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Summary
In life history studies interest often lies in the analysis of the inter-event, or gap times and the
association between event times. Gap time analyses are challenging however, even when the
length of follow-up is determined independently of the event process, since associations between
gap times induce dependent censoring for second and subsequent gap times. This paper discusses
nonparametric estimation of the association between consecutive gap times based on Kendall’s τ
in the presence of this type of dependent censoring. A nonparametric estimator which uses inverse
probability of censoring weights is provided. Estimates of conditional gap time distributions can
be obtained following specification of a particular copula function. Simulation studies show the
estimator performs well and compares favourably with an alternative estimator. Generalizations to
a piecewise constant Clayton copula are given. Several simulation studies and illustrations with
real data sets are also provided.
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1. Introduction
In many studies of life history processes, interest lies in the occurrence of two or more
consecutive events. Bebchuk and Betensky (2002), for example, consider a three-state
model in which the initial state is infection-free, the intermediate state represents HIV
infection via blood transfusion, and the terminal state corresponds to AIDS diagnosis. Lin et
al. (1999) discuss the analysis of follow-up data from a randomized trial of patients with
colon cancer (Moertel et al., 1990). Recurrence of disease and death are the intermediate and
terminal events respectively in this setting.

We are concerned with the analysis of data from the TREMIN Trust Study, which is part of
the TREMIN Research Program for Women’s Health. The particular study we consider is
the Menstrual and Reproductive Health Study in which 1,997 women were recruited from
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1935-1939 and followed prospectively for up to 40 years. During this time participants were
asked to keep a detailed diary of menstrual bleeding. As in Nan et al. (2006), we aim to
examine the association between the time of the first menstrual cycle of at least 45 days in
duration and menopause to better the understanding of the transitional phase to menopause.
Multi-state models provide a natural representation for processes with an initial,
intermediate and terminal state in which transitions between these states represent a
progression. See Hougaard (2000) for a recent review of methods for the analysis of multi-
state data and how these can be used to help understanding the time course of processes.
Markov models are often adopted for progressive and degenerative processes, in which the
operational time scale is the time since process initiation or some other common origin.
However, in many settings interest lies in the sojourn time distributions for particular states.
In such cases, the canonical models are semi-Markov but it may not be plausible to assume
that successive gap times are independent. When the process is subject to type I right-
censoring and there is an association between gap times, the second sojourn time is subject
to dependent censoring (Lin et al., 1999), and analysis must take this dependent censoring
into account.

There have been considerable advances in the analysis of consecutive sojourn, or gap times
in settings such as these in the recent years. Kessing et al. (2004) consider models which
assume conditional independence across gap time distributions given shared frailties and
Kvist et al. (2007) develop a goodness-of-fit test for the latter model when the frailty is
Gamma distributed. Lin et al. (1999) and Schaubel and Cai (2004), among others, derived
nonparametric estimators for the joint and conditional survival functions. None of these
methods yield simple summary measures of the association between sojourn times, and there
is considerable appeal in developing methods with simple measures of association which are
robust to dependent censoring.

Kendall’s tau is among the most popular measures of association between two positive
random variables. Kendall and Gibson (1990) gave an empirical estimate of τ from a sample
of uncensored bivariate positive random variables. Several authors proposed estimators for τ
with bivariate right-censored parallel observations; see Lakhal et al., (2009) for a review.
Betensky and Finkelstein (1999) extended the estimation of τ to bivariate interval-censored
observations and Wang and Wells (2000) derived an estimator for τ valid for any censoring
scheme as long as a nonparametric estimator for the joint survivor function exists. Little
work has been done, however, for nonparametric estimation of τ under more complicated
censoring schemes, such as the dependent censoring scheme discussed above. In this paper
we propose nonparametric estimators for Kendall’s τ measuring the association between two
consecutive gap times. The proposed estimators use inverse probability of censoring weights
to address the impact of dependent censoring on the second gap times.

