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Abstract

Probability weighting functions relate objective probabilities and their subjective weights, and
play a central role in modeling choices under risk within cumulative prospect theory. While
several different parametric forms have been proposed, their qualitative similarities make it
challenging to discriminate among them empirically. In this paper, we use both simulation and
choice experiments to investigate the extent to which different parametric forms of the probability
weighting function can be discriminated using adaptive design optimization, a computer-based
methodology that identifies and exploits model differences for the purpose of model
discrimination. The simulation experiments show that the correct (data-generating) form can be
conclusively discriminated from its competitors. The results of an empirical experiment reveal
heterogeneity between participants in terms of the functional form, with two models (Prelec-2,
Linear in Log Odds) emerging as the most common best-fitting models. The findings shed light on
assumptions underlying these models.

Cumulative Prospect Theory (CPT; Luce and Fishburn, 1991; Tversky and Kahneman,
1992) comprises two key transformations: one of outcome values and the other of objective
probabilities. Risk attitudes are derived from the shapes of these transformations, as well as
their interaction (see Zeisberger et al., 2011, for a demonstration of the interaction effects).
The focus of this paper is on the latter of these two transformations, the transformation of
objective probabilities, which is commonly referred to as the ‘probability weighting
function.” The probability weighting function is of particular interest because, along with
gain-loss separability, it is what separates CPT from EU and allows it to accommodate the
classical “paradoxes” of risky decision making, such as the common consequence effect
(e.g., the Allais paradox; Allais, 1953), the common-ratio effect, the fourfold pattern of risk
preferences, and the simultaneous attraction of lottery tickets and insurance (Burns et al.,
2010).

While there is now a general consensus about the qualitative shape of the probability
weighting function (inverse sigmoid), numerous functional forms have been proposed (See
Figure 1). Some forms are derived axiomatically (e.g., Prelec, 1998; Diecidue et al., 2009),
others are based on psychological factors (e.g., Gonzalez and Wu, 1999), and still others
seem to have no normative justification at all (e.g., Tversky and Kahneman, 1992). As a
result, CPT as a quantitative utility model is only loosely defined. Each functional form of
the probability weighting function, embedded in the CPT framework, yields a different
model with potentially different implications for choice behavior. Thus, while the inclusion

"dcavagnaro@fullerton.edu.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Cavagnaro et al.

Page 2

of a probability weighting function of any form allows prospect theory to outperform EU in
describing human choice data, there is no settled-upon instantiation of prospect theory as a
quantitative model.

Despite the functional and theoretical differences between forms of the probability
weighting function, attempts to identify the form that best describes human data have
yielded ambiguous results. Gonzalez and Wu (1999) compared the fits of one- and two-
parameter probability weighting functions and found that only one parameter was required
to describe aggregate choice data while two parameters were required to describe individual
choice data. However, Stott (2006) found that the performances of one- and two-parameter
forms depend on assumptions about the other component functions in CPT, such as the
value function. In particular, when the surrounding functions have a worse fit, the extra
parameter in the weighting function can play a compensating role. His study favored Prelec's
(1998) one-parameter form for individual choice data, but only when it was paired with
particular forms of the value function.

Judging by a visual inspection of the shapes of the probability weighting curves (Figure 1),
it is not surprising that the forms are so difficult to discriminate. For example, Figure 2
shows the Linear-in-Log-Odds (LinLog) form with parameter values obtained empirically
by Abdellaoui (2000) along side Prelec's two parameter form (Prl2) with parameter values
obtained through trial and error to visually approximate the LinLog curve. The curves
appear to be virtually identical. Given that the curves can mimic one another so closely, one
might wonder whether it really matters which functional form is used. If two forms are so
similar as to be impossible to discriminate empirically, then the debate over which one most
closely approximates human decision making is uninteresting. However, to the extent that
the functions can be discriminated empirically with choice data, we should do our best to
compare them and thereby sharpen our understanding of probability weighting in risky
choice.

In this paper, we investigate the extent to which functional forms of the probability
weighting function are discriminable in practice, and attempt to identify which functional
form best describes human choice behavior. We do this by conducting experiments in which
the choice-stimuli are optimized for discriminating between functional forms, using
Adaptive Design Optimization (ADO; Cavagnaro et al., 2010). ADO is a computer-based
experimentation methodology in which choice-stimuli (e.g., pairs of monetary gambles) are
adapted in real-time in response to choices made by participants. Instead of using a
preselected set of gambles to test the predictions of different theories, ADO searches the
entire feasible gamble space and extracts the most informative, discriminating stimuli to
present at that point in the experiment. ADO has proven to be effective in memory
experiments for discriminating among a subset of models of memory retention (Cavagnaro
etal., 2011), and has discriminated between the “Original” and “Cumulative” versions of
Prospect Theory in computer-simulation experiments (Cavagnaro et al., 2013). In this paper,
we apply ADO to the problem of discriminating among functional forms of the probability
weighting function in CPT.

The framework of the experiments in which we apply ADO is based on the two-alternative
forced-choice paradigm for eliciting preferences, which has been shown to outperform
calibration methods based on indifference judgments or certainty equivalents (Daniels and
Keller, 1992). In each trial of an experiment, ADO selects a pair of three-outcome gambles
for presentation, and the participant must choose the preferred gamble. While most of the
literature is built on two-outcome gambles, the move to three-outcome gambles expands the
space of possible stimuli, potentially allowing for greater discrimination between functional
forms. To make ADO tractable in this framework, all gambles in the experiment have the
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same, three possible outcomes, varying only in probabilities. This simplification makes it
possible to estimate the probability weighting function without having to assume a
functional form for the utility of outcome values. The analysis also acknowledges the
presence of noise in the data while making only minimal assumptions about the structure of
the noise.

We conducted both simulation studies and actual experiments using the above method.
Simulation experiments were conducted using the ADO methodology to determine the
extent to which the models are discriminable. Extending the simulation experiments, we
conducted an experiment with human participants to simultaneously discriminate between
four of the most commonly used weighting functions in CPT. Results of the experiments
show heterogeneity between participants, not only in the shape of the probability weighting
function, which is consistent with the findings of Gonzalez and Wu (1999) and Donkers et
al. (2001), but also in the functional form of the probability weighting function. Further
analyses probe these individual differences to identify the specific inadequacies of each
model that can cause them to fail. Overall, the linear-in-log-odds form is favored as long as
the probability weighting function is not too highly elevated, in which case the Prelec's two-
parameter form is favored instead. In addition, our results suggest that when Prelec's two-
parameter form fails, it is due to violations of subproportionality.

1 How ADO works

An ADO framework for discriminating among models of risky choice was presented by
Cavagnaro et al. (2013); Chaloner and Verdinelli (1995). In this framework, an experiment
proceeds across a sequence of stages, or mini-experiments, in which the design at each stage
(e.g., a set of one or more choice stimuli) is optimized based on the data observed in
preceding stages. Optimizing the design means identifying and using the design that is
expected to provide the most useful information possible about the models under
investigation. The optimization problem to be solved at each stage is formalized as a
Bayesian decision problem in which the current state of knowledge is summarized in prior
distributions, which are incorporated into an objective function to be maximized. New
information gained from observing the result of a mini-experiment is immediately
incorporated into the objective function via Bayesian updating of the prior distributions, thus
improving the optimization in the next mini-experiment.

