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Abstract

The incidence of metabolic disease, including type 2 diabetes and obesity, has increased to
epidemic levels in recent years. A growing body of evidence suggests that the intrauterine
environment plays a key role in the development of metabolic disease in offspring. Among other
perturbations in early life, alteration in the provision of nutrients has profound and lasting effects
on the long term health and well being of offspring. Rodent and non-human primate models
provide a means to understand the underlying mechanisms of this programming effect. These
different models demonstrate converging effects of a maternal high fat diet on insulin and glucose
metabolism, energy balance, cardiovascular function and adiposity in offspring. Furthermore,
evidence suggests that the early life environment can result in epigenetic changes that set the stage
for alterations in key pathways of metabolism that lead to type 2 diabetes or obesity. Identifying
and understanding the causal factors responsible for this metabolic dysregulation is vital to
curtailing these epidemics.

Introduction

The thrifty phenotype hypothesis of Hales and Barker proposes that poor nutrition in early
life results in poor fetal growth and increased susceptibility to type 2 diabetes and the
metabolic syndrome [1, 2]. Evidence from epidemiological studies as well as animal models
suggest that the intrauterine environment plays a role in the development of obesity and
metabolic disorders. These studies demonstrate that suboptimal maternal nutrition, whether
under-nutrition or over-nutrition, has negative effects on the offspring [3-9]. Fetal
development is dependent on maternal supply of nutrients. Thus, alterations in maternal
metabolism would expose the fetus to a perturbed intrauterine milieu that may predispose
offspring to metabolic disease in later life. This concept, known as developmental origins of
health and disease (DOHaD) states that a stimulus or insult at a critical period of
developmental plasticity in early life causes disruptions in normal growth and development,
as a result one genotype can give rise to different phenotypes in response to different
environmental conditions during development [10-12]. Furthermore, a mismatch between
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the pre- and postnatal environment may result in inappropriate adaptations and subsequent
metabolic disease, also known as the predictive adaptive response (PAR) hypothesis [13]. In
animal models there is a commonality in the phenotypic outcomes of offspring from mothers
exposed to either under- or over-nutrition. This phenotype is usually associated with poor
fetal growth, mediated by the insulin growth factor axis, followed by the development of
metabolic disease later in life [14-16].

Although initial studies on the thrifty phenotype hypothesis focused predominantly on the
effects of maternal under-nutrition such as a diet low in protein or calories [17-19], recent
studies have sought to investigate the effects of maternal over-nutrition. A maternal high fat
diet (HFD) is more reflective of the dietary habits in western society. A maternal HFD can
alter the development of various organs and thus the offspring become more susceptible to
disease in later life. It has been shown that not only are dietary exposures during pregnancy
important in mediating this disease susceptibility but also the timing of this exposure during
development [20, 21]. Thus, since the fetus or neonate is undergoing rapid cell division,
tissues may be affected differently by the same exposure depending on the timing of the
insult.

Animal models provide an invaluable tool to study the underlying mechanisms of
developmental programming. Rodent and non-human primates (NHP) are mammalian
systems with similar embryology, anatomy and physiology to humans. Utilization of these
systems has led to a greater understanding of the underlying mechanisms of DOHaD.
Rodents are advantageous to study due for practical and economic reasons and the effect of
manipulation of offspring can be seen within a short time. In contrast, NHPs are non-litter
bearing animals with similarity in development to humans, however, they have the
disadvantage of requiring considerable resources to maintain and have a lengthy gestation
and lifespan.

The phenotypic outcome of the offspring exposed to a maternal HFD during development
varies based on the species, diet composition, timing and length of HFD consumption. In
addition, maternal factors such as obesity, the presence of glucose intolerance, diabetes and
insulin resistance may contribute independently of the diet to the phenotype observed in the
offspring. Thus, most of the methods used to develop animals models of developmental
programming can be confounded by the presence of more than one insult. Similarly, other
dietary components such as protein, carbohydrates and micronutrients have to be considered.
To be able to maintain the same caloric content, changes in one component may result in the
increase or reduction of another [22].

Prior DOHabD reviews [23] have either focused on maternal over-nutrition (combining
studies on HFD, high sugar or junk food diet) [24], maternal obesity [25, 26] or “only” one
outcome i.e., how maternal HFD causes epigenetic changes [27]. This review focuses on
animal models that demonstrate offspring effects resulting from exposure to a maternal HFD
irrespective of maternal obesity. The PubMed database was searched for articles published
between 1995 and 2013 using the key terms high fat in utero and maternal high fat
programming. Articles obtained from this search are discussed in this review. A brief
summary of all the known metabolic and molecular changes that have been identified from
animal models of a HFD in utero are summarized in Table 1.

Using mouse as a model, several studies have demonstrated adverse metabolic outcomes in
offspring exposed to a maternal HFD. Included are models of poor fetal growth and adverse
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metabolic events including liver dysfunction, high blood pressure, alterations in bone
structure and effects on behavior and or emotional health.

In the mother, HFD has been shown to alter maternal food intake, substrate utilization, body
composition, glucose and lipid metabolism, leptin levels and placenta nutrient transport [26,
28-31]. Hartil et al. has demonstrated that different metabolic outcomes in offspring such as
catch up growth, increased adiposity and impaired glucose tolerance and insulin sensitivity
was associated with maternal metabolic dysfunction illustrated by increased serum levels of
nonesterified fatty acids (NEFA) and lactate accompanied by increased expression of
peroxisome proliferator activated receptor y coactivator-1f (PGC18) mRNA in liver [28]. In
contrast, glucose transporter 4 heterozygous (GLUT4+/-) females (a model of insulin
resistance) consuming the same diet display enhanced lipid clearance and no significant
alterations in expression of genes of glucose or lipid metabolism in their liver, suggesting
that the mother’s ability to adequately utilize different diets may play a role on the
programming effects seen in the offspring.

In addition to acute alteration in maternal substrate utilization, chronic high fat feeding
leading to maternal obesity is another factor that can have adverse effects on the offspring.
This is cause for concern because of the significant increase of obesity in women of child-
bearing age [32]. Animal models that have investigated the effect of maternal obesity on the
offspring have reported hyperphagia, adiposity, hypertension and insulin resistance in the
offspring [33-35] dyslipidemia and hepatic steatosis [33]. Krasnow et. al. has shown that
switching obese mothers to a low fat diet (LFD) for a subsequent pregnancy can minimize
the metabolic effects seen by the HFD/maternal obesity in C57BL/6 mice [36]. Similar
findings have been observed by introducing the HFD shortly before mating, without
changing maternal body composition [26, 28, 37, 38]. These data suggest a maternal HFD
has adverse effects on the offspring, whether or not maternal obesity is present and that it is
possible to reverse these effects by switching the diet.

HFD diet during pregnancy has been shown to alter the placenta leading to either small or
large fetuses [29, 39]. While some studies report HFD offspring being born smaller than
controls [40], others report the opposite. The differences may be due to different dietary
components, fat source or the strain of mice used. Despite being born small, some studies
report catch up growth in the HFD growth restricted offspring, this in itself is also associated
with the development of metabolic disease [28]. Pregnancies associated with large fetuses
are accompanied by upregulation of placental nutrient transport (glucose and neutral amino
acids) compared to offspring whose mothers consumed a control diet [29]. HFD increased
glucose transporter 1 (GLUT1) and sodium coupled neutral amino acid transporter 2
(SNAT?2) protein expression in trophoblast microvillus plasma membranes isolated from the
placentas of HFD animals at embryonic day 18.5 [29]. These data suggest nutrients are the
most important factors during development.