In the recent years, copulas had become an attractive framework for modeling the joint
distribution of multiple failure times (He & Lawless 2003, Nan et al. 2006). Indeed, under a
copula model, association parameters and complex joint probabilities can be easily
expressed and estimated. He and Lawless (2003) consider the case of serial events, assume a
Clayton copula to model the dependence between two successive gap times, and derive
maximum likelihood estimates for the copula parameter and the survival function of the
second gap time under weak marginal assumptions. Oakes (1986) proposed a more general
copula model under which the cross-ratio is constant within particular regions of the plane.
Nan et al. (2006) adapt this model for a joint analysis of the occurence times of an
intermediate and a terminal event, and derive estimators of the copula parameters using the
maximum pseudo-likelihood procedure of Shih and Louis (1995).
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The second purpose of this paper is to develop methods for consecutive gap times analysis
based on a standard copula formulation, and then to generalize this in the spirit of Nan et al.
(2006), assuming a piecewise-constant cross-ratio model for consecutive gap times. The
parameters of the latter model will be estimated by inverting the estimator of Kendall’s tau
derived in the first part of the paper.

The remainder of this paper is organized as follows. In the next section we define Kendall’s
τ and propose nonparametric estimators for this association measure using censored serial
gap time data. An estimate of the conditional distribution of second gap time based on an
assumed Clayton copula function is described in Section 3. These estimates are assessed
through simulation studies and illustrated with data from a randomized trial of patients with
colon cancer (Moertel et al., 1990). A goodness-of-fit procedure for the assumed copula is
derived. This method is generalized in Section 4 to accommodate piecewise-constant cross-
ratios as in Oakes (1986) and Nan et al. (2006). Application to the data from the Tremin
Trust study of women’s reproductive health illustrates the application of the proposed
methods and facilitates comparisons with the findings of Nan et al. (2006). Section 5
contains general remarks and topics for further research.

2. Nonparametric Estimation of Kendall’s τ
Suppose X and Y two time-to-event random variables, with joint survivor function π(x, y) =
P(X > x, Y > y) and (X1, Y1) and (X2, Y2) two independent replications of (X, Y). These points
are said to be concordant if (X1 − X2)(Y1 − Y2) > 0, i.e. if the marginal rankings of
individuals with respect to X and Y agree. They are otherwise discordant. Kendall’s τ is
defined as the probability of concordance among two pairs of points minus the probability of
discordance and given as

This association measure is independent of the marginal distributions of X and Y and is equal
to zero under independence. Moreover, if ψ12 = I{(X1 − X2)(Y1 − Y2) > 0} − I{(X1 − X2)(Y1
− Y2) < 0} is the concordance/discordance status, equal to 1 if the pairs (X1, Y1) and (X2, Y2)
are concordant and −1 otherwise, then

(2.1)

Kendall and Gibson (1990) estimated τ from uncensored bivariate data {(Xi, Yi), i = 1, …, n}
by its empirical version

2.1 Estimation with Parallel Survival Times
In the presence of censoring, it may not be possible to compute ψij for some pairs of points,
making estimation of τ more difficult; such pairs are called non-orderable, while pairs that
can be ordered are orderable. Let C and D denote the censoring variables associated to X
and Y, respectively. One may only observe (X ̃, Ỹ, δX, δY), where X̃ = min(X, C), Ỹ = min(Y,
D), δX = I(X < C), and δY = I(Y < D). Oakes (1982) shows that the pair (i, j) is orderable if
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{X̃ij < C̃ij, Ỹij < D̃ij} where X̃ij = min (Xi, Xj), Ỹij = min (Yi, Yj), C̃ij = min (Ci, Cj) and D̃ij =
min (Di, Dj). Denote by Lij the indicator of this event. Oakes (1982) proposes to estimate τ
by

This estimator is biased when τ is non-zero. Nevertheless, it is widely used to test
independence of a pair of random variables based on censored data.

