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Abstract
Molecular noise restricts the ability of an individual cell to resolve input signals of different
strengths and gather information about the external environment. Transmitting information
through complex signaling networks with redundancies can overcome this limitation. We
developed an integrative theoretical and experimental framework, based on the formalism of
information theory, to quantitatively predict and measure the amount of information transduced by
molecular and cellular networks. Analyzing tumor necrosis factor (TNF) signaling revealed that
individual TNF signaling pathways transduce information sufficient for accurate binary decisions,
and an upstream bottleneck limits the information gained via multiple pathways together. Negative
feedback to this bottleneck could both alleviate and enhance its limiting effect, despite decreasing
noise. Bottlenecks likewise constrain information attained by networks signaling through multiple
genes or cells.

Signaling networks are biochemical systems dedicated to processing information about the
environment provided by extracellular stimuli. Large populations of cells can accurately
sense signaling inputs, such as the concentration of growth factors or other receptor ligands,
but this task can be challenging for an individual cell affected by biochemical noise (1–3).
Noise maps an input signal to a distribution of possible output responses which can cause
loss of information about the input. For example, a cell cannot reliably distinguish different
inputs that, due to noise, can generate the same output (Fig. 1A).

Conventional metrics related to the standard deviation or variance of the response
distribution measure noise magnitude (4–8), but fail to elucidate how noise quantitatively
affects the accuracy of information processing in single cells. On the other hand, an
information theoretic approach (Fig. 1B), and the metric of mutual information in particular,
can quantify signaling fidelity in terms of the maximum number of input values that a cell
can resolve in the presence of noise. Such methods have been commonly used to evaluate
man-made telecommunication systems (9) and more recently in computational neuroscience
and in analyses of transcriptional regulatory systems (10–14), but has not been applied to
biochemical signaling networks. We developed a general integrative theoretical and
experimental framework to predict and measure the mutual information transduced by one
or more signaling pathways. Applying this framework to analyze a 4-dimensional
compendium of single cell responses to tumor necrosis factor (TNF) (Fig. 1C, see also SOM
Section 1), an inflammatory cytokine that initiates stochastic signaling at physiologic
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concentrations spanning ~4 orders of magnitude (15–21), shows that signaling via a network
rather than a single pathway can abate the information lost to noise. Furthermore, an
information bottleneck can restrict the maximum information a network can capture, and
negative feedback potentially but not always relieves this limitation.

Quantifying information transduction
The mutual information, I(R;S), measured in bits, is the binary logarithm of the maximum
number of input signal values (S), such as ligand concentrations, a signaling system can
perfectly resolve on the basis of its noisy output responses (R) (9). One bit of information
can resolve two different signal values, two bits resolves four values, etc. More generally,

[1]

The joint distribution P(R,S) determines the marginal distributions P(R) and P(S) and hence
also the mutual information, and can be decomposed as P(R,S) = P(S) P(R|S). The response
distribution, P(R|S), is experimentally accessible by sampling responses of individual
isogenic cells to various signal levels (Fig. 1C) and its spread reflects the noise magnitude
given any specific input. The signal distribution, P(S), reflects potentially context-specific
frequencies at which a cell experiences different signal values. Although the amount of
information might thus vary from case to case, one can also determine the maximal amount
of transducible information, given the observed noise (see SOM Section 2). This quantity,
known as the channel capacity (9), is a general characteristic of the signaling system and the
signal-response pair of interest, and can thereby be experimentally measured without
making assumptions about the (possibly nonlinear) relationship between R and S, signal
power, or noise properties.

Using immunocytochemistry, we assayed nuclear concentrations of the transcription factor
NF-κB in thousands of individual mouse fibroblasts 30 min. after exposure to various TNF
concentrations (Fig. 1D), choosing this time point because NF-κB translocation peaks at 30
min. regardless of the concentration used, initiating expression of early response
inflammatory genes (19–22). The NF-κB response value in a single cell could yield at most
0.92 ± 0.01 bits of information which is equivalent to resolving 20.92 = 1.9, or about 2,
concentrations of the TNF signal, thus essentially only reliably indicating whether TNF is
present or not. (See SOM, Sections 2.2 and 3, regarding the low experimental uncertainty.)
A bimodal input signal distribution, P(S), with peaks at low and high TNF concentrations
maximizes the information (Fig. S1), supporting the notion of essentially binary (digital)
sensing capabilities of this pathway (18), although we did not observe bimodal output
responses, P(R|S).