Decreased fetal body weight has been associated with early catch up growth. Using dams
that were WT or heterozygous for GLUT4 (G4+/-) expression, a decrease in birth weight
was observed in offspring born to both genotypic mothers that consumed the HFD
irrespective of genotype. At embryonic day 18.5 these offspring had decreased fetal weight
and crown rump length [40]. Only the WT male offspring born to WT mothers consuming a
HFD demonstrated early life catch up growth (CUG) and increased adiposity accompanied
by impaired glucose tolerance and insulin sensitivity despite their being weaned to a LFD.
Furthermore, these offspring had increased serum glucose and PAI-1 and decreased
adiponectin [40]. Conversely, WT male offspring born to GLUT4+/— mothers that
consumed a HFD were protected from precocious manifestation of these characteristics of
the Metabolic Syndrome [28]. These data suggest that although offspring exposed to a
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maternal HFD are born small, this may not always translate to a negative metabolic
outcome. Early life CUG appears to have a negative impact on the offspring. Furthermore,
the mother’s ability to utilize the HFD appears to be a determining factor in whether or not
the offspring is susceptible to metabolic disease.

Metabolic Syndrome, a cluster of disorders that increase the risk for diabetes and
cardiovascular disease, is the common phenotype seen in models of DOHaD. Offspring
exposed to a maternal HFD in utero and/or postnatally developed manifestations of the
Metabolic Syndrome, such as insulin resistance, increased liver mass and triglyceride
content, hepatic steatosis, increased visceral fat mass and adipocyte hypertrophy but not
central leptin resistance [30, 41]. These changes are accompanied by increased serum
concentrations of tumor necrosis factor a (TNFa) and interleukin 18 (IL-1p) [30]. These
data suggest serum factors may play a role in the mechanisms involved in the development
of the Metabolic Syndrome in HFD exposed offspring.

Changes in blood pressure (increase in systolic blood pressure), another feature of the
Metabolic Syndrome, were seen in offspring exposed to a maternal HFD [33]. Similarly,
exposing G4+/- mice to a HFD in utero was associated with a premature increase in systolic
blood pressure as early as 13 wks of age [40]. These data demonstrate that a HFD during
pregnancy as well as a heterozygous deletion of GLUT4 increases offspring susceptibility to
increased systolic blood pressure.

Similar to changes in blood pressure, alterations in the offspring plasma lipids are seen in
response to a maternal HFD. In a study by Elahi et al., plasma lipids were increased in a
sexually dimorphic manner. In female offspring exposed to either maternal control (C) or
HFD and weaned to a HFD have increased cholesterol levels whereas only males exposed to
a maternal HFD in utero have increased cholesterol [33]. Changes in offspring lipid levels
have also been seen after the exposure to different dietary fats, specifically exposure to
saturated fatty acids (SFA). The group in which the mothers and offspring were exposed to
SFA had the highest plasma concentrations of total cholesterol and low-density lipoprotein
(LDL) cholesterol while the polyunsaturated fatty acid exposed group had the lowest levels
of total cholesterol and LDL cholesterol compared to the other groups. The plasma high-
density lipoprotein (HDL) cholesterol concentrations were significantly higher in the
animals exposed to polyunsaturated fatty acids (PUFA) in utero and weaned to SFA [42].
This demonstrates a maternal HFD affects lipid metabolism of the offspring and alters their
lipid profile, but the effect differs depending on the quality of fat as well as the sex of the
offspring. Furthermore, a PUFA or SFA diet throughout gestation and lactation was
associated with reduced docosahexaenoic acid (DHA) in both liver and heart in comparison
to control [43].

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders from
steatosis to nonalcoholic steatohepatitis (NASH) associated with insulin resistance and the
metabolic syndrome [44-46]. In the offspring, maternal HFD exposure has been associated
with increased triglyceride content, increased phosphoenolpyruvate carboxykinase 1 (PCK1)
gene expression and increased c-jun N-terminal kinase (JNK) and 1B kinase (IKK)
phosphorylation which is consistent with development of NAFLD. In addition, maternal
HFD exposure has been shown to reduce hepatic insulin signaling and basal acetyl-CoA
carboxylase (ACC) phosphorylation in the offspring [30]. Similar changes are observed
even when the offspring are weaned to a non-HFD. Interestingly, exposure to HFD in utero
has a more detrimental effect on the liver of the offspring than does HFD after weaning [41].
Moderate steatosis and NASH has been shown to be associated with increased expression of
genes of lipogenesis, oxidative stress and inflammation, in addition to alterations in activity
of enzymes of the electron transport chain [37, 47]. Further supporting that maternal HFD
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predisposes the offspring to NAFLD, offspring exposed to a HFD developed hepatic
steatosis; which was more pronounced in the offspring exposed to HFD during gestation,
lactation and postweaning. HFD exposed offspring also had increased expression of sterol
regulatory element binding protein -1c (SREBP-1c) suggesting an effect on hepatic
lipogenesis [37]. Offspring that are weaned to the HFD appear to have a more pronounced
effect suggesting that there may be a “two hit ” effect. a maternal HFD enhances offspring
susceptibility to liver dysfunction and NAFLD. Interestingly, in another study there was no
effect of maternal diet on hepatic inflammation or expression of lipid metabolism genes
[36]. It is plausible that the negative outcomes reported in this study could be due to the
young age of the offspring.

In the fetus, a maternal HFD was associated with increased hepatic expression of genes
involved in glycolysis, gluconeogenesis, inflammation and oxidative stress [40]. This
provides insight into the mechanism(s) underlying insulin resistance and metabolic disease.
The upregulation of genes involved in glycolysis and gluconeogenesis suggest that the
offspring is being programmed for hepatic insulin resistance. Additionally, inflammation
and oxidative stress has been implicated in the development of metabolic disease.

Consistent with prior studies, female sex may have a protective effect on the programming
of the offspring liver. In female offspring, exposure to a HFD in utero resulted in a reduction
in hepatic triglyceride content and increased hepatic protein levels for cluster of
differentiation 36 (CD36), carnitine palmitoyltransferase-1 (CPT-1) and peroxisomal
proliferator activated receptor a (PPARa) in an IGF2 dependent upon manner [48]. These
changes can lead to upregulation of fatty acid oxidation in the liver, which is different from
that observed in male offspring. HFD exposure in utero was also associated with altered
expression of miRNA in the HFD exposed female offspring [48]. These data suggest liver is
a major target for programming during development [30, 37, 41, 44-49].

Maternal HFD in utero has been shown to enhance offspring susceptibility to type 2 diabetes
[50]. One potential mechanism for this involves alterations in pancreatic beta cell mass
which could potentially be transmitted to subsequent generations. Despite changes in diet,
type 2 diabetes was seen in F1 mice exposed to the HFD during fetal or neonatal life and F2
mice whose mothers were exposed to the HFD during fetal life. In the F1 generation,
pancreatic beta cell mass, replication, and neogenesis were increased in animals exposed to
HFD. In contrast, F2 mice had lower beta cell mass. In the F1 generation, the exposure to
HFD in utero had an even more dramatic effect when the HFD was also provided during the
neonatal period [51]. These data suggest exposure to a HFD during fetal life alters beta cell
structure and function thereby resulting in type 2 diabetes and this is transmissible to their
offspring (F2 generation) in the absence of an additional insult.