Formally, the objective function to be maximized at each stage can be formulated as

U ()= Zps<m>2p<y|m ) logP )

where s (= 1,2,...) is the stage of experimentation, m (= 1,2,..., K) is one of K models under
consideration, d is an experimental design to be optimized, and y is the choice outcome of a
mini-experiment with design d. In the above equation, ps(ylm, d) = [o p(Y| 6, d)Ps(Gr)dGm is
the marginal likelihood of the outcome y given model mand design d, which is the average
likelihood weighted by the parameter prior ps(&y). Here, p(y| 6w, d) is the likelihood function
that specifies the probability of the outcome y given the parameter value &, under model k.
For instance, for a choice experiment between two gambles, the likelihood function would

K
be a binomial likelihood. The expression s (yld) =)~ ps (m) ps (ym, d) is the “grand”
marginal likelihood, obtained by averaging the marginal likelihood across K models
weighted by the model prior ps(m). Equation 1 is called the “expected utility” of the design d

because it measures, in an information theoretic sense, the expected reduction in uncertainty
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about the true model that would be provided by observing the outcome of a mini-experiment
conducted with design d (Cavagnaro et al., 2010).

On stage s of an ADO experiment, the design d% to be implemented in the next mini-
experiment is chosen by maximizing U(d). Upon the observation of a specific experimental
outcome zg in that mini-experiment, the prior distributions to be used to find an optimal
design for the next stage are updated via Bayes rule and Bayes factor calculation (e.g.,
Gelman et al., 2004) according to the following equations

p1(m)

K
kzlpl (k) BF(k,m) (Zs|d:)

Pst1(m)= @

— p(zsw'm’d:)ps (67n)
P (250, d3) ps (Or) dOrn

Ps+1 (gm) 3

In the equation BE{; ) (2s|d5) is the Bayes factor that is defined as the ratio of the marginal
likelihood of model k to that of model mgiven the outcome zs and optimal design d* (Kass
and Raftery, 1995). To recap, the ADO process involves, in each stage of experimentation,
finding the optimal design 4 by maximizing the utility function U(d), conducting a mini-
experiment with the optimized design, observing an outcome z;, and updating the model and
parameter priors to the corresponding posteriors through Bayes rule, as illustrated in Figure
3. This process continues until one model emerges as a clear winner under some appropriate
stopping criterion, such as ps(m) > 0.99.

Before closing this section, we discuss two noteworthy features of ADO. Firstly, an
advantage of ADO is that model fitting and model selection are incorporated into the
procedure for selecting optimal designs. Model fitting is done through Bayesian updating of
the parameter estimates, and model selection can be done through comparing the marginal
likelihoods of the models. More precisely, the posterior probability of model mafter s
stages, in which choices yy, . . ., yswere observed, is defined as the ratio of the marginal
likelihood of yy, . . ., ys given mto the sum of the marginal likelihoods of yy, . . ., ys given
each model under consideration, where the marginal is taken over the prior parameter
distribution. The ratio of the posterior probabilities of two models yields the Bayes factor
(Kass and Raftery, 1995). It is worth noting that the Bayes factor, as a model selection
measure, will properly account for model complexity or flexibility so as to avoid over-
fitting, unlike measures that assess only goodness of fit such as r2 (e.g., Myung, 2000, p.
199).

Secondly, given that the priors are updated independently for each participant, each
participant in a risky choice experiment could respond to different choice-stimuli that are
best suited to the participant's particular preferences. Thus, ADQO's efficiency partially
derives from adapting to an individual's unique behavior. Furthermore, the Bayesian
foundation of ADO gives it flexibility to accommodate various forms of stochastic error,
which is essential for adequately describing real choice data (e.g., Hey, 2005). For example,
if a stochastic error function is assumed such that p(y|m, d, ) is the probability of the
outcome y in a mini-experiment with design d given that the true model is m with stochastic
error parameter &, then the likelihood function p(yjm, d) in Equation 1 is obtained by
marginalizing p(yjm, d, &) with respect to the prior on &.
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2 lllustrative example of Model Discrimination using ADO

As a prelude to the simulation experiment, we illustrate the problem of model discrimination
and how ADQO assists in the process. Although the two curves depicted in Figure 2 are very
similar, they are not so similar as to imply the same choice predictions in every
circumstance. Take for example a choice between the following two, three-outcome gambles
in the domain of gains®

Gamble A: (%0, 0.4;$500, 0.4;$1000, 0.2)
Gamble B: ($0, 0.3;$500, 0.6;$1000, 0.1)

where g = (p1, X1; P2, X2, P3, X3) is the gamble that has a p; chance of yielding x;, p, chance
of yielding xy, and p3 chance of yielding x3. Thus, each gamble has the same three possible
outcomes: either $0, $500, or $1000, but different probabilities of yielding those outcomes.
Without loss of generality, we can rescale CPT's value function so that v($0) = 0, v($1000) =
1, and v($500) = v, where 0 < v < 1 depends on the particular form and parameters of value
function. Let us assume for this example that v = 0.5. Then, assuming the Prl2 form of the
probability weighting function with r = 0.58 and s= 1.18 (blue curve in Figure 2) CPT
yields yields U(A) = 0.335 and U(B) = 0.330, so Gamble A is preferred to Gamble B.
However, assuming the LinLog form of the probability weighting function with r = 0.60 and
s=0.65 (red curve in Figure 2) yields U(A) = 0.333 and U(B) = 0.335, so Gamble B is
preferred to Gamble A, i.e., the preference is reversed. ADO provides a procedure to
identify such gamble pairs to present in the next trial of a choice experiment given the
current estimate of the parameters.

Is this pair of gambles an anomaly, or are there other stimuli for which these two probability
weighting curves imply opposite predictions? To answer this question, we consider the
space of all possible gambles on these three fixed outcomes, which is equivalent to the space
of all probability triples (py, p2, p3) such that p; + pp + p3 = 1. The latter restriction implies
that p, = 1 — p3 — p1, hence we can geometrically represent these gambles in the unit triangle
in the (p1, p3) plane. This representation is commonly known as the Marschack-Machina
(MM-) triangle (Marschak, 1950; Machina, 1982). The MM-triangle is essentially a
probability simplex with each vertex representing a degenerate gamble that yields one of the
three outcomes with certainty (lower right — xq; lower left — X,; top — x3), and each point
inside the triangle representing a categorical probability distribution over the three outcomes
(i.e., a three-outcome gamble). A pair of gambles is then represented by a line segment
joining those two gambles in the MM-triangle.

The triangle on the left in Figure 4 depicts the 495 such pairs of gambles that are obtained
by rounding all probabilities to the nearest 0.1 and removing those pairs in which one
gamble stochastically dominates the other.2 We call this set the ‘choice-stimulus space’
because it is the set of possible pairs of gambles (i.e., choice-stimuli) that might be presented
in an experiment. For which of these 495 stimuli do the two weighting functions in Figure 2
imply opposing predictions? If we set v= 0.5 as before, there are 19 such stimuli3, and they

1CPT allows for different decision weights for gains and losses. In this study, we focus only on gains in order to simplify the analysis
and focus more precisely on probability weighting. The extension to the case of losses and mixed gambles is straightforward.

CPT always satisfies stochastic dominance, so presenting stochastically dominated stimuli would not help to discriminate between
functional forms of CPT. However, in principle, this restriction of the choice-stimulus space could be relaxed to compare other models
that do not satisfy stochastic dominance.

Discriminating stimuli were identified by computing the utility of each gamble, under each weighting function, with the specified
parameters. The utilities can then be used to generate two vectors of predicted choices across all stimuli, one for each weighting
function. Comparing the two vectors reveals the stimuli on which the predicted choices differ.
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are depicted in the triangle on the right in Figure 4. 19 out of 495 is just less than 4%. This
means that, even for two probability weighting curves as virtually identical as those depicted
in Figure 2, CPT makes opposite predictions on nearly 4% of possible stimuli in the MM-
triangle?. If we expand the search to include gambles over more than three outcomes, or
vary outcomes as well as probabilities, that proportion could be even higher

It could be argued that the differences between the utilities of the gambles in each of these
pairs is so small that the actual direction of the preference would be undetectable. Indeed, if
one were using CPT as a decision aid then it may not be worthwhile to haggle over
minuscule differences in utilities, because if the utilities of the gambles in question were so
close then it could be argued that the decision maker would be equally well-off with
whichever gamble is chosen. However, if the goal of modeling is to predict choices, rather
than to prescribe them, then it is important to verify that the model's predictions generalize
to new stimuli, other than those on which the model is directly tested. In that respect, this
result is troubling for CPT because it means that assuming the wrong form of the probability
weighting function can negatively impact the predictive accuracy of CPT across a range of
stimuli, even when the curves themselves appear to be identical upon visual inspection.