Noise also limits other canonical pathways, including signaling by platelet derived growth
factor (PDGF), epidermal growth factor (23), and G-protein coupled receptors (24) to ~1 bit
(Fig. S2A–C, Table S1). Even the most reliable system we examined, morphogen gradient
signaling through the receptor Torso in Drosophila embryos (25), was limited to 1.61 bits
(Fig. S2D, Table S1), corresponding to just ~3 distinguishable signal levels.

Bush and tree models of network signaling
The pathways examined above are examples of individual biochemical communication
channels (Fig. 1B) that capture relatively low amounts of information about signal intensity,
which would allow only limited reliable decision making by a cell. However, information in
biological systems is typically processed by networks comprising multiple communication
channels, each transducing information about the signal. For instance, a transcription factor
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often regulates many genes, a receptor many transcription factors, and a diffusible ligand
many cells. The outputs of such multiple channels together can provide more information
about the signal than the output of any one channel (see SOM Section 4). Subsequently,
downstream signaling processes that converge to co-regulate common effectors, biological
processes, or physiologic functions can provide the point needed to integrate the multiple
outputs to realize the benefit of increased aggregate information (Fig. S3). To provide a
unified framework for analyzing such various networks, we first theoretically investigated
information gained by network signaling in general, then experimentally tested the
predictions made by the theory when applied to a specific system.

We considered two information theoretic models, similar to models of population coding in
neural systems (26–28), for transmitting a signal S through multiple channels to the
responses R1, R2, …, Rn, under the assumption of Gaussian variables (see SOM Section 5).
The bush model utilizes independent channels (topologically resembling an upside down
shrub) (Fig. 2A), whereas the tree model signals through a common channel (“trunk”) to the
intermediate, C, before diverging into independent branches (Fig. 2B). The information
resulting from the bush model is

[2]

where  is the variance of the signal distribution, and  is the noise (variance)
introduced in each branch. Thus, the information can grow logarithmically with the number
of branches without an upper bound. In contrast, the information resulting from the tree
model is

[3]

where  and  are the trunk and branch noises, respectively (see SOM, Section 3.3).
As the number of branches increases, the information asymptotically approaches an upper
limit equal to the mutual information between the input signal and the common
intermediate, thus the information lost to noise in the trunk determines the maximum
throughput of a tree network.

The key difference between bush and tree networks is the absence or presence of this trunk-
based information bottleneck. The biochemical structure of a network can resemble a tree,
but if the trunk presents little information limitation, the bush model lacking a bottleneck
might best estimate the capacity of the network. Additionally, the bush and tree models
make various semi-quantitative predictions (see SOM, Section 6), such as the information
captured by a network based on the capacities of its component pathways. For example, for
a bush network comprising two pathways each with 1 bit responses, Eq. 2 implies

 and that together they should yield .

TNF network signaling
TNF activates the NF-κB and c-Jun N-terminal kinase (JNK) pathways, stimulating nuclear
localization of NF-κB and phosphorylated activating transcription factor-2 (ATF-2) (Fig.
S4), respectively (29). To determine if the TNF signaling network contains a significant
upstream information bottleneck limiting the information captured by these pathways, we
examined whether the bush (bottleneck absent) or tree (bottleneck present) network model
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better approximates the network (Fig. S5). The models are applicable because the NF-κB
(Fig. 1D) and ATF-2 (Fig. S6) response distributions are approximately Gaussian at all TNF
concentrations. We found that NF-κB alone yielded at most 0.92 bits of information about
TNF concentration, and ATF-2 alone yielded at most 0.85 ± 0.02 bits (Fig. S1B, Table S1).
Together, the bush model predicts that these pathways jointly yield 1.27 ± 0.01 bits (Fig.
2C) and a similar model assuming independent pathway responses that are not necessarily
Gaussian likewise predicts an increase to 1.13 ± 0.01 bits. The actual information
determined by dual staining immunocytochemistry (Fig. 2D) was 1.05 ± 0.02 bits, much
lower than both predictions (Fig. 2C), demonstrating that the bush model does not
approximate the TNF network well. In contrast, the tree model predicts 1.03 ± 0.01 bits,
matching the experimental value within error (Fig. 2C), and also correctly predicts the
statistical dependency between the responses given the signal (Fig. S7).