HF exposure in utero results in remodeling of the bone structure of the offspring in a
sexually dimorphic manner. HFD has been shown to affect bone structure and length [52].
Bone marrow adiposity was increased and femur length decreased in male and female
offspring. Female offspring also demonstrated alterations in trabecular structure [52]. These
data provide insight into the effect of a maternal HFD on the skeletal structure of the
offspring and how these alterations may lead to the development of future disease such as
osteoporosis.

Little is known about the effect of HFD exposure in utero on animal behavior [53]. HFD
exposed offspring displayed increased anxiety (reduced time in open arms of elevated plus
maze as well as increased inhibition to consume novel food) associated with molecular
changes in the hippocampus (increased expression of bone-derived neurotrophic factor
(BDNF and GABA, alpha2 receptor subunit (GABAA a2R) and 5-hydroxytryptamine 1A
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(5HT1A) [53]. These data suggest a maternal HFD may increase anxiety behaviors in the
offspring via alterations in the GABAergic and neurotrophin systems in early life.

In conclusion, in HFD mouse models of DOHaD, it is clear that there may be critical periods
of vulnerability to the suboptimal environment. In utero exposure seems to have a more
dramatic effect offspring programming. It is also clear that offspring have a sexually
dimorphic response to HFD exposure. In the mother, intake of a HFD resulted in alterations
in substrate utilization and/or changes on body composition. Maternal HFD exposure does
not have to be accompanied by maternal obesity to impart metabolic changes to their
offspring. In the offspring, in utero exposure to HFD resulted in placenta dysfunction
associated with alterations in fetal growth, obesity, insulin resistance, hypertension,
NAFLD, and altered pancreatic beta cell mass. These phenotypic outcomes are associated
with changes in organ structure as well as gene expression in metabolically important organs
(e.g., liver). Further emphasizing the relevance of these early life perturbations with respect
to the rise in the metabolic disease incidence, these changes may be passed on to subsequent
generations without additional exposure to the HFD.

The interaction of pregnancy and dietary fat on the pregnancy outcome as well as the
metabolism in the offspring exposed to a maternal HFD has also been investigated using rat
models. In the field of DOHaD, Sprague-Dawley and Wistar rats are the two most
frequently used rat strains. When compared to mouse models, rats present several
advantages including that they are bigger and easier to handle and they could potentially be
more resistant to insults. The pregnancy duration is longer and the fetuses are larger. In
contrast to many commonly used inbred strains of mice, Sprague-Dawley and Wistar rats
are outbred strains. Similar to mouse models, maternal HFD exposure in rats produces
similar effects on the metabolic phenotype of the offspring as well as organ specific effects
including the liver and pancreas as well as hypothalamic changes.

The Sprague-Dawley dams exposed to a HFD during pregnancy experienced increased body
weight and elevated plasma insulin, glucose and triglycerides levels [54], these effects are
similar to what is reported in the mouse [29-31]. In addition, HF exposure has been shown
to alter the quality of breast milk. HFD breast milk had increased protein, cholesterol,
triglycerides [55] and leptin concentration [56, 57]. These data suggest alterations in
maternal milk composition may contribute to offspring obesity.

In the rat, a maternal HFD has been shown to reduce fetal growth and to alter the placental
structure by reducing the placental junctional zone, without altering the placental labyrinth
zone [39]. These changes were not accompanied by alterations in gene expression of
perosixome proliferator-activated receptor gamma (PPARY) and vascular endothelial growth
factor A (VEGFa) which are markers of placental vascular development. This study suggests
mechanisms responsible for fetal growth restriction may include effects on placental growth.

Similar to a HFD during pregnancy, maternal obesity secondary to prolonged HF feeding
was associated with an increase in offspring adiposity and increased serum leptin as well as
reduced insulin tolerance [57]. Consistent with mouse models, HFD in utero is sex
dependent and seems to be more detrimental that exposure to HFD during lactation. Cross-
fostering studies showed that in males in utero HFD exposure results in an increase in
adiposity independent of the diet exposure during lactation. In contrast, in females,
significant differences in adiposity were associated with exposure to HFD in utero and
during lactation [58, 59]. The post-weaning diet also appears to affect offspring body
composition. When exposed to a HFD in utero and weaned to a “junk food” diet, female
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offspring from borderline hypertensive fathers are hyperphagic and have greater fat pad
mass compared to controls [60]. They also had increased fasting serum leptin and insulin
levels. This suggests there is enhanced susceptibility metabolic disease when offspring
exposed in utero to a HFD are weaned to a junk food diet.

Similar to mouse models, HFD rat fetuses had enhanced susceptibility to the Metabolic
Syndrome, HFD fetuses display hyperinsulinemia and altered insulin secretory response to
insulin secretagogues [54]. As adults, HFD offspring had increased adiposity, increased liver
weight and hepatic liver lipid content, increased blood glucose [61], triglycerides [38] and
plasma corticosterone levels, increased adipocyte area and left ventricular wall thickness
[62]. In addition, HFD offspring were glucose intolerant, and their pancreatic islets, secreted
more insulin in response to low glucose stimuli. When weaned to a high sucrose diet HF
offspring displayed an impaired metabolic profile (increased body weight, impaired glucose
tolerance and increased FFA compared to those weaned to LFD [54]. These data further
support the negative effects of a maternal HFD and its contribution to metabolic disease in
the offspring. Furthermore, if the offspring are also weaned to an adverse diet, this worsens
their metabolic profile.

Similar to mouse models the diet composition plays a major role in the offspring phenotype.
A diet rich in omega-6 polyunsaturated fat programs offspring for Metabolic Syndome.
Specifically, early life exposure to a diet rich on omega-6 PUFA diet has been shown to
increase total and abdominal adiposity. Hyperinsulinemia and altered hepatic triglyceride
content, in association with changes in expression of several insulin signaling genes in the
skeletal muscle, suggest insulin resistance is also present [63]. These data demonstrate that
adverse maternal nutrition results in multiple negative outcomes that program offspring for
metabolic disease in later life.

This susceptibility to the Metabolic Syndrome, is further enhanced by alterations in the
hepatic mitochondria content in response to the HFD exposure. Wistar rats exposed to HFD
during pregnancy had a decreased copy number of mitochondrial DNA in liver regardless of
offspring sex or weaning diet. There was a male specific reduction of hepatic PGCla
mRNA which had a significant effect on peripheral insulin resistance (higher HOMA-IR)
with the opposite effect being observed in the female offspring [59]. Furthermore, exposure
to a HFD in utero resulted in a reduction in DHA in liver lipids in the offspring [64]. This
suggests a maternal HFD results in alterations in the fatty acid profile of the liver and a
decrease in the levels of an essential lipid.