Having established that different forms of the probability weighting function imply different
predictions on a proportion of the stimuli in the MM-triangle, the question that remains is
whether these forms can be discriminated empirically. A naive approach to discriminating
between Prl2 and LinLog forms of the probability weighting function would be to simply
test at each of the 19 decision stimuli that were identified as being diagnostic between the
two curves shown in Figure 2. The problem with that approach is that those 19 pairs were
derived from specific assumptions about the values of the parameters of each function, as
well as the value of the *value parameter,” v. In general, precise parameter estimates are not
available a priori; identifying them is part of the reason for doing the experiment in the first
place. Without such an assumption, one would need to estimate parameters based on the
choices made by participants in the experiment, and it is almost certain that the results
would not match the assumed parameter values that yielded those 19 stimuli. With no prior
restrictions on the parameters for each function, both have enough flexibility to fit most data
patterns equally well.

What is needed for discriminating between these forms empirically is a methodology that
hones in on the best parameters for each function while simultaneously testing gamble pairs
that maximally discriminate between functions. This is precisely the idea of ADO, as
described in the previous section, which combines intelligent querying at each stage with
information updating between stages.

It is important to recognize that ADO customizes an experiment to be maximally diagnostic
among a prespecified set of models. That is, the ADO experiment is optimized to answer the
question of which model among the set is best capable of explaining the data generating
process. Any model that is not included in that prespecified set can still be fit to the data
after the fact, but the data are likely be less informative for assessing that model because the
selection of discriminating designs in ADO did not consider it. For example, an experiment
designed to discriminate between Tversky and Kahneman's (1992) weighting function and
Prelec's (1998) one-parameter weighting function may reveal Tversky and Kahneman's to be
conclusively superior, but the same data would not necessarily be able to discriminate
between that function and Prelec's (1998) two-parameter weighting function. While it is

4This estimate counts stimuli only in the MM-triangle with probabilities rounded to the nearest 0.1. Rounding to the nearest 0.05
instead of 0.1 yields a similar estimate, with 201 out of 5940 stimuli discriminating between the two weighting functions depicted in

Figure 2.
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desirable to include as many models in the analysis as possible, each additional model adds
to the computations that must be carried out throughout the experiment, which can slow the
pace of the experiment to such an extent that participants have to wait excessively between
trials. Therefore, the number of models that can be considered in a single ADO experiment
is limited by hardware and software constraints. At the very least, an ADO experiment with
a limited number of models under consideration can be used to narrow the field of candidate
models. Thus, a key step in implementing ADO is to decide on an appropriate set of models
to be included in the analysis. In the next section, we will describe the models under
consideration for our analysis, and the implications of discriminating among them.

3 Functional forms of the models

Among the different functional forms that have been proposed, we focus on five that have
received the most attention in the literature. The functional forms are defined as follows:

EU: w(p)=p
W - p" .
TK: w(p) = for 0.28<r <1
Prll: w(p)=e (-P)"; for 0<r<1
Prl2: w(p) =es-10p)", for 0<r<1, 0<s
LinLog: w(p) :(s)pfi)%; for 0<r,s

The simplest possible form is the identity function: w(p) = p. Equipped with this form, CPT
reduces to expected utility, hence we refer to it as EU. This form has no free parameters to
estimate. The next two forms in the list, TK and Pr11, have one-parameter each, and are
attributed to Tversky and Kahneman (1992) and Prelec (1998), respectively. The Prl1 form
is derived from three axioms: ‘compound invariance,” ‘subproportionality,” and “‘diagonal
concavity.” It was the form favored by Stott (2006). The TK form first appeared in Tversky
and Kahneman's original CPT paper and is commonly applied in practical applications of
CPT. However, no one appears to have made a normative case for adopting this function.
The lower bound on r in the TK form prevents it from becoming non-monotonic, as shown
by Ingersoll (2008).

The last two forms in the list have two parameters each. The LinLog form is based on the
assumption of a linear relationship between the log of the weighted odds and the log

probability odds:
log (ﬂ> =r In (L) +In (s)
1—w(p) 1-p

The LinLog form was originally used by used by Goldstein and Einhorn (1987), although
not as a probability weighting function. It is a generalization of Karmarkar's one-parameter
weighting function (Karmarkar, 1978, 1979), which did not include the intercept parameter
s, and is a variant of the form used by Lattimore et al. (1992).

The LinLog function was considered at length by Gonzalez and Wu (1999), who argue for
its psychological plausibility in capturing two logically independent properties:
discriminability and attractiveness. They also give a simple preference condition that is
necessary and sufficient for a linear-in-log-odds relationship. Empirical evidence for a
linear-in-log-odds distortion of probability is given by Zhang and Maloney (2012), who
consider how probability information is used not just in decision-making but also in a wide
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variety of cognitive, perceptual, and motor tasks. They find that the distortion of probability
in all cases is well-captured as linear transformations of the log odds of frequency.

The other two-parameter form that we consider, Prl2, is a more general form of Prl1 that
does not assume the axiom of diagonal concavity. The Prl1 form is obtained as a special
case of the Prl2 from by setting the parameter sto unity. Another special case of the Prl2
form is obtained by setting the r parameter to unity, which results in a power law in s.
Normative support for using a power curve to represent the probability weighting function is
given by Luce et al. (1993), Prelec (1998), and Luce (2001). A more general ‘switch-power’
form of Prl2 with 4 parameters is derived by Diecidue et al. (2009). Other derivations of the
Prl2 form from simpler and more easily testable assumptions have been given by Luce
(2001), Aczél and Luce (2007), and Al-Nowaihi and Dhami (2006).

The upper bound on the r parameter in the PrI2 form ensures subproportionality throughout
[0, 1]. Prelec (1998) also derived a two-parameter form without this restriction. However,
while there is only limited empirical evidence about the extent to which subproportionality
holds throughout the [0,1] interval, prior empirical studies that have estimated Prl2
parameters have found r < 1 (e.g., Bleichrodt et al., 2001; Goeree et al., 2002; Booij and
Van de Kuilen, 2009), so we chose to use the subproportional form in our analysis. This
assumption also yields a critical difference between Linlog and Prl2, since LinLog is only
mostly subproportional throughout the [0,1] interval, for various combinations of its
parameters, whereas Prl2 is everywhere subproportional (Gonzalez and Wu, 1999).

4 Model specification

Because probability weights cannot be measured directly (e.g., by asking a participant for
the subjective weight given to a probability), they must be estimated indirectly through
observed choices. Therefore, to compare functional forms of the probability weighting
function, we must embed each form in the CPT framework. For a three-outcome gamble g =
(p1, X125 P2, X205 P3, X3), Where X1 < Xp < X3, CPT assigns a utility using the formula

U (g9) =w (p3) v (z3) + (w (p2+p3) — w (p3)) v (z2) + (w (p1+p2+p3) — w (p2+p3)) v (z1)

where w(p;) is the probability weighting function and v(x;) is a monotonic value function.
Many different functional forms have been suggested for the value function, but as shown in
Section 2, we may assume without loss of generality that v(x;) = 0 and v(x3) = 1, yielding
the utility function

U (g9) =w (p3) x 1+ (w (p2=p3) —w (p3)) X v

This simplification leaves one parameter, v = v(X;y) with 0 < v< 1, to characterize the value
function, which can be estimated from the data without assuming any particular functional
form for v(X;).