The correspondence between the tree model predictions and experimental measurements
strongly indicates that the network contains an information bottleneck. The tree model
predicts the maximum information that can pass through the bottleneck is 1.26 ± 0.13 bits
(Fig. 2C), corresponding to just 21.26 = 2.3 distinguishable TNF concentrations. The known
biochemistry of TNF signaling implies the bottleneck (trunk) comprises the steps of TNF
receptor complex activation common to both pathways, including ligand binding, receptor
trimerization, and complex formation and activation. Since all TNF signaling passes through
the receptor complex, multiple pathways in the TNF signaling network, activated at the 30
min. time point, only modestly increase the information about TNF concentration regardless
of the number of pathways or their fidelity.

Negative feedback
We next explored whether negative feedback, which can reduce noise (12, 30, 31), might
alleviate the receptor level signaling bottleneck. The information captured by a single

channel (Eq. 2, n = 1) can be written as . Thus negative feedback can have
equivocal effects on information, depending on the balance of the tendencies for negative
feedback to reduce both the dynamic range of the signaling response (32), represented by the

response variance  and noise represented by . Indeed, comparison of wildtype cells
and cells lacking A20 (Fig. S8), an inhibitor of TNF receptor complexes whose expression is
upregulated by NF-κB (33) (Fig. 3A), showed that A20-mediated negative feedback
increases information at the 30 min. time point, but decreases it at 4 hrs (Fig. 3B).

To understand these different outcomes, we examined how A20 affects the dynamic range
and noise at either time point. At the early time point, constitutively expressed A20 inhibits
basal NF-κB activity, but TNF does not induce A20 expression rapidly enough to affect
saturating levels of NF-κB at 30 min (Fig. 3C–D, S9) (17, 34). Hence, A20 negative
feedback decreases noise, primarily at low TNF concentrations, and also increases the
dynamic range by lowering basal NF-κB levels (Fig. 3E, S10A), explaining why
information at 30 min. is higher for wildtype than for A20−/− cells (Fig. 3B). In contrast, at
the late time point, A20 is increased in wildtype cells (17, 34). The negative feedback
decreases noise at all TNF concentrations but also decreases the dynamic range by strongly
suppressing the maximum inducible NF-κB activity (Fig. 3E, S10A). The net effect is lower
information for wildtype versus A20−/− cells at 4 hrs (Fig. 3B).

We observed that A20 negative feedback similarly both improves and limits information at
the early and late time points respectively for ATF-2 alone, or together with NF-κB (Fig.
3B, S10B), consistent with A20 affecting the portion of the network common to both
pathways. Nevertheless, the maximal information about TNF concentration acquired with or
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without A20-mediated negative feedback was still ~1 bit, suggesting limited advantages for
mitigating the information bottleneck in this pathway using negative feedback.

Time integration
We next considered whether networks comprising multiple target genes can capture
substantial amounts of information through time integration. If the target gene product
lifetime is long compared to its transcription and translation time scales, the accumulated
protein concentration is approximately proportional to the time integral of signaling activity,
thereby averaging out temporal fluctuations (35, 36). However, the biochemical readout of
protein synthesis can introduce extra noise confounding determination of the information
contained in the time integral. Fortunately, the maximum information captured by a tree
network, in which the time integral of transcription factor activity is the intermediate signal
activating multiple independent target genes (Fig. 4A, inset), is determined by the trunk
(time integration) rather than branch noise (readout mechanism). We measured the
information captured by such tree networks in cells stably transfected with different copy
numbers (1.8 fold difference, as determined by polymerase chain reaction) of a gene for a
stable green fluorescent protein (GFP) (37) reporting on NF-κB activity (Fig. 4B). Using the
tree model to extrapolate the extent of the bottleneck, under the assumption that ~10 hrs
TNF exposure induces similar expression level and noise for each gene, indicates that 1.64 ±
0.36 bits is the maximum information that integrating NF-κB activity over the experimental
time period can yield about TNF concentration (Fig. 4A), regardless of the readout
mechanism.