Recently, Lakhal et al. (2009) propose a method that greatly reduces the bias of τ̂O by
incorporating use of inverse probability of censoring weights. Let p̂ij be an estimator of the
probability of being orderable pij = {Pr(C > X ̃ij; D > Ỹij∣X ̃ij, Ỹij)}2.

The weighted estimate is then

(2.2)

This estimator may lie outside [−1, 1] for large values of |τ|, so one may also consider

(2.3)

These estimators are shown to be consistent, asymptotically normally distributed and
empirically to be superior to existing competitors in finite samples.

2.2 Estimation With Serial Gap Times and Dependent Censoring
In this section, we discuss the estimation of Kendall’s tau between serial gap times. Let T1 =
X and T2 = X+Y denote the times of occurrence of two successive events. Typically, the
follow up process is subject to independent right-censoring by C. Denote by G(·) its survival
function. Under this setting, one may only observe X ̃ = T̃1, Ỹ = T̃2 − T̃1, δX = I(X < C) and δY
= I(X + Y < C), where T̃1 = min(T1, C) and T̃2 = min(T2, C). Note that if T1 is censored, T2 is
also censored and Ỹ = 0. Hence, Y is censored by D = max(0, C − X). So, unless X and Y are
independent, D is associated to Y.

Under these conditions, Lin et al. (1999), among others, derived a nonparametric estimator
for π(x; y) for each (x, y) such as x + y ≤ C̄, where C̄ > 0 satisfies G(C̄) > 0. This estimator
may be expressed as

(2.4)

where Ĝ(·) is the Kaplan–Meier estimator of G(·) based on {(X̃k + Ỹk, 1 − δYk), k = 1, …, n}.
One may incorporate (2.4) into (2.1) to estimate τ for serial gap times using the approach of
Wang & Wells (2000) by
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(2.5)

where X ̃(0) = 0 < X̃(1) < ⋯ < X̃(n), and Ỹ(0) = 0 < Ỹ(1) < ⋯ < Ỹ(m) are the ordered samples of

{X̃k, k = 1, …, n} and {Ỹk, k = 1, …, n}, respectively,  and π̂(ΔX̃(i), ΔỸ(j)) = π̂
(X̃(i), Ỹ(j)) − π̂(X ̃(i−1), Ỹ(j)) − π̂(X̃(i), Ỹ(j−1)) + π̂(X ̃(i−1), Ỹ(j−1)) is the estimated density mass at
(X̃(i), Ỹ(j)).

Here, we derive alternative estimators for τ based on an adaptation of (2.2) and (2.3) to deal
with serial gap times. The main challenge in this adaptation is to identify orderable pairs and
to express and estimate their associated pij terms.

The orderability condition Lij is still expressed as {X ̃ij < C̃ij; Ỹij < D̃ij}. By continuity, any
orderable pair (i, j) satisfies 0 < Ỹij < D̃ij and thus Di = max(Ci− Xi, 0) > 0 and Dj = max(Cj
− Xj, 0) > 0, which implies Ci > Xi and Cj > Xj. Hence, Xi and Xj are uncensored and Lij
reduces to {Ỹij < min(Ci − Xi, Cj − Xj)}, which can be re-written as {Ci > Xi + Ỹij; Cj > Xj +
Ỹij}. Note that for such pairs, Ỹij is also observed, so the conditional probability of a pair
being orderable is

This probability is estimated by

(2.6)

Kendall’s tau is then estimated by (2.2) and (2.3), with p̂ij given by (2.6) and we denote the
resulting estimators by τ̂1 and τ̂2, respectively.