The preceding decisions complete the deterministic part of the model. To fit the models to
data, we must also account for stochastic variation (i.e., noise; Hey, 2005), which we do by
using a variation of the ‘true-and-error’ approach of Birnbaum and Gutierrez (2007) and
Birnbaum (2012). In this "agnostic’ approach, it is assumed that there is a true underlying,
preference on each trial, but that the probability of the actual choice being aligned with that
preference is between 0.5 and 1. This means that the probability of an “error” on each trial
(i.e., choosing the gamble that is not preferred) is between 0 and 0.5. Formally, the
probability of an error is captured by a parameter ¢, (0 < £< 0.5). Since the parameter may
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take on different values on different trials, it is not estimated from the data, but rather left to
be uniformly distributed between 0 and 0.5 on each trial. The idea is to acknowledge the
existence of noise while making only minimal assumptions about it's functional form so that
the functional form of the probability weighting function can be estimated independently of
the functional form of stochastic variation.

Formally, let d;= {(<7, %;)} be the it gamble pair presented in an experiment, and let 6,
denote the parameters of the probability weighting function and value function, which
determine a weak ordering over A; and B; based on their utilities. The probability of
choosing gamble ¢z is given by

€; if Ai'<9m B;
Gi (;|0m, €)= 3 if Aj~g, Bi
1—¢ if Ai>'0

m

where g is a random variable between 0.0 and 0.5.

The full, Bayesian specification of each model includes a prior distribution on &, For
parameters that are bounded both above and below, we used a uniform prior on the
admissible range. For parameters that are not bounded above (sin Prl2 as well as both r and
sin LinLog) we used a uniform prior on [0, 2]. These priors are consistent with previous
empirical estimates of the parameters of each form, which easily fall within these ranges
(Stott, 2006).

In this way, each functional form of the probability weighting function gives rise to a
different CPT model with potentially different choice predictions. To keep the notation
simple, we will use the same name to refer to both the probability weighting function and
the CPT model that instantiates that form.

5 Simulation Experiments

Before implementing ADO in experiments with people, we conducted computer simulation
experiments to test the extent to which ADO could discriminate among functional forms in a
controlled environment, i.e., where we know the identity of the data generating model. In
each simulation, a “true” model is specified and used to generate data (i.e., choices) at
stimuli that were selected by ADO. We say that the models were successfully discriminated
if data that were generated over the course of the simulation would allow an uninformed
observer (i.e., one who did not know beforehand which model generated the data) to
conclusively identify the true model. Formally, each simulation began with uninformative
priors® and equal model probabilities, which were updated after each choice was observed.
When an experiment is successful at discriminating the models, we should see the posterior
probabilities of all competing models (other than the true model) fall to near zero, leaving
the posterior probability of the true model near 1.00. Thus, the goal of the simulation was to
determine how quickly the posterior probability of the true model converged to some
threshold at which we could say that it was conclusively identified (e.g., probability = 0.99).

As a preliminary check of the algorithm's potential effectiveness in this context, we began
with a simple case in which ADO only had to discriminate between two models: EU and

SAll parameter priors were uniform on their permissible ranges except for r in LinLog and sin both Prl2 and LinLog, which were
uniform on [0; 2] to avoid using degenerate priors. The bounds are plausible given that the largest reported estimates of r and sthat we
can find in the literature are r = 1:59 (Birnbaum and Chavez, 1997), and s = 1:40 (Stott, 2006).
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TK. This amounts to discriminating between EU and CPT — a problem for which there are
already elegant design strategies that work well (e.g., Wu and Gonzalez, 1996). The results
of these initial simulations, which can be found in Appendix 1, illustrate the logic of how
ADO selects the stimuli, and shows that ADO can indeed work efficiently, even when the
data are generated with stochastic error. In addition, they show the designs generated
organically by ADO match what has been derived analytically as being diagnostic between
EU and CPT. The analysis also shows that, while these designs discriminate well between
EU and CPT, they do not discriminate between variations of prospect CPT with different
functional forms, suggesting that a more refined set of stimuli is required.

To determine if ADO could identify gamble pairs that could discriminate among multiple
variations of prospect theory, we put ADO to the task of discriminating simultaneously
between the five variations of CPT defined above. We ran simulations with many different
generating models and parameters over the course of the study, but for a representative
illustration we will report on the case in which the probability weighting function was
LinLog with r =0.60 and s = 0.65 (i.e., the red curve in Figure 2). We have already seen
how closely this particular function can be mimicked by the Prl2 form (Figure 2), so it
provides an ideal test of how well ADO can tease apart subtle differences between forms. To
round out the generating model, we set v= 0.5, and let the error rate be drawn randomly,
independently on each stage, between 0 and 0.5. © The level curves of the utility function of
CPT with these parameters are shown in Figure 5.

The posterior probability of each model across 100 adaptive trials of the experiment are
depicted in the left panel of Figure 6. The posterior probability of LinLog after 100 trials
was greater than 0.999, indicating that ADO successfully identified it as the generating
model. Besides this success, it is also interesting to note the progression of posterior
probabilities across trials. In particular, the graph shows that the one-parameter forms, TK
and Prl1, had the highest posterior probability for the first 40 trials. This can be explained by
the fact that when the model fits are comparable, Bayesian model selection favors the
simpler model (i.e., the one with fewer parameters). That is, if a second parameter is not
required to fit the data, the models with two parameter will be penalized for their
complexity. After 40 trials, as the adaptive algorithm selects key stimuli, the need for a
second parameter becomes apparent and the probabilities of TK and EU begin to drop
toward zero. Once it is clear that two parameters are required, ADO selects stimuli that
discriminate between the two two-parameter forms, LinLog and Prl2. By stage 70, the
posterior probability of the incorrect Prl2 model begins to drop rapidly (modulo stochastic
error).

The graph on the right in Figure 5 shows the pairs that were selected by ADO to
discriminate the models. Highlighted in red are those stimuli that were also identified in
Figure 4 as being diagnostic between the generating model and its close competitor, Prl2
with r=0.71, s=1.05, and v=0.71. To force Prl2 to fail, the data must be such that Prl2 can
not provide a good fit for any of its parameter values. Therefore, it makes sense to test some
of those stimuli that would potentially give Prl2 trouble for those particular parameter
values.

At the end of the ADO simulation, the generating model was identified conclusively.
However, one might ask: Was the ADO machinery really necessary to achieve this level of
model discrimination? Could the same level of model discrimination have been achieved in

6The parameter v is assumed to be a function of the three fixed outcome values, X1, x2, and x3, which are set by the experimenter. By

setting v = 0.5 in the simulation, we are assuming that the outcome values were set such that

v(wg)—v(wy)
v(zg)—v(z])

0.5. In an actual

experiment, the experimenter would need to set x1, x2 and x3 without foreknowledge of a participant's value function.
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a comparable number of trials using a fixed design from the literature, or perhaps a design
with randomly selected stimuli? To answer that question, we ran two additional simulations.
In them, choices were generated from the same model as in the ADO simulation (i.e.,
LinLog with r = 0.60, s= 0.65, v=0.5), and model and parameter probabilities were
updated after each choice, but stimuli were not optimized using ADO. In the first additional
simulation, which we call the "HILO simulation,” stimuli were the 12 gamble pairs
comprising the well-known HILO structure (Figure 7; Chew and Waller, 1986), which is a
fixed set of choice-stimuli that has been used to test critical properties of non-expected
utility theories (Daniels and Keller, 1990; Wu and Gonzalez, 1998). The HILO simulation
was run for 150 trials, at which point at least 12 choices had been simulated at each of the 12
HILO stimuli. In the second additional simulation, which we will call the “random
simulation,” stimuli were drawn at random (with replacement) from the 495 possible gamble
pairs depicted in Figure 4. The random simulation was also run for 150 trials, at which point
150 choices had been made at randomly selected stimuli from the triangle.