To understand why information was only moderately higher compared to a single time point
(1.64 versus 0.92 bits), we monitored GFP expression in individual cells, finding that, for
any given cell, GFP accumulated linearly in time in a nearly deterministic fashion, although
its onset and accumulation rate varied from cell to cell (Fig. 4C). This is consistent with
observations made using live cell probes (18–20) showing NF-κB dynamics to be essentially
deterministic over the experimental time scale within each cell, but distinct across cells. We
thus conclude that the ability of time integration to increase the information about TNF
concentration is limited by the lack of rapid temporal fluctuations that would otherwise be
suppressed by integration over the 10 hour response.

Collective cell signaling
Finally, we considered signaling via multiple cells, each considered as separate information
channels within a network (Fig. 5A, inset). An ensemble of cells resembles a bush network
if each cell directly and independently accesses the same signal, and since bush networks do
not contain bottlenecks, substantial increases in information might be obtained. To test this
hypothesis, we analyzed the collective TNF response of different numbers of cells, as
measured by immunocytochemistry. We varied cell number by considering cells within non-
overlapping circular regions of variable diameter (Fig. 5B), and used the average NF-κB
response within each region to simulate cells contributing to a collective response in
proportion to their NF-κB activity. The bush model predicts (Eq. 2), and the data confirms
(Fig. 5A), that the information should increase logarithmically with the number of
independently signaling cells functioning collectively.

Moreover, we found that networks of just 14 cells can yield up to 1.8 bits of information, far
greater than the other network types analyzed above. Since ensembles of this size can
plausibly experience a similar concentration of a diffusing signal such as TNF and function
collectively (21, 38) (e.g., TNF-activated blood vessel endothelial cells (39)), collective cell
behavior can effectively increase the information gained and produce responses that can
discriminate between many TNF concentrations. Nonetheless, networks relying on cell-cell
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communication can still contain bottlenecks. For instance, TNF can be secreted by
macrophages stimulated by lipo-polysaccharide (LPS) from invading bacteria, with the
information about the initial LPS dose lost within the macrophage signaling networks prior
to secretion of TNF.

Discussion
By treating biochemical signaling systems as information theoretic communication
channels, we have rigorously and quantitatively shown that in a single cell noise can
substantially restrict the amount of information transduced about input intensity, particularly
within individual signaling pathways. The bush and tree network models, which provide a
unified theoretical framework for analyzing branched motifs widespread in natural and
synthetic signaling networks, further demonstrated that signaling networks can be more
effective in information transfer, although bottlenecks can also severely limit the
information gained. Receptor level bottlenecks restrict the TNF and also PDGF signaling
networks (Fig. S11) and may be prevalent in other signaling systems.

We explored several strategies that a cell might employ to overcome restrictions due to
noise. We found that negative feedback can suppress bottleneck noise, which can be offset
by concomitantly reduced dynamic range of the response. Time integration can increase the
information transferred, to the extent that the response undergoes substantial dynamic
fluctuations in a single cell over the physiologically relevant time course. The advantage of
collective cell responses can also be substantial, but limited by the number of cells exposed
to the same signal or by the information present in the initiating signal itself.