In many applications, as will be seen in Sections (3.2) and (4), interest lies on the
conditional version of Kendall’s tau τA = E[ψ12∣ν12(A)] where A is a subset of [0; ∞) and
ν12(A) = I(X1 ∈ A; X2 ∈ A). One may compute νij (A) for any orderable pair (i, j) since both
Xi and Xj are uncensored for such a pair. Therefore, one may adapt τ̂2 to estimate τA by

(2.7)

2.3 Asymptotic Properties
In web Appendix A, we prove the following result.

Theorem 1—Let ξij denote a random variable, measurable for any orderable pair (i, j)
and such that ξij = ξji and let γ = E[ξ12]. Under some regularity conditions, the distribution
of
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converges to a zero-mean normal with variance

(2.8)

where I and q(·) are given in web Appendix A and Λc(·) = − log[G(·)] is the cumulative
hazard function of C. This variance can be estimated by plugging in consistent estimators
for unknown quantities in (2.8).

Applying this result with ξij = ψij and γ = τ yields the asymptotic normality of 
and an expression for its asymptotic variance. We show in web Appendix B that

and thus applying Theorem 1 with ξij = ψij − τ and γ = 0 yields the asymptotic normality of

 as well as an expression for its asymptotic variance. Similary, one can show that

Asymptotic normality and an expression for the asymptotic variance follow by applying
Theorem 1 with ξij = νij (ψij − τA) and γ = 0.

3. A Clayton Copula Model for serial gap times (X, Y)
Once the first event occurs, say at X = x, the conditional survival function SY (·∣X = x) often
becomes of interest. A convenient way to estimate this probability is to assume a Clayton
copula for the pair (X, Y). In this section, we investigate such a model, derive related
inference procedures, and discuss extensions.

3.1 Model and properties
Under a Clayton copula for (X, Y), the joint survival function is expressed as

(3.1)

where θ = λY (y∣X = x)/λY (y∣X > x) is the cross-ratio and λY (y∣·) = limdy↓0 Pr(Y ≤ y + dy∣Y >
y; ·)/dy is the conditional hazard function of Y. Under this model, θ is constant and related to
Kendall’s τ through τ = (θ − 1)/(θ + 1). Moreover, one has

(3.2)
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Lin et al. (1999) note that, SY (y∣X > x) can be estimated by π̂(x; y)/π̂(x; 0) for x + y < C̄,
where π̂(·, ·) is given by (2.4). We can also estimate θ by θ̂ = (τ̂ + 1)/(τ̂ − 1), where τ̂ is the
nonparametric estimator of τ, derived in Section (2.2). A natural estimator for SY (y∣X = x) is
then obtained by plugging in estimators for unknown quantities in (3.2).

Taylor series expansions of

along with the asymptotic presentations of  given by Lin

et al. (1999) and of  given in Appendix A, prove that the distribution of

 converges to a zero mean normal. However, its variance
involves complex formulas and we suggest variance estimation based on the Jackknife
procedure.

3.2 A Goodness-of-Fit Test for the Clayton Copula Under Dependent Censoring
In the previous section, we derived an estimator for the conditional survival function SY (y∣X
= x) under a Clayton copula model for the pair (X, Y). If this assumption does not hold, the
estimator for SY (y∣X = x) may be biased and it is therefore desirable to check the adequacy
of the Clayton copula. Several copula goodness-of-fit tests exist for complete data (Genest et
al., 2009) and parallel censored observations (Lakhal-Chaieb 2010), but no procedure exists
for successive gap times. We develop such a procedure here for the Clayton copula.

Let M > 0 and A = [M; ∞). By Manatunga & Oakes (2006), the Clayton copula is the only
family preserved under truncation; i.e. if (X, Y) follows a Clayton copula, then (X, Y ∣X > M)
follows also a Clayton copula, with the same association parameter. In particular, the

conditionnal Kendall’s tau τA is equal to τ. Our test is then based on .

Under H0, one may write the test statistics as . It follows
from web Appendix B that:

Applying the result of Theorem 1 with  and γ = 0 yields the
asymptotic normality and an expression for the asymptotic variance of Q under H0. We
reject H0 at level α if |Q/s.e.(Q)| > Zα/2. The performance of this test will be investigated by
simulations in the next Section.