As observed in mice, several rat models have also demonstrated altered cardiovascular
function following exposure to a maternal HFD. Studies have reported increases in diastolic,
systolic and mean arterial blood pressure in older female offspring exposed to a maternal
HFD [65]. In contrast, another study using female offspring from borderline hypertensive
fathers exposed to a HFD in utero and weaned to either control or a “junk food” diet
reported lower mean arterial and diastolic blood pressure in HFD exposed offspring in
comparison to controls. Whereas there was no difference in blood pressure in offspring
placed on different postweaning diets [60]. While the results from both studies are not
consistent, the effect of the borderline hypertensive father used in one mating strategy
cannot be ignored. Furthermore, these studies clearly demonstrate that a HFD in utero
results in cardiovascular dysfunction. Additionally, cross-fostering studies showed that in
utero HFD exposed male offspring suckled by a control dam compared with HFD offspring
suckled by the same dam had no difference in blood pressure. However, female offspring of
fat fed dams suckled by a control dam and control offspring suckled by a fat fed dam were
hypertensive [58]. There appears to be a sex-dependent susceptibility to these cardiovascular
outcomes, with the female offspring being more susceptible.
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All offspring exposed to the HFD during gestation or during suckling demonstrated
endothelial dysfunction seen as a blunting of acetylcholine (Ach) induced relaxation in
mesenteric arteries [58]. HFD exposure was associated with a reduction in the maximal
endothelial-dependent relaxation to Ach in small mesenteric arteries in comparison to
control animals [65]. Furthermore, there was a reduction in aortic endothelial cell layer
volume and smooth muscle number, increased aortic stiffness and reduced endothelium-
dependent relaxation in comparison to control. In the kKidney, glomerular number and
volume was altered depending on the maternal diet. Additionally, renin and Na*, K*-
ATPase activity was reduced in offspring exposed to a maternal HFD [66]. This suggests
that a maternal HFD programs hypertension via alterations in the vascular and renal
structure of the offspring. Follow up studies in the HFD adult female offspring demonstrated
a decrease in mtDNA content in kidney and alterations in the expression of genes such as
AJ223355 (mitochondrial dicarboxylate carrier) and D12770 (mitochondrial adenine
nucleotide transporter) in aorta that suggested mitochondrial dysfunction [67].

Consistent with vascular dysfunction the femoral arteries of offspring of HFD diabetic
mothers fed a HFD during pregnancy, had an enhanced sensitivity to norephinephrine with a
decreased or blunted arterial relaxation in response to Ach [68, 69]. These alterations, which
enhance offspring susceptibility to cardiovascular dysfunction, were accompanied by
changes in the fatty acid composition of the aortas including decreased arachidonic acid and
DHA content, which are cardioprotective fatty acids [69]. Diabetes was induced via
streptozocin on day 1 or 2 of pregnancy. In this case there are two possible mechanisms for
the programming effects seen in the offspring; the maternal HFD and the maternal diabetes.

The predictive adaptive response (PAR) was investigated in a Sprague-Dawley rat model
[70]. The outcomes demonstrate that the PAR to a maternal HFD prevents endothelial
dysfunction but not hypertension in the adult offspring of Sprague-Dawley rats. There was a
partial protection from the cardiovascular effects of maternal HFD exposure displayed by
the offspring when re-exposed to a HFD in later life displayed. However, the female
offspring were hypertensive when maintained on the same HFD diet as their mothers [70].
This study suggests the adverse effects of maternal HFD diet on blood pressure may be
irreversible.

The impact of maternal HFD on hypothalamic leptin sensitivity has been investigated in
HFD rat models. Male and female offspring exposed to a HFD in utero and weaned to a
HFD had altered feed efficiency [71]. In addition, in offspring exposed to HFD in utero,
STAT3 phosphorylation in response to leptin was abolished suggesting hypothalamic leptin
resistance [71]. Similarly, decreased STAT3 and IRS-2 protein expression was detected in
the hypothalamus of HFD exposed offspring [72]. These changes were accompanied by an
increase in mMRNA levels of insulin receptor  (IRB) and leptin long receptor (OB-Rb).
Alterations in gene expression were also detected in the hypothalamus. Specifically,
increased mRNA levels of neuropeptide Y (NPY), Agouti-related peptide (AGRP) pro-
opiatemelanocortin (POMC), and melanocortin receptor-4 (MC4R) were reported. This
outcome is consistent with hypothalamic dysregulation after exposure to a HFD in utero
being associated with upregulation of the orexigenic (appetite stimulating) neuropeptides
during early development. In addition, HFD in utero stimulated the proliferation of
neuroepithelial and neuronal precursor cells of the embryonic hypothalamic third ventricle,
as well as stimulated proliferation and differentiation of neurons and their migration toward
hypothalamic areas [73]. HFD increased expression of orexigenic peptides, galanin,
enkephalin and dynorphin in the paraventricular nucleus (PVN) and orexin and melanin-
concentrating hormone in the perifornical lateral hypothalamus (PFLH) of the offspring
[73].. In addition to changes in the appetite centers, females developed precocious puberty
(day 29-32 in comparison to day 33-36 in BD offspring). This data suggests the mechanisms
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involved in hyperphagia and increased adiposity seen in offspring exposed to HFD in utero
may include increased neurogenesis as well as stimulation of hypothalamic peptides.

Several studies have investigated the effects of a HFD at different periods within gestation
and lactation. A HFD exposure during critical periods of development alters pancreatic
morphology and function. Changes in glucokinase (GK) and pancreatic and duodenal
homeobox 1 (PDX-1) immunoreactivity expression has been observed in offspring exposed
to a HFD in utero. When HFD diet exposure was limited to the gestation period PDX-1 and
GK mRNA expression and immunoreactivity were unaffected and the impairment in glucose
tolerance was less pronounced [74]. HFD exposure during development was also associated
with pancreatic alpha and beta cell hyperplasia, increased pancreatic acinar cell proliferation
and changes in beta and alpha cell size [75, 76] as well as impaired glucose stimulated
insulin release [77]. This suggests an adverse programming effect on beta cell function may
predispose offspring to beta cell failure.

The effect of fatty acid composition of the maternal diet on fetal and postnatal growth, and
pancreas morphology was examined [78]. A HFD rich in unsaturated fat (UFA: menhaden
fish oil) was associated with an increase in pancreatic islet numbers. A diet rich in saturated
fat (SFA: coconut oil) was associated with a reduction in the number of large islets and a
faster and more robust insulin response to a glucose load [78]. The programming effect on
the pancreas alters the structure and function of islets associated with a predisposition
towards glucose intolerance and diabetes. These data demonstrate the fatty acid composition
of the maternal diet is important as the diets rich in saturated fatty acids and unsaturated
fatty acids had opposite effects on pancreatic islet development and insulin response of
offspring.

In conclusion, despite the size and breed differences between the mouse and rats, in rodent
models, no major differences have been observed in the phenotype of their respective
offspring exposed to a maternal HFD. In both models, the effects were seen in a sex-
dependent manner during critical stages of development. Similar to the mouse model, a
maternal HFD in rats affects offspring body compaosition, glucose and lipid metabolism,
endothelial and vascular function and blood pressure, liver function, pancreatic morphology,
pancreatic function and hypothalamic signaling. Hypothalamic reprogramming of offspring
exposed to a maternal HFD results in altered expression of hypothalamic peptides that
regulate food intake and weight gain that, in the long term, may affect offspring behavior
and physiology.