As can be seen in the left graphs of Figures 6 and 7, neither the HILO simulation nor the
Random simulation correctly identified the data generating model. In fact, in both cases, the
models with the highest posterior probabilities were the one-parameter forms: TK and Prl1.
This may be because all of the CPT models (except for EU), could fit the observed choices
equally well, hence the simpler models were favored. What is more, judging by the
progressions of the posterior probabilities across trials, it does not seem that the correct
model would have been identified any time soon had the experiment continued past 150
trials. In particular, in the HILO simulation, it seems that after about 60 trials (5 simulated
choices at each of the 12 stimuli), everything that could be learned about the generating
model by testing at the HILO stimuli had already been learned.” To better identify the
generating model would require testing at different stimuli. On the opposite extreme, in the
random simulation, choices were simulated at 132 different stimuli over the course of the
experiment. However, this variety did not improve identification of the generating model. Of
course, if the random simulation were allowed to continue indefinitely then all 495 questions
would eventually be asked enough times to discriminate the models, but this could take on
the order of thousands of trials. The similarity between the progression of posterior
probabilities across 150 stages in the random simulation (Figure 7) and the progression of
posterior probabilities across the first 30 trials of the ADO simulation (Figure 5) suggests
that the ADO simulation is generating the same information as the random simulation, but at
a much faster rate.

These simulation results suggest that testing heavily at a small, fixed set of stimuli does not
necessarily identify the generating model, nor does testing lightly at a wide, but unprincipled
set of stimuli. Rather, efficiently identifying the generating model requires focused testing at
the stimuli that are maximally informative, as is accomplished with ADO.

6 Experiment results and analysis

Having demonstrated the ability of ADO to discriminate among probability weighting
functions in simulations, even amidst stochastic error, we turned to evaluating its
effectiveness in doing so with human participants. The setup was identical to that of the
simulation experiments, except that choices were made by human subjects instead of being

TThe flat-lining of the posterior probabilities in the HILO simulation may be related to the fact that the error rates on each trial were
assumed to be iid. If a different form of stochastic error were assumed, in which the error rate on a given choice pair is tied to the
utilities of the gambles in that pair (e.g., a "white noise” model), then repeating the same stimuli would help to estimate the error rates
more precisely, which in turn would provide information about the utility values. However, implementing this formally would require
additional assumptions about the functional form of the white noise (e.g., logit or probit transformation), as well as additional
computation for estimating and updating the error parameters.
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simulated by the computer. Nineteen subjects (undergraduate and graduate students from
The Ohio State University) made 101 choices over the course of 60 minutes.

As in the simulations, stimuli were selected by ADO from the grid of 495 gamble-pairs in
the MM-triangle depicted in Figure 4, where the three possible outcomes of each gamble
were $25, $350, and $1000. In principle, any three dollar values could have been used, but
these particular dollar values were selected so that the v parameter would be likely to be
somewhere near the middle of it's admissible range (e.g., around 0.5), and so that the
expected values of the gambles would not be too transparent (as they would be if the values
were $0, $500, and $1000, for example). All gambles were hypothetical and each participant
was paid $10 at the end of the experiment. Gambles were presented on the computer screen
with outcomes and probabilities in text format, as shown in Figure 9. There was a lag time
of up to 30 seconds between trials during which the gambles were masked while posterior
probabilities were calculated and the next choice stimulus was found by the ADO algorithm.

Also as in the simulations, models were compared based on their full posterior probabilities.
However, unlike in the simulations, there was no ‘true’ model in this case, so the goal of
each experiment was to identify one form as being superior (e.g., posterior probability
greater than 0.76, the equivalent of a Bayes factor of at least 3.2) which was inferred to be
the participant's underlying model of decision making in this task.

For each participant, the favored model and its posterior probability at the conclusion of the
experiment are shown is shown in Table 1. The posterior probabilities can be interpreted
according to the rule-of-thumb guidelines of Jeffreys (1961). Specifically, a posterior
probability higher than 0.76 is considered “substantial” evidence, a posterior probability
higher than 0.91 is considered “strong” evidence, and a posterior probability greater than
0.99 is considered “decisive” evidence.8 In Table 1, the level of evidence exceeded 0.76 in
all but two cases. In all but four cases the level of evidence exceeded 0.91, and in 11 out of
19 cases the level of evidence exceeded 0.99°.

The posterior model probabilities give the relative likelihood of each functional form, but
they do not indicate how well, or how poorly, the models are fitting overall, which is a key
element of prediction, the ultimate goal of modeling behavior. One way to assess absolute fit
is to compute the maximum proportion of the observed choices that each model can
correctly predict (maximized over parameter values). A model that fits well should be able
to correctly predict a large proportion of the choices (but not all of them because of
stochastic error)10. For each model, this maximum was found via a grid search of its
parameter space, and the results are shown in Table 2. The average maximum proportion of
correct predictions for EU, TK, Prl1, Prl2, and LinLog were 0.61, 0.67, 0.66, 0.76, and 0.75,
respectively. When evaluating these proportions, it is worth noting that they came from
stimuli that were specifically tailored to put maximal pressure on each model to fail. This

8Jefferys gave rule-of-thumb guidelines for interpreting Bayes factors: 1 to 3.2 is “not worth more than a bare mention,” 3.2 to 10 is
“substantial,” 10 to 100 is “strong,” and greater than 100 is decisive. These cutoffs can be converted to posterior probabilities by

1f§F. For example, a Bayes factor of 100 is equivalent to a posterior probability

transforming the odds ratio into a probability, as p=
0f 100—0.9901.
9posterior probabilities were also computed with the inclusion of a “null” model, in which choices are assumed to be made at random
(e.g., choices are made based on the flip of a coin: A for heads, B for tails). Inclusion of the null model as a candidate only affected the
final posterior probability for one participant (15), for whom the posterior probability of the null model was 0.47. This could be the
result of the participant misunderstanding the instructions, failing to paying attention to the stimuli, choosing randomly, or somehow
otherwise malingering.

0Interestingly, for participants 9 and 13 the best fitting model was not the model with the highest posterior probability. This is
because the posterior probability takes into account model complexity as well as model fit (Myung, 2000). For 9 and 13, the relative
simplicity of the EU functional form outweighed the superior fit of the more complex competitors.
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means that there were no “easy” stimuli would allow all of the models to perform well.
Thus, it is not surprising to see relatively low proportions of correct responses.

To provide a second opinion on the model selection results based on posterior probabilities,
we report the Akaike Information Criterion (AIC; Akaike, 1973) for each model and
participant in Table 3. The AIC is computed as AIC = -2 In L + 2k, where In L is the
maximized log-likelihood (computed from the maximum number of correct responses) and k
is the number of free parameters in the model. Like the posterior model probability, the AIC
is a model selection measure that trades off fit and complexity, but rather than being
interpreted as a likelihood of the model being true, the AIC is interpreted as an information-
theoretic distance between the true model and the fitted model (Myung, 2000). In the model
selection literature, it is well-known that the posterior probability tends to favor simple
models, whereas the AIC tends to favor complex models (Kass and Raftery, 1995).
Therefore, if the two measures select the same model then one can be reasonably confident
that the decision was not overly dependent on the assumed prior (Liu and Aitkin, 2008).

As a baseline for comparison in interpreting the AIC results in Table 3, a model that
provided no information would assign a 0.5 chance to each pairwise choice and the resulting
AIC would be 140.02. It is notable then that EU, TK and Prl1 frequently have AIC values
higher than 140.02 in Table 3, indicating that they provide no useful information about the
participant's decision making in this task. This can be attributed to the fact that ADO
selected stimuli that highlighted the weaknesses in these models’ abilities to fit the
participant data. For all participants except for one (participant 9) the model with the lowest
AIC was also the model with highest posterior probability.