Responses incorporating the signaling history of the cell might also increase the information
(40, 41). For instance, responses relative to the basal state (fold-change response) might be
less susceptible to noise arising from diverse initial states (23), although this does not
necessarily translate into large amounts of transferred information (Table S1). Similarly, for
the reporter gene system described here (Fig. S12), ~0.5 bits of additional information can
be obtained if a cell can determine expression levels at both early and late time points.
However, noise in the biochemical networks a cell uses to record earlier output levels and to
later compute the final response may nullify the information gain potentially provided by
this strategy. Overall, we anticipate that the information theory paradigm can extend to the
analysis of noise mitigation strategies and information transfer mechanisms beyond those
explored here, in order to determine what specific signaling systems can do reliably despite
noise.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Information theoretic analysis of cell signaling fidelity. (A) Schematic showing information
loss due to overlapping noisy response distributions. (B) Diagram of the TNF-NF-κB
signaling pathway represented in biochemical form (left) and as a noisy communication
channel (right). (C) Experimental flowchart for sampling the conditional response
distribution at single cell resolution using immunocytochemistry, and resulting 4-
dimensional compendium of multiple responses in cells of multiple genetic backgrounds to
multiple TNF concentrations, at multiple time points. The data was collected in a single
experiment, allowing controlled, quantitative comparisons along each dimension. (D)
Distributions of noisy NF-κB nuclear translocation responses to 30 min. TNF (examples
shown at top) used to compute the channel capacity of the TNF-NF-κB pathway. (Scale
bars, 20 µm)
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Fig. 2.
Information gained by signaling through a network comprising multiple communication
channels. (A) Schematic of a bush network with independent channels lacking an
information bottleneck. (B) Schematic of a tree network with channels sharing a common
trunk that forms an information bottleneck. (C) Comparison of bush and tree model
predictions for the capacity of the TNF network to experimental values. At 30 min., the NF-
κB and ATF-2 pathways together capture more information about TNF concentration than
either pathway alone (bars 1–3), and the tree rather than bush model accurately predicts this
increase (bars 3–5). The tree model further predicts a receptor level bottleneck of 1.26 ±
0.13 bits (bar 6). In all panels, circles represent noise introduced in the indicated portions of
the signaling network; see text for definition of symbols. (D) Joint distribution of NF-κB
and ATF-2 responses to 30 min. stimulation of TNF. Each datapoint represents a single cell,
and each concentration of TNF examined is shown using a distinct color.

Cheong et al. Page 11

Science. Author manuscript; available in PMC 2014 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Impact of negative feedback to the bottleneck on information transfer. (A) TNF signaling
network diagram showing A20-mediated negative feedback to the information bottleneck.
(B) Comparison of information about TNF concentration captured with and without A20
negative feedback. The information is larger at 30 min. but smaller at 4 hrs. in wildtype cells
compared to A20−/− cells. (C, D) Schematic of NF-κB dynamics in wildtype and A20−/−

mouse fibroblasts exposed to saturating concentrations of TNF. Average dynamics (black)
and the expected magnitudes of the dynamic range (double arrow) and noise (single arrow)
are shown. See Fig. S9 for experimental support. (E) Comparison of NF-κB responses to
zero (basal) or saturating concentrations of TNF. Differences in the means with and without
TNF indicate the dynamic range, and error bars indicate the noise.
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Fig. 4.
Information gained by signaling through networks of multiple genes. (A) Plot shows the
unique curve (solid black) determined by the tree model (inset), passing through the
experimentally determined values (circles), for information as a function of the number of
copies of a NF-κB reporter gene. The upper limit, corresponding to the maximum
information captured by integrating NF-κB activity over time, is 1.64 ± 0.36 bits (blue
dashed line). (B) Expression level distributions of clonal cell lines containing different
numbers of copies of an NF-κB reporter gene in response to ~10 hrs of TNF. (C) Time
courses corresponding to individual cells showing cell-to-cell differences in the onset and
rate of NF-κB reporter gene expression (left). In each cell, expression is nearly linear and
deterministic in time, as quantified by the correlation coefficient (right) of the time course
following onset of expression (shown schematically in inset on left).
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Fig. 5.
Information gained by signaling through networks of multiple cells. (A) Comparison of
experimentally measured information obtained by collective cell responses (circles) versus
logarithmic trend (solid black line) predicted the bush model (inset). (B) Schematic of
methodology used to measure collective cell responses.
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