Summarized in Figure 1 are the effects of a maternal HFD on various organ systems of
exposed offspring derived from several animal models. These effects vary based on the
animal model, timing and duration of the HFD exposure, as well as the gender of the
offspring. The programming effects are further enhanced if the exposure is extended to the
post-weaning period. Although not implicated in these studies, future work in the field could
point to the gut microbiota as a potential source of programming [79, 80].

Non-human primates

The effect of a maternal HFD on the offspring has also been investigated in non-human
primates (NHP). Similar to the rodent models, NHPs exposed to a maternal HFD is
associated with predisposition to metabolic disease associated with effects in multiple organ
systems (including liver and placenta), as well as circulating factors in the mother and her
offspring. Additionally, several of these studies have focused on epigenetic factors that may
explain the increased susceptibility to metabolic disease in response to early life exposure to
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HFD. Many of these changes are observed during fetal life (prior to birth), which suggests
that the intrauterine environment is a period vulnerable to nutrient perturbations.

At 5-7 years of age, female Japanese macaques were fed a C or a HFD for 2-4 years. A
subset of these NHPs were switched from HFD to normal chow 1-3 months before
becoming pregnant in the fifth year of the study [81]. Animals fed the HFD were divided
into two groups based on their weight gain and insulin resistance and were considered either
sensitive to the HFD (HFD-S) or resistant to the HFD (HFD-R). Approximately 60% of the
NHPs were categorized as HFD-S. The fetal (e130) offspring of HFD (O-HFD) NHPs had
lower body weight compared to CD offspring, which was likely due to decreased lean body
mass. These data suggest, regardless of the mother’s insulin status, a HFD in utero results in
the offspring being born smaller than control.

The consumption of a HFD during pregnancy was shown to alter fetal placental
hemodynamics [82]. Uterine hemodynamic parameters were examined in early third-
trimester pregnancies (gestational day 120). Uterine artery blood flow volume was
decreased in both HFD-R (38% reduction) and HFD-S (56% reduction). A maternal HFD
resulted in expression of increased placental inflammatory cytokines (IL-1p and Monocyte
Chemotactic Protein-1 (MCP-1) and increased expression of toll-like receptor 4 (TLR4R)
associated with an increase in the frequency of placental infarctions and stillbirth. These
data suggest that maternal obesity and insulin resistance associated with chronic
consumption of a HFD exacerbates placental dysfunction and results in an increased
frequency of stillbirth seen in HFD pregnancies in general [82]. In agreement to what is seen
in rodents, a maternal HFD results in placental alterations. In the rodent, studies reported
alterations in placenta structure and nutrient transport, whereas placental inflammation was
investigated in NHPs. The potential role of placenta in offspring programming is very
important as maternal factors can cross the placenta and affect the fetus. Any placenta
dysfunction can affect fetal growth and development. In the NHP inflammation of the
placenta resulted in adverse effects including increased stillbirth.

The impact of a maternal HFD on cardiovascular disease was examined in 13 month old
offspring by investigating endothelial function [83]. The mothers were fed the same diet
discussed in previous studies and after weaning the offspring were either maintained on the
same diet (CD/CD, HFD/HFD), or switched to the opposite diet (CD/HFD, HFD/CD). HFD/
HFD juveniles showed increased plasma insulin level and glucose-stimulated insulin
secretion compared to CD/CD. In abdominal aorta, HFD/HFD juveniles showed decreased
Ach-induced vasorelaxation compared to CD/CD. HFD/HFD animals also showed a thicker
intima wall and an abnormal vascular morphology. mRNA expression of proinflammatory
factors such as vascular endothelial growth factor A (VEGFA), TNFa and Intercellular
adhesion molecule 1 (ICAM-1) were increased in HFD/HFD compared to CD/CD in the
abdominal aorta tissue. Post-weaning diet reversal (HFD/CD) did not reverse the expression
of VEGFA or TNFa, however, ICAM-1 tended to be lower in the HFD/CD animals
compared to HFD/HFD. These data suggest a maternal HFD exposure, as well as a post-
weaning HFD exposure, affects endothelial function and this is partially reversed by
switching to the CD [83].

Using NHP it has been demonstrated that a maternal HFD is associated with decreased
plasma n-3 fatty acids (FA) and fetal hepatic apoptosis [84]. Lipid analysis of fetal and
maternal plasma revealed total n-3 FA and DHA levels were significantly lower in the HFD
compared to the CD group. Also, the n-6:n-3 ratio was increased and correlated with the
maternal ratio in the HFD group. Furthermore, the number of apoptotic cells was increased
in the HFD fetal liver compared to CD and switching the diet normalized the fetal DHA, n-3
FAs and hepatic apoptosis to CD levels. The HFD also had an effect on the breast milk
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composition such that mothers consuming a HFD displayed lower levels of eicosopentanoic
acid and DHA [84]. Alterations in the composition of milk have also been reported in the
rodent. These compositional changes can be a potential mechanism underlying offspring
phenotypic outcomes.

Fetal O-HFD had increased triglycerides and increased evidence of hepatic oxidative stress
that are early signs of NAFLD, similar to the what is reported for rodent models. Increased
triglyceride levels and fatty liver is a feature of maternal HFD programming that occurs in
rodent and NHP models. Furthermore, when the offspring are also weaned to a HFD they
have a more adverse effect [81]. Exposure to a maternal HFD resulted in increased liver
triglycerides and histologic evidence of NAFLD. These hepatic changes were associated
with significant hyperacetylation at H3K14 and a trend towards increased H3K9 and H3K18
acetylation in fetal HFD liver [85]. Fetal HDAC1 mRNA and protein expression were
significantly decreased, as was in vitro HDAC activity. Fetal hepatic AcH3K14
‘reprogrammed’ genes (Glutamic pyruvate transaminase 2 (GPT2), DnaJ homolog
subfamily A member 2 (DNAJAZ2) and Retinol dehydrogenase 12 (RDH12)) were increased
by exposure to a maternal HFD [85]. These data suggest epigenetic modifications involving
alterations to chromatin structure may be the molecular basis of the outcomes seen in
offspring exposed to a maternal HFD.

Glycerol levels were higher in O-HFD NHPs compared to CD fetal offspring. Fetal OHFD
exhibited elevated hepatic expression of the gluconeogenic enzymes and transcription
factors, glucose 6-phosphatase (G6P), fructose-1,6-bisphosphatase 1 (FBP1), PCK1,
PGCla, and hepatocyte nuclear factor 4a (HNF4a) protein was significantly elevated
compared to CD liver. Maternal diet reversal improved fetal hepatic triglyceride levels and
partially normalized the mRNA expression of the gluconeogenic genes. Furthermore, the
offspring had normal total triglyceride and glycerol levels [81]. Metabolomic analysis of the
fetal serum revealed significant alterations in the HFD exposed offspring [86]. Twenty two
metabolites had statistical significance over the entire study and eight metabolites (2-
hydroxybutyrate, ascorbic acid, a-tocopherol, cholesterol, 3-hydroxybutyrate,
un(1462_100), un(1574_304) and un(1952_334) were differentially present in serum of
HFD-exposed compared CD offspring [86]. These data suggest alterations in the fetal
metabolite profile occur in response to a maternal HFD and may play a role in the
development of metabolic disease.