Although the posterior probability and AIC analyses agreed on the best model for each
participant, the experiment did not yield a consensus for which model is best across a strong
majority of participants. We found Prl2 was favored in 9 cases, LinLog in 7 cases, EU in 2
cases, and Prelec-1 in one case. The Tversky-Kahneman form was never preferred. Figure
10 shows an overlay of the the most probable functional form for each participant, at a
parameter setting that maximizes it's fit (note that these parameter settings are not unique).
Each curves is color-coded according to which form it is. This figure indicates that the Prl2
form is best for highly elevated curves (i.e., for those who find gambles attactive), but that
the Linear-in-Log-Odds form is best everywhere else. Most of the curves are inverse-
sigmoid shaped, but many participants had highly elevated weighting functions, which
indicates that a participant finds betting on the chance domain attractive (Gonzalez and Wu,
1999).

Further analyses probed these individual differences and highlighted the advantages of the
ADO procedure in testing models of risky decision making. Figure 11 shows more specific,
individual-level results for three participants: 7, 3, and 15. First, on the left of Figure 11 are
graphs of the progression of posterior model probabilities across trials. These progressions
show that the method worked as advertised for participants 3 and 7, discriminating between
models unambiguously. For both participants, the posterior probability of one model
(LinLog for 7 and Prl1 for 3) exceeded 0.76 by about 50 trials, and remained above 0.76
through the conclusion of the experiment. The other participant, 15, is an example in which
the methodology failed to yield a conclusive result; the progression of posterior probabilities
is noisy and no model reaches the threshold of 0.76 at any time during the experiment, even
though the AIC results indicate that the Prl2 and LinLog models both fit the data reasonably
well in the end.

Continuing with the analysis of Figure 11, in the middle column are estimates of the best
probability weighting curve of each form, for each of the three participants. All of the
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estimates for participant 3 have the characteristic inverse-sigmoid shape that is reported in
most previous studies. However the estimates of Prl2 and LinLog for participant 7 are
sigmoid shaped, underweighting small probabilities and underweighting large ones. This
shape is reported less frequently in previous studies, but is not unprecedented (e.g., Jullien
and Salanié, 2000; Goeree et al., 2002; Van de Kuilen et al., 2009). Thus it appears that
superiority of LinLog for participant 7 is due at least in part to its ability to become sigmoid-
shaped (which TK and Prl1 cannot). In contrast, the estimates for participant 15 are highly
elevated and concave, indicating that this participant found the chance domain attractive.
Finally, depicted inside the MM-triangles in the right column of Figure 11 are the stimuli
presented to each participant. Comparison of the triangles shows that the optimal set of
stimuli was different for each participant, which is to be expected given how differently each
participant weighted probabilities.

6.1 Why did some of the models fail?

When a model fails, it is helpful to know the reasons for the failure. A closer examination of
the parameter estimates for each participant helps to shed light on why some of the models
failed in each case. First, we'll consider the participants for whom Prl2 was favored over
LinLog based on posterior probability. For six of these seven participants (2, 4, 11, 12, 16,
17, and 19) the inferior LinLog form achieved its best fit to the data (highest proportion of
correct predictions) with s= 2, which was the highest value of swith support in the prior.
This consistency at the highest value possible suggests that extending the range of s could
have yielded better fits. Recall that the s parameter controls the elevation of the probability
weighting function, so a high value of sindicates a tendency to overweight probabilities
(Gonzalez and Wu, 1999). This overweighting can be seen in Figure 12, which shows how
the family of LinLog functions changes when s s increased to be in the interval (2, 4] (with
r still in the (0, 2] interval). By reanalyzing the data with the prior on the s parameter of
LinLog set to be uniform on [0, 4] instead of on [0, 2] (i.e., allowing the LinLog form to
become more elevated) the posterior probability of LinLog increased. In fact, for each of
these 7 participants, the LinLog model with s> 2 can correctly predict about the same
proportion of choices as Prl2, as shown in Table 4. This comes as a surprise, since no study
in the literature has reported such extreme overweighting of probabilities (Stott, 2006; Booij
and Van de Kuilen, 2009).

Of the remaining 12 participants, 7 were best fit by LinLog. A closer analysis of the
posterior parameter estimates reveals a possible reason for the failure of Prl2 in 4 of these
cases: The assumption of subproportionality by Prl2 (i.e., r < 1) is too restrictive.
Subproportionality means that, for a fixed ratio of probabilities, the ratio of the
corresponding probability weights is closer to unity when the probabilities are low than
when they are high. Intuitively speaking, subproportionality means that scaling down the
original probabilities makes them less distinguishable from each other (Kahneman and
Tversky, 1979; Epper et al., 2011). Subproportionality of the Prl2 form depends on the value
of the r parameter: if r € (0, 1] then it is subproportional, if r > 1 then it is not. So far we
have only considered the subproportional form of Prl2. However, the fit of Prl2 is improved
for participants 5, 7, 8, and 10 when r is allowed to be greater than 1. The maximum
proportions of correct responses for subproportional Prl2 ((r € (0, 1]), nonsubproportional
Prl2 (r > 1), and LinLog, for participants 5, 7, 8, and 10, are given in Table 5. These results
show that when the Prl2 function is freed of the restriction that it must be subproportional,
its fits become comparable to those of LinLog. This suggests that subproportionality of the
probability weighting function may be an unnecessary and possibly an invalid assumption at
the individual level. Use of the ADO procedure contributed to identifying this critical
property, subproportionality, that distinguishes the Prl2 and LinLog weighting functions
(Gonzalez and Wu, 1999).
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7 Discussion and conclusion

Probability weighting functions relate objective probabilities to their subjective weights, and
they play a central role in modeling choices under risk with CPT. Equipped with a
parametric form of the probability weighting function, CPT makes precise statements about
the predicted preferences between pairs of gambles. However, the accuracy of CPT's
predictions depends on the level precision with which probability weights can be estimated.
This in turn depends on specific assumptions about the parametric form of the probability
weighting function. Therefore, identifying the best parametric form of the probability
weighting function can improve the effectiveness of CPT in describing decision making
under risk.

Several forms of the probability weighting function have been proposed, and their
qualitative similarities belie important theoretical differences. While discriminating among
them can enhance our understanding of probability weighting in human decision making, the
potential for forms to mimic one another pushes the limits of our ability to discriminate
among models. Measures of model fit such as r2, which focus only on the shape of the
probability weighting curve, are not sensitive to the preference reversals that can result from
seemingly small changes to the shape of the probability weighting curve. Even the more
sophisticated model selection statistics like the AIC and BIC can not help if data are not
collected at stimuli in which the qualitatively similar curves imply different choices. In this
paper, we used ADO to specifically target stimuli in the MM-Triangle on which these
preference reversals are likely, and thereby investigate the extent to which it is possible to
discriminate among forms with choice data.

In simulation experiments, we found that ADO was able to leverage differences between the
predicted preference patterns of each form in the MM-Triangle to conclusively identify the
data-generating form. Analyses of the stimuli that were selected by ADO highlight
important lessons about empirically discriminating among probability weighting functions.
In particular, the ADO simulation results suggest that discriminating among forms requires a
large and diverse set of stimuli. Repeated testing on the same, uninformative stimuli does
not improve discriminability, so standard experimental designs from the literature, such as
HILO, are unlikely to be effective in most cases. On the other hand, simply testing on a wide
variety of stimuli does not necessarily discriminate the models either. It seems that varied
stimuli are needed to pin down the specific predictions of each form, but repeated testing on
the stimuli at which the predictions differ is what finally discriminates them. The locations
of these critical stimuli differ depending on which forms are under consideration, as well as
on the risk preferences of the individual being tested. As a result, there is no one-size-fits-all
design that will discriminate among all forms for all participants.

