore, heterogeneity in sponge dampen-
ing locally increases current density and may lead to skin
injury. In the same way, the adhesive seal should adhere
uniformly to the skin to avoid leaks [68]. Moreover, cleans-
ing the skin with alcohol and avoiding skin defects and
contact between metal components and the skin are also
recommended [1, 68]. Finally, current intensity should be
<0.5 mA cm-2 [8].

Material defects Material defects are the main cause of
skin injuries, such as burns, usually resulting from a contact
between metal components and the skin. For example, a
partial-thickness burn has been reported in a paediatric
patient, attributed to contact between the skin and a
defect in the coating of the wires connecting the controller
to the electrode patch [44].

Another consequence of material defects can be over-
dose, which is potentially harmful when drugs are deliv-
ered for a systemic action and have a narrow therapeutic
index. The most striking example in the past few years
was the iontophoretic delivery of fentanyl (Ionsys®); after
receiving marketing authorization for the whole European
Union in 2006,corrosion of a component within the system
was found in one batch. Although no case of fentanyl over-
dose was reported, this defect could have resulted in fen-
tanyl release without activation by the patient. This could
have exposed patients to fentanyl overdose (the maximal
theoretical dose was 3.2 mg), with a risk of severe respira-
tory depression [69]. Ionsys® has not been marketed in
Europe since October 2008, and the marketing authoriza-
tion holder did not apply for renewal of authorization [70].
Ionsys® has recently been acquired by another pharma-
ceutical company (Incline Therapeutics Inc., Redwood City
CA, USA) currently developing new features into the
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system in order to obtain regulatory approval in the next
few years.

Cost-effectiveness
In most cases, iontophoretic devices are more expensive
than the usual topical formulations. Although there are
limited data about the cost-effectiveness of iontophoresis,
in some cases it has been shown to be in favour of ionto-
phoresis compared with another formulation.For example,
a cost-effectiveness analysis of various anaesthetic agents
(including iontophoresis of lidocaine) to reduce the pain
of peripheral intravenous cannulation in an emergency
department setting suggests that lidocaine iontophoresis
is more cost-effective than lidocaine/prilocaine cream
(incremental cost-effectiveness ratios were 2.89 and
2982.04 vs. no anaesthetic, respectively), but not as cost-
effective as a needle-free lidocaine jet injection device or
the injection of buffered lidocaine [71].

To our knowledge, the cost-effectiveness of iontopho-
retically administered fentanyl has never been compared
with that of the usual intravenous morphine patient-
controlled analgesia, for which a reliable monetary figure
has not been proposed [72].

Conclusion

Iontophoresis has many theoretical advantages, including
non-invasiveness and avoidance of first-pass metabolism
for systemic administration, as well as faster administration
and better control of the delivered dose in comparison to
the usual passive transdermal formulations. Despite many
false starts in the development of the iontophoretic
administration of drugs in the past few years, several appli-
cations show promise, especially as local therapies. None-
theless, safety remains a central issue, closely related to the
reliability of iontophoresis devices.
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