Since sirtuin 1 (SIRT1) is a lysine deacetylase and has been shown to play a role in cellular
metabolism, it was hypothesized that SIRT1 may be involved in the altered H3K14ac seen
in liver of HFD offspring. Fetal hepatic SIRT1 gene expression, protein level, and activity
were all found to be dysregulated following exposure to a maternal HFD [87]. In addition,
the SIRT1-associated genes, peroxisome proliferator-activated receptor gamma (PPARY),
PPARGa, sterol regulatory element-binding transcription factor 1 (SREBF1), cholesterol 7
alpha-hydroxylase (CYP7AL), fatty acid synthase (FAS) and stearoyl-CoA desaturase
(SCD) were increased in the fetal macaque liver with HFD exposure. These findings suggest
that SIRTL1 likely plays a key role in remodeling the fetal hepatic epigenome and
metabolome in a HFD milieu [87]. These are all key genes involved in fat and cholesterol
metabolism and may correlate fetal lipid oxidation and NAFLD [87].

Using the same experimental paradigm the effects of fetal exposure to HFD on the
development of the melanocortin system in the hypothalamus was investigated [88]. Third-
trimester fetuses from mothers on HFD showed increased POMC and decreased AGRP
mRNA expression in the hypothalamus. A cytokine array showed eight inflammatory
factors and receptors, namely IL-1p, Interleukin-1 receptor type | (IL-1R1), Interleukin-1
family member 6 (IL-1F6), Interleukin-1 family member 7 (IL-1F7), Chemokine (C-C
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motif) ligand 26 (CCL26), Chemokine (C-C motif) receptor 3 (CCR3), Chemokine (C-C
motif) ligand 19 (CCL19) and Chemokine (C-C motif) ligand 2 (CCL2) were increased in
the hypothalamus of fetus exposed to a maternal HFD. Reversing the diet normalized fetal
POMC and AGRP mRNA expression as well as circulating cortisol and cytokine levels.
These results suggest chronic consumption of a HFD during pregnancy leads to widespread
activation of proinflammatory cytokines that affect development of the melanocortin system
in a way that can be reversed by a healthy maternal diet [88].

The effect of exposure to a maternal HFD on the peripheral circadian system has also been
examined in this NHP model [89]. Exposure to a maternal HFD resulted in alteration in fetal
hepatic neuronal PAS domain protein 2 (NPAS2), a paralog of the clock transcription factor,
gene expression and switching to a LF maternal diet normalized this effect. Expression of
other circadian genes was also affected by exposure to a maternal HFD. In particular, period
circadian protein homolog 1 (PER1) and nuclear receptor subfamily 1, group D, member
1(Reverb-a) mRNAs were up-regulated in fetal liver of HFD compared to CD NHPs. The
NPAS2 promoter did not display alterations in DNA methylation at any CpG dinucleotide
between CD and HFD exposed animals suggesting another epigenetic modification may be
responsible for alteration in NPAS2 gene expression. To address the hypothesis that the
change in NPAS2 gene expression may be due to alterations in histone modifications in the
functional promoter, an antibody against H3K14 was used. There was significant enrichment
for the Rev-erb-a/ROR response element promoter region, which drives NPAS2
transcription, in NHPs exposed in utero to a maternal HFD compared to CD as well as
significant increase in enrichment of promoter occupancy with the gene activating mark,
H3K14ac [89]. These changes in expression of circadian genes, and the observed epigenetic
modifications, may be important in programming metabolic disease since disruption of
circadian rhythmicity is associated with obesity and cardiovascular disease [90-92].

Thyroid hormone homeostasis was investigated in the maternal HFD NHP model because of
its effects on development and energy balance [93]. Fetal free T3 was not changed but free
T4 was significantly decreased in the maternal HFD exposed offspring compared to CD
offspring. Since thyroid hormones are important regulators of fetal development and energy
balance, alterations in the thyroid hormone homeostasis could be an underlying mechanism
for the development of metabolic disease in later life. Analysis of expression of genes
involved in thyroid function (thyrotropin releasing hormone (TRH), thyroid stimulating
hormone receptor (TSHR), thyroglobulin (TRHR), thyroid peroxidase (TPO), and sodium
iodide symporter/solute carrier family 5 member 5 (SLC5A5)) showed a decrease in the
hypothalamus and thyroid gland. Additionally, transcription of the deiodinase iodothyroine
(DIO) gene that helps to maintain thyroid homeostasis was dysregulated in the fetal liver,
thyroid and hypothalamus. Chromatin immunoprecipitation (ChlP) showed that the thyroid
response element (TRE) of the thyroid hormone receptor beta (THRB) is associated with an
increase in deacetylation of histone H3 at lysines 9 and 14 (H3K9,14ac) in liver of NHPs
exposed to a maternal HFD. This data suggests a maternal HFD modifies the histone code
and thus alters the fetal thyroid axis and thyroid gene expression [93].

The serotonergic system, which is involved in behavioral disorders, was also investigated in
NHP fetuses on gestational day 130 (G130; early 3rd trimester; full term is 175 days) from
CD and HFD maothers [94]. Maternal HFD consumption was associated with perturbations
in the serotonergic system of fetal offspring. Female, but not male, HFD offspring exhibited
increased latency to touch a potentially threatening novel object as compared to CD
offspring while none of the CD offspring or male HFD offspring exhibited increased
latency. HFD female offspring also took longer than CD female offspring to touch a
threatening object, while male CD and HFD offspring were not different. These results show
that a maternal HFD increases anxiety-like behavior in a sexually dimorphic manner [94].
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Similarly, in mice [53], increased anxiety and alterations in brain circuitry suggest a
maternal HFD increases the risk of developing behavioral disorders.

In conclusion, these studies demonstrate that NHP offspring exposed to a maternal HFD
have altered glucose metabolism, liver and thyroid functions, circadian rhythm, hepatic gene
expression and histone modifications. Thus, the same the phenotypic changes observed in
rodents in response to a maternal HFD are manifested in this NPH model that is much closer
to humans. Interestingly, in the NHP models many of the negative effects induced by the
maternal HFD were reversible when the diet was switched postnatally or prior to pregnancy.
Studies using rodent models demonstrate that exposure to a HFD in utero has a more
profound effect than exposure during lactation only. While switching the diets did not
completely reverse the effects, improved metabolic outcomes were observed in the
offspring.

Epigenetic Effects

Epigenetics is the study of heritable changes in gene expression without changes in the
underlying DNA sequence. Epigenetic effects have also been examined in rodent models
exposed of maternal HFD exposure. As described above in the NHP, many of the
phenotypic changes observed in the HFD exposed offspring could be linked to alterations of
the epigenome [85, 87, 89, 93]. Histone modifications at the adiponectin (ADIPOQ) and
leptin (LEP) genes were examined in mice exposed to a maternal HFD [95]. Female 8 wk
old ICR mice were consumed either a CD (12% fat) or HFD (62% fat) for 4 weeks and
males were fed CD for 4 weeks before mating. All offspring were weaned to CD at postnatal
day 21. OH mice (offspring from mothers exposed to an HFD during pregnancy) were
heavier than OC (offspring from mothers exposed to an CD during pregnancy) mice.
Systolic blood pressure in OH mice was elevated, and they had impaired glucose tolerance
compared to OC mice. Serum leptin and triglyceride were higher and total triglyceride lower
compared to OC. This was in association with increased LEP and ADIPOQ mRNA
expression in white adipose tissue of OH. The acetyl H3K9 level in the ADIPOQ promoter
region was lower and the dimethyl H3K9 was increased in adipose tissue in OH mice
compared to OC mice. On the other hand, the monomethyl H4K20 level was significantly
increased in the LEP promoter region of OH compared to OC mice [95]. This study
demonstrates that maternal HFD induced metabolic syndrome leads to epigenetic
modifications of adiponectin and leptin and their gene expression.