In human experiments we found that the two-parameter forms of the probability weighting
function (Prl2 and LinLog) provide the best explanation of human data at the individual
level. However, there was heterogeneity in the best two-parameter form; some participants
are best described by a Linear-in-Log-Odds weighting function while others are best
described by a Prelec-2 form. In general, we found that the Prelec-2 form was best for
participants who tended to drastically overweight probabilities. The failure of the Linear-in-
Log-Odds form for these participants was due to it's tendency to predict only moderate over-
weighting or under-weighting for the parameter range that was considered. For participants
who did not drastically overweight probabilities, the Linear-in-Log-Odds form was favored
most often, aside from two participants who seemed to be expected utility maximizers.

For several participants, the failure of the Prelec-2 form could be attributed to its assumption
of subproportionality. A probability weighting function is subproportional if and only if w(p)
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is convex in log(p) (Kahneman and Tversky, 1979). Subproportionality is a strong
assumption, as it implies that common ratio violations will be observed at all probabilities
(Prelec, 1998). It was used by Kahneman and Tversky (1979) to explain the common-ratio
effect, and it has been used in connection with the theory of temporal discounting to explain
the common difference effect (Baucells and Heukamp, 2009) and to derive a hyperbolic
form of utility discounting curves (Epper et al., 2011). However, there is limited evidence on
the extent to which subproportionality actually holds (Gonzalez and Wu, 1999). The present
results suggest that a functional form that implies everywhere subproportionality is unlikely
to provide an adequate explanation of the probability weighting behavior of some
participants. Future research should further investigate the extent to which
subproportionality holds in the population.

Perhaps the most successful aspect of the human experiment was the unprecedented level of
discrimination between one- and two-parameter forms, which resulted from testing stimuli
that highlighted differences in their data-fitting capabilities. One such difference is that the
one-parameter forms (TK, Prl1) have a fixed elevation and vary only in curvature, whereas
the two-parameter forms (PRI2, LinLog) vary independently in both elevation and curvature
(see Figure 1). Because the one-parameter forms are limited in their abilities to change
elevation, excessive over-weighting or underweighting of probabilities effectively rules
them out in favor of the two-parameter forms. Therefore, the heterogeneity that we found in
both elevation and curvature of the individual weighting curves indicates that at least two
parameters are required to fit them adequately. This is likely a difference that ADO
identified and exploited across trials.

The individual differences that we found suggest that a hierarchical Bayesian approach, such
as that of Nilsson et al. (2011), may be the most appropriate way to fit group data using a
single model. Hierarchical methods capture individual differences by assuming that
individual parameter estimates come from a group-level distribution with estimated mean
and standard deviation (Conte et al., 2011). This allows the estimation of a particular
individual's parameter to draw strength from information that is available about other
individuals. While this approach relies on additional assumptions about the distribution of
parameters at the group level, it provides an attractive compromise between the extremes of
complete pooling and complete independence of individual data (Shiffrin et al., 2008).

The ADO methodology could be further optimized by manipulating additional aspects of the
experiments. Recall that only the probabilities that were assigned to the payoffs changed
across trials, which remained fixed at $25, $350, and $1000. Although ADO was able to find
enough differences in model predictions across the design space (MM-triangle) to
differentiate models by manipulating only probabilities, the payoffs could have been
manipulated simultaneously, which might have increased the discriminability of the models
even further. Such a change in the design might also increase the realism of the experiment.
It is therefore advisable that the current results be replicated in other testing situations to
ensure their generalizability.

Other manipulations that could influence performance include making the payoff amounts
real rather than imaginary and representing the amounts in cents instead of dollars (Furlong
and Opfer, 2009). Although these variables could affect model choice, they can pose
challenges to incorporate into the ADO algorithm, which requires variables to be expressed
explicitly in the model in a computational form. This is not always possible, and as a result,
ADO is not always an option in experimentation. Nevertheless, when it is an option, it can
be very effective, as was demonstrated here. Of course, this does not mean that ADO will
always succeed. The models themselves must be discriminable, as shown through simulation
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experiments, for ADO to stand a chance of working in practice in an actual experiment with
participants.

These experiments considered five different forms of the probability weighting function,
each of which has been advocated in the recent literature based on fits to human data: EU (as
stochastic expected utility, Blavatskyy, 2007), TK (e.g., Nilsson et al., 2011), Prl1 (Stott,
2006), Prl2 and LinLog (e.g., Booij and Van de Kuilen, 2009). Future research should
consider other, more complex functional forms, such as the four-parameter “switch-power”
function proposed by Diecidue et al. (2009). Due to the computational demands of ADO,
and the need to minimize participant idle time between trials, it was not feasible to consider
forms with more than two parameters in this study. However, improvements in hardware
and more efficient programming should make the inclusion of such forms possible in the
near future. The ADO method can easily be extended to include such forms, as well as
different error models, and other models outside the scope of CPT. The ability to tailor the
stimuli in a participant's experiment to test error models and different models of decision
making may be the strongest advantage ADO has over existing methods.

8 Appendix

8.1 Preliminary simulations

The purpose of the following set of simulations is to illustrate the logic of ADO in a simple
case, i.e., a case in which it is easy to see why some stimuli are more diagnostic than others.
The simple case is discriminating just EU and TK. This case is an ideal starting point
because there is already an established body of knowledge about which designs work well
for discriminating between these models, which provides a natural benchmark against which
to compare the results of the simulations using ADO.

We will present the results of three simulations. In the first two, the data will be generated
without stochastic error. This will allow us to focus on the logic of ADO's selection of
stimuli, and to compare the stimuli selected by ADO to those that have been identified in the
literature as being diagnostic between EU and TK. In the third simulation, the data will be
generated with stochastic error, so we can see how errors in the choice process affect ADO's
selection of stimuli, and it's identification of the data-generating the true model.

8.1.1 Simulation 1: Data generated from TK without stochastic error

In the first simulation, data were generated from TK withv=0.5and r = 0.71. The TK
probability weighting function with r = 0.71 is depicted on the left side of Figure 14. The
level curves of the CPT utility function in the Triangle, with this particular probability
weighting function and v = 0.5, are depicted on the right side of Figure 14.

The posterior probabilities of EU and TK across 30 trials of the experiment, and the gamble
pairs selected by ADO, are depicted in Figure 15. Figure 16 shows why the stimuli selected
by ADO are optimal for discriminating the generating model (TK) from its competitor (EU).
Essentially, ADO has automatically identified stimuli that force the indifference curves to
“fan out,” increasing in steepness from right to left.

8.1.2 Data generated from EU without stochastic error

In the second simulation, data were generated from EU with v = 0.5. The posterior
probabilities of EU and TK across 30 trials of the experiment, and the gamble pairs selected
by ADQ, are depicted in Figure 17. These stimuli are different than those identified in
Simulation 1, which shows that the optimal stimuli depend on the data generating model. In
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this case, ADO is essentially testing to see if the indifference curves are really parallel
across the entire MM-Triangle.

8.1.3 Simulation 2: Data generated from TK with stochastic error

In the third simulation, data were generated from TK withv=0.5and r =0.71 and a
constant stochastic error rate of 0.25. That is, on each choice instance, there was a 25%
chance that the generated choice would be the opposite of that predicted by the true model.
The posterior probabilities of EU and TK across 30 trials of the experiment, and the gamble
pairs selected by ADO, are depicted in Figure 18. We see the same pattern of stimuli, but
with more variation. The posterior model probability still converges, but not as quickly, and
not monotonically.