Vucetic et al. have demonstrated that there are alterations in the gene expression and
methylation of the hypothalamic dopamine genes using the C57BL/6J mouse model of
maternal HFD [96]. Females were maintained on either CD (12% fat) or HFD (60% fat) for
3 months before breeding with DBA/2J males. HFD was maintained through lactation and
offspring were weaned to the CD. Expression of the preproenkephalin (PENK) and opioid
receptor mu 1 (MOR) genes were increased nucleus accumbens, prefrontal cortex and
hypothalamus. This was correlated with hypomethylation of the promoter region of these
genes in the nucleus accumbens (NAc) and hypothalamus. Similarly, dopamine reuptake
transporter (SLC6A3) mRNA was increased in the NAc and this was also associated with
hypomethylation of the SLC6A3 promoter region [96]. These results show that alterations in
CpG methylation of DNA is associated with altered expression genes in brain regions and
with energy balance and motivated feeding behavior present in offspring exposed to a
maternal HFD and they demonstrated a preference for palatable foods. This is a plausible
mechanism for epigenetic transfer of the phenotype as the maternal HFD was able to change
the methylation marks of the offspring. Additionally, these results are largely consistent with
what is known about effects of CpG methylation of DNA in a promoter on gene expression
[97].
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Fetal gluconeogenic gene expression and potential regulatory mechanisms related to histone
modifications were examined in an obesity resistant strain of rats (Crl:OR(CD)) [98].
Females consumed a CD (16% fat) or a HFD (45% fat) throughout gestation. Hepatic
mRNA expression of PCK1 was higher in HFD compared to CD offspring. ChIP analysis of
the hepatic PCK1 promoter showed the decreasing of H3Ac, H3K4Me2, H3K9Me3 and
H3K27Me3 [98], though the analysis of PCK1 coding region and upstream showed the
increasing of H4Ac and H3K4Me2. These results suggest that maternal HFD leads to certain
histone modifications that are associated with transcriptional activation of a main control
point for the regulation of gluconeogenesis that could result in elevated glucose production
and reduced insulin sensitivity.

To address the question if the variation in the type and amount of maternal HFD leads to
epigenetic regulation of hepatic fatty acid desaturase 2 (FADS?2) gene expression, female
Wistar rats were fed either 3.5% (LFD), 7% [adequate fat (AFD)] or 21% (HFD) butter or
fish oil (FO) from 14 days before mating and throughout pregnancy and lactation [99].
Offspring were weaned to a diet containing 4% fat (soybean oil). Increasing the amount of
fat in the maternal diet decreased FADS2 mRNA expression in liver of offspring. The
methylation status of the proximal promoter of FADS2 was increased with the amount of fat
in the maternal diet, while the level of methylation tended to be greater in offspring of
mothers fed FO compared to those fed butter fat. Methylation of CpG -394 showed a strong
negative correlation with FADS2 mRNA expression in offspring, while CpGs — 623, -84
and —76 correlated weakly with FADS2 mRNA expression. Methylation of CpG -394, but
not CpGs —623, —84 and — 76 correlated negatively with the proportions of 20:4n-6 and
22:6n-3 in liver PC and PE of the offspring [99]. Further studies have revealed that there
were significant single factor effects of the amount of maternal dietary fat on the
methylation of CpG -394 of the FADS2 gene [100]. These data demonstrate that alterations
in the amount and type of maternal dietary fat may result in epigenetic modifications in the
offspring.

All of these studies show that exposure to a maternal HFD is correlated with epigenetic
changes in the offspring correlated with in alterations in gene expression and dysregulation
of various key metabolic pathways. The mechanism(s) by which metabolic disease develops
is quite complex and involves multiple factors, however alteration of the epigenome appears
to play a significant role in this process.

Figure 2 summarizes the pathways by which exposure to a maternal HF diet may alter
offspring development and manifestation of metabolic disease. Specifically, exposure to a
maternal HF diet may reprogram offspring development through epigenetic modifications
that impart a molecular memory of an adverse early life milieu. Maternal HF diet is
associated with altered fetal growth and a precocious increase in adiposity and insulin
resistance. Also, pathologic effects upon serum metabolites and cytokines are observed in
exposed offspring as well as alterations in gene expression and tissue morphology in major
organs. In sum, these changes dramatically increase offspring risk for development of
metabolic disease. This highlights the importance of the maternal environment and its
impact on the life long health of the offspring.

Paternal Effect

While this article focuses on the programming effects of a maternal HFD, the contribution of
the father cannot be ignored [101]. In an article by Ng et al., it was shown using Sprague-
Dawley rats that chronic paternal consumption of a HFD had profound effects on the
pancreatic beta-cell function of female offspring. In this study, male Sprague—-Dawley
founder rats fed either CD or HFD (43% fat) were mated with females consuming a CD. The
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female offspring from HFD fed fathers had increased blood glucose and reduced insulin
secretion. A paternal HFD reduced relative islet area and beta-cell area in female offspring
that is typically associated with impaired beta-cell replication. Pancreatic gene expression
revealed differentially expressed genes involved in calcium signaling pathway mitogen
activated protein kinase (MAPK) pathway and wingless type MMTYV integration site (Wnt)
signaling pathways, apoptosis, and the cell cycle [102]. Dunn and Bale also reported that the
effect of a HFD was passed through the paternal lineage in C57BI1/6:129 hybrid mice [31,
103]. Several other studies also reported that HFD induced paternal obesity is associated
with impaired embryo development and diminished reproductive health of their offspring
[104-107]. This impaired development coincided with embryonic genome activation
suggesting paternal obesity affects sperm, possibly at the genetic or epigenetic level. These
data demonstrate that paternal HFD has a negative effect on the offspring and that female
offspring may be more susceptible to this perturbation.

In C57BI/6:129 hybrid mice, a maternal HFD (45% fat) resulted in increased body length
and decreased insulin sensitivity in the offspring for two generations and that these
outcomes were transmitted via the maternal or the paternal lineage. Mothers were fed HFD
for 4 wks prior to mating and throughout gestation and lactation and control mice were fed a
chow diet (12% fat) [31]. Both E17 embryos and male and female HFD exposed adult
offspring had increased body length in comparison to control offspring. In the F2 generation
the effect of in utero HFD exposure to fathers was investigated and the effects on the
offspring were enhanced if both maternal and paternal lines were exposed to HFD in utero
versus only one or the other. Offspring exposed to maternal or paternal HFD showed
decreased insulin sensitivity in the F1 and F2 generations. F1 and F2 females exposed to
HFD in utero had increased plasma levels of IGF-I and increased hypothalamic expression
of Growth hormone secretagogue receptor (GHSR). Methylation studies of GHSR on
micropunches of the arcuate nucleus showed decreased methylation at the GHSR promoter
in both maternal and paternal lineages [31]. This study was extended to the F3 generation
since the primordial germ cells of the first generation mice may have been affected by the
gestational exposure to HFD. The effect of HFD on weight and length only occurred in
females and was only passed through the paternal lineage [103]. Imprinted genes showed a
trend in paternally expressed genes to have a “greater volatility of expression” (genes that
show greater than 50% deviation from baseline) in comparison to maternally expressed
genes [103]. These data clearly demonstrate both maternal and paternal HFD can influence
offspring susceptibility to metabolic disease. The mechanisms underlying this susceptibility
may be explained via epigenetic modifications perhaps at the level of imprinted genes.

In a study using Sprague-Dawley rats exposed to a HFD (from both mother and father)
increased body fat accumulation was observed in male offspring. Male and female rats were
fed a HFD (40% fat) or LFD (5% fat) and mated to the same diet group [108]. The offspring
were nurtured by their own mothers and weaned to a HFD or LFD (experiment 1), by an
F344 chow fed foster mother (experiment 2), or 2 days after mating, the fertilized eggs were
collected from HFD or LFD mothers and transplanted to the oviducts of a sham pregnant
foster mother fed a 12% fat diet (experiment 3) and subsequently weaned to a HFD only for
12-17 weeks (experiments 2,3). The total body weight and abdominal tissue weight was
significantly greater in male offspring of HFD parents regardless of weaning diet and plasma
leptin concentrations were increased in comparison to control. Both HFD-LFD and HFD-
HFD offspring had increased food intake and food efficiency however, weaning to the HFD
enhanced this effect [108]. Although the maternal and paternal contributions were not
separated in this study the various parental contributions to programmed metabolic
disturbances in offspring should not be ignored.
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These studies demonstrate that, as with the mother, paternal environmental exposures can
also influence the health of their offspring; though maternal and paternal programming
effects vary in their potency.

Sexual dimorphism

The studies discussed above predominantly focus on the male offspring. However, studies
that investigate the effects of a maternal HFD on both sexes demonstrate sex-specific
responses to nutrient perturbation during development [33, 49, 51, 52]. Female hormones
may play a protective role in the development of insulin resistance and associated disorders
and may be the basis of some of the results seen. However, other studies have shown that the
females are more susceptible, especially when the insult is from the paternal lineage [102,
103]. Not only are these changes seen after birth, several studies reported sex specific
differences in the placenta during fetal life. Mao et al. examined the impact of diet and fetal
sex on placental gene expression in NIH Swiss female mice fed CD, LFD or HFD [109]. At
day 12.5 of pregnancy, the placenta gene expression patterns of male offspring clearly
clustered separately from the placenta of females and the female placenta showed more
striking changes in gene expression in response to maternal diet than male placenta [110].
Gallou-Kabani et al. also reported the effect of HFD on sexual dimorphism in the placenta.
Twenty imprinted genes were examined and sexual dimorphism and sensitivity to diet were
observed for nine of these genes. Additionally, exposure to a HFD during gestation triggered
sex-specific epigenetic alterations within CpG and throughout the genome [111]. Another
study in mice also identified differential expression at imprinted genes and suggested that
these may be at least partially responsible for the sex-specific differences between offspring
[103].

These studies suggest the mechanism for developing metabolic disease may be sex-
dependent, with one sex being more sensitive/susceptible than the other to a particular
perturbation. The mechanism for this susceptibility may involve sex-dependent epigenetic
modifications. This emphasizes the importance of studying the response of both sexes to
dietary interventions.

Transgenerational effect

As discussed above, maternal HFD leads to obesity and metabolic syndrome in the first-
generation (F1) offspring. Furthermore, recent studies show that the F1 can transmit a
similar phenotype to the second (F2) or third generation (F3). Using C57BL/6:129 hybrid
mice, Dunn and Bale reported that maternal HFD exposure results in the increasing of body
length in the F2 generation and also found that the heritable feature of reduced insulin
sensitivity could be seen for at least two generations [31]. Moreover, they found the increase
in body size was transmitted to F3 females [103]. The imprinted gene array detected a
potential dynamic pattern of paternally expressed genes from the paternal lineage that was
not noted in the maternal lineage.

These studies demonstrate that either the maternal or the paternal environment can affect
programming events at imprinted loci associated with developmental regulation of growth
and body size in future generations.

Concluding Remarks

It is well known that the maternal nutritional environment plays an important role in
determining offspring susceptibility to metabolic diseases. The studies reviewed here
demonstrate that maternal HFD exposure during pregnancy and/or lactation increases
offspring risk for the development of metabolic diseases such as type 2 diabetes and obesity.
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Direct evidence linking specific HFD exposure and metabolic disease in humans is limited,
however animal models, such as those described here, provide significant insight into the
molecular changes associated with this condition, while implicating an epigenetic basis for
these diseases. Interestingly, independent of the animal model studied, all models showed
similar phenotypic as well as structural changes in metabolically relevant organs as well as
molecular changes when exposed to a HFD in utero. The changes were sex specific,
happened during a critical period of development, were transmitted by the mother as well as
the father, and were seen in subsequent generations. In addition, these symptoms were
accompanied by changes in expression of key genes involved in metabolic and
inflammatory pathways and were sometimes associated with changes in DNA methylation
or histone post-translational modifications. Thus, even though the mechanism by which a
HFD influences the health of the offspring is not clear, disruption of normal epigenetic
regulation is likely involved.

Unfortunately, the precise functional role of the epigenetic changes related to a HFD
exposure in utero and the increase in disease susceptibility is not well understood and
requires further investigation. Part of the issue is limited not simply to practical issues
concerning study design (type of diet, timing, sex) and the confounding effects of genetic
variation (animal model and background) but also to the difficulty associated with
interpreting the epigenetic outcomes.

Epigenetic modifications associated thus far with in utero programming associated with a
maternal HFD include DNA methylation and histone modifications. Other epigenetic
changes, such as chromatin structural patterns, gene expression changes controlled by
RNAI, hydroxymethylation [100], or O-linked N-acetylglucosamine transferase changes
[101-103], although central to the topic of epigenetics, have not been studied widely in the
context of HFD exposure and DOHaD. Thus, future studies aimed at elucidating
involvement of these processes in the context of metabolic disease pathogenesis associated
with early life exposure to HFD may shed new light on molecular mechanisms underlying
this epidemic.

Although these animal models have extended our knowledge of the epigenetic mechanisms
associated with metabolic disease, particularly DNA methylation changes, several questions
still remain. One such question is whether additional pathologies linked to a HFD in utero
can be correlated with epigenetic changes other than DNA methylation and what animal
model is best suited to studies on fetal programming of adult disease. It also remains to be
determined whether similar outcomes are encountered in human populations. If so, dietary
changes during a critical period of development should be identified with the aim to develop
future guidelines for a healthy pregnancy. Meanwhile, the growing body of knowledge
derived from animal models suggests cautionary measures should be taken regarding dietary
habits during pregnancy and postnatal development to minimize offspring risk for enhanced
susceptibility to develop metabolic disease as adults.
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Figure 1.
Organ-specific pathologies associated with exposure to a maternal HF diet.
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Figure2.
Overview of events that occur in response to exposure to a maternal HF diet and increased
susceptibility to metabolic disease.
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