8.1.4 Summary of preliminary simulations

In the preceding, three simulations, ADO successfully discriminated between EU and TK
forms of the probability weighting function. But what about the other functional forms: Pri1,
Pri2, and LinLog? Would the choice data from these simulations also identify the generating
model from among this larger class of candidates? To answer that question, we can restart
the simulations with equal prior probabilities of each of those five candidate models, and
uniform paramaeter priors for each model, and then update them based on the same data
stream from the preceding simulations (i.e., the same choices at the same stimuli). The
resulting progression of posterior probabilities from simulation 3 is shown in Figure 19.
Even after all 30 trials are complete, the posterior probability of TK (the true generating
model) is only 0.29, indicating that the generating model has not been identified. Figure 19
suggests that a more refined set of stimuli may be required to discriminate among a larger
set of possible functional forms.
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Four families of functions that have been proposed for the probability weighting function in
Cumulative Prospect Theory. Each function is plotted for a range of its parameters: TK from
0.3 to 1.0 in increments of 0.7; Prl1 from 0.1 to 1.0 in increments of 0.1, Prl2 from 0.2 to 1.0
for it's curvature parameter and 0.4 to 2.0 for its elevation parameter, each in increments of
0.2, and LinLog from 0.25 to 2.0 for both its curvature and elevation parameters, both in
increments of 0.25. The functional forms are given in Section 3.
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Figure 2.

Linear-in-Log-Odds (LinLog) probability weighting function with the empirically estimated
parameter values reported by Abdellaoui (2000), along side Prelec's two-parameter form
(Prl2) with parameter values obtained through trial and error to visually approximate the
LinLog curve.
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Figure 3.

Schematic illustration of the sequential steps of ADO.
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Figure 4.

Left - The set of 495 pairs of gambles on three, fixed outcomes. Right - the subset of these
pairs on which the two curves in Figure 2 imply opposite choice predictions. The pair
highlighted in red is the one described in the illustrative example.
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Figure 5.
Level curves of the the data-generating model. The model is CPT, assuming a Linear-in-
Log-Odds weighting function with r=0.60, s=0.65 and v=0.5
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Results of the “HILO simulation.” Left: posterior model probabilities of each candidate
model across trials of the simulation. Right: HILO stimuli on which choices were generated
in the simulation.
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Results of the “Random simulation.” Left: posterior model probabilities of each candidate
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Figure 9.
Screen shot of the GUI for the experiment.
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Figure 10.

Estimates of the probability weighting curve for each participant, obtained by a grid search
of the parameter space of the model with the highest posterior probability. Curves are color-
coded by their functional form: Blue = Prelec-2, Red = LinLog, Light blue = Prelec 1, Black
= EU. It should be noted that the depicted curves are not unique, as various combinations of
parameter settings yield the same proportion of correct predictions for each model.
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Figure 11.

Detailed results for three participants. In each row, the graph on the left depicts the
progression of posterior model probabilities across trials, the graph in the middle depicts the
best estimate of each model at the conclusion of the experiment, and the MM-Triangle on
the right depicts the stimuli on which choices were made over the course of the experiment.
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Figure 12.
A uniform sample of LinLog curves from r € (0, 2] and s € (0, 4]. Dotted curves have s €

(0, 2]. Solid curves have s € (2, 4].
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Figure 13.
A uniform sample of Prl2 curves for r € (0, 2] and s (0, € 2]. The dotted curves are

subproportional (r € (0, 1]). The solid curves are not subproportional (r € (1, 2]).
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Figure 14.

Data generating model in simulation 1. On the left is the TK probability weighting curve
with r = 0.71. On the right are the indifference curves in the MM-triangle implied by CPT
with the probability weighting function depicted on the left, and v=0.5.
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Figure 15.
Results of simulation 1, in which the generating model was TK(0.5,0.71).
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Figure 16.
Graphical depiction of reason why the stimuli selected by ADO are optimal for
discriminating TK from EU.
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Figure 17.

Results of simulation 2, in which the generating model was EU(0.5). EU is quickly and
correctly identified as the generating model (Left) based on testing at the stimuli selected by
ADO (right).
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Figure 18.
Results of Simulation 3, in which the generating model was TK(0.5,0.71) with a stochastic
error rate of 0.25. Posterior model probabilities (left) are noisy but strongly favor TK by
stage 30. Stimuli selected by ADO (right) resemble those selected in the noiseless case

(simulation 1, Figure 15), with more variation, corresponding to the longer "feeling out”
period resulting from the noisy data stream.
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Figure 19.

Posterior probabilities of EU, TK, Prl1, Prl2, and LinLog based on the data from Simulation
3. Stimuli were optimized to discriminate only EU and TK. The data clearly discriminate
TK from EU, but not from the other models, suggesting that a more specialized set of
stimuli is required to discriminate the larger set of models.
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Model with the highest posterior probability at the conclusion of the each experiment.

Participant ID  Best model  Posterior probability
1 LinLog 0.97
2 Pri2 0.99
3 Pri1 0.92
4 Pri2 0.99
5 LinLog 0.99
6 LinLog 0.99
7 LinLog 0.99
8 Pri2 0.99
9 EU 0.85
10 LinLog 0.99
11 Pri2 0.99
12 Pri2 0.98
13 EU 0.92
14 LinLog 0.57
15 Pri2 0.56
16 Pri2 0.99
17 Pri2 0.99
18 LinLog 0.80
19 Pri2 0.99
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Maximum proportion of choices predicted correctly by each model.

Subject EU TK Prll  Prl2 LinLog
1 059 0.70 066 0.75 0.80
2 062 062 063 0.79 0.73
3 062 075 081 081 0.78
4 0.63 0.63 064 0.76 0.71
5 062 0.67 064 0.68 0.75
6 060 0.60 060 0.70 0.81
7 057 059 060 0.73 0.82
8 061 0.68 069 0.80 0.75
9 069 070 070 0.70 0.70
10 0.57 059 059 0.67 0.73
11 055 0.63 058 0.79 0.72
12 056 0.69 068 0.75 0.74
13 071 071 071 071 0.72
14 058 0.74 070 0.72 0.76
15 059 066 067 0.72 0.72
16 061 0.63 063 0.77 0.70
17 060 077 064 084 0.74
18 062 0.78 079 0.84 0.88
19 055 059 061 0487 0.73

Average 0.61 0.67 066 0.76 0.75
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AIC of each model, for each participant

Participant ID  EU TK Prl1  Pri2  LinLog
1 150.2 128.0 136.8 119.0 108.1
2 143.6 1456 1434 110.3 123.4
3 1436 117.0 1039 105.9 1125
4 1414 1434 1412 1168 127.8
5 143.6 1346 1412 1344 119.0
6 148.0 150.0 150.0 130.0 105.9
7 1546 1522 150.0 1234 103.7
8 1458 1324 130.2 108.1 119.0
9 128.2 1280 128.0 130.0 130.0
10 1546 1522 1522 136.6 123.4
11 159.0 1434 1544 1103 125.6
12 156.8 130.2 1324 119.0 121.2
13 123.8 1258 1258 1278 125.6
14 1524 119.2 1280 125.6 116.8
15 150.2 136.8 134.6 1256 125.6
16 1458 1434 1434 1146 130.0
17 148.0 1126 1412 993 121.2
18 143.6 1105 1083 993 90.5
19 159.0 1522 1478 927 123.4
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Comparison of the maximum proportions of choices predicted correctly by LinLog for (s< 2) and for (s> 2).

Subject  LinLog (s<2) LinLog(s>2) Prl2
2 0.73 0.78 0.79
4 0.71 0.75 0.76
11 0.72 0.80 0.79
12 0.74 0.76 0.75
16 0.70 0.76 0.77
17 0.74 0.80 0.84
19 0.73 0.86 0.87
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Comparison of the maximum proportions of choices predicted correctly by Prl2 under the assumption of
subproportionality (r < 1), and without the assumption of subproportionality (r > 1).

Table 5

Subject Pri2(r<1) Prl2(r>1) LinLog
5 0.68 0.77 0.75
7 0.73 0.80 0.82
8 0.80 0.83 0.75
10 0.67 0.69 0.73
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