Clearly, the choice of M dramatically affects the performance of our test. For small values of
M, the difference between τ and τA is tiny for most copula families and the test may not be
able to detect it. At the other extreme, for large values of M, the estimate of τA may be based
on a relatively small number of points and thus may not be precise. Thus our test is most
useful for moderate values of M. In our numerical investigations, we take M to be the
estimated median from the Kaplan-Meier estimate based on {(X̃k, δXk), k = 1, ⋯, n}.
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3.3 Applications Involving the Clayton Copula
Colon cancer data—Moertel et al. (1990) discuss a clinical trial where patients treated
for colon cancer are randomized into two groups: therapy and placebo, including 304 and
315 patients respectively. Patients are at risk of ordered events and the serial gap times in
this example are: the time from randomization to cancer recurrence (X) and the time from
cancer recurrence to death (Y). At the end of the study, 108 patients died among the 119 who
had cancer recurrence in the therapy group and 155 died among 177 who had cancer
recurrence in the placebo group. We computed τ̂1 and τ̂W for both groups. We found τ̂1 =
0.2725 (s.e.=0.062) and τ̂W = −0.796 (s.e.=0.613) for the therapy group and τ̂1 = 0.2685
(s.e.=0.058) and τ̂W = 0.012 (s.e.=0.779) for the placebo group. Our estimator τ̂1 detects a
significant positive dependence between X and Y in both groups, as conjectured by Lin et al.
(1999). Furthermore, τ̂1 suggests that the magnitude of this dependence is not affected by
the therapy. The variance of τ̂W, estimated by the Jackknife procedure, is too large to make
inference. A convenient way to illustrate this dependence is to investigate the conditional
survival SY (·∣X = x) under a Clayton copula for the pair (X, Y). In Figure 1, we report the
median of ŜY (·∣X = x) versus x for both groups.

Figure 1 suggests that therapy decreases survival time following cancer recurrence. This is
in agreement with the conclusions of Lin et al. (1999) and He and Lawless (2003). The
Clayton copula assumption is tested for each group by the procedure presented in Section
(3.2). It gives Q = 1.983 (s.e.=2.8115; p=0.48) and Q = 1.906 (s.e.=2.068; p=0.36) for the
placebo and treatment group, respectively.

Simulations—The first set of simulations was conducted to assess and compare the finite
sample performances of τ̂1, τ̂W and the resulting estimators for SY(y∣X = x). Three real τ
values (0.2, 0.5 and 0.8) and two sample sizes (100 and 200) were used to generate
correlated pairs (X, Y) using a Clayton copula, with exponential margins with means equal to
1 and 1/2 respectively. The censoring variable C was generated from a Weibull distribution
with parameters controlling the censoring fractions cf1 = Pr(X > C) and cf2 = Pr(X + Y > C).
Two scenarios corresponding to (cf1, cf2) = (0.15, 0.30) and (0.20, 0.40) were considered.
For each combination of the parameters above, 1000 samples were generated and for each
simulated data set, we computed τ̂1, var(τ̂1), τ̂W and the resulting ŜY (yi∣X = x0); i = 1, …, 4
at points x0, y1, …, y4 such that SX(x0) = 1/2 and SY (yi∣X = x0) = i/5. The empirical means
and mean square errors of τ̂1, τ̂W and ŜY (yi∣X = x0) are reported in Table 1.

The empirical means of the estimates of Var(τ̂1) along with their coverage rate of the 95%
confidence interval are reported in Table 2.

As expected, the censoring fraction affects all estimators. Table 1 shows that τ̂1 outperforms
τ̂W under all simulation conditions, in terms of mean squared error. Note that τ̂1 is virtually
unbiased, except under the extreme conditions cf2 = 0.4 and τ = 0.8. On the other hand, the
bias of τ̂W is non-negligible, even under light censoring and small values of τ. The same
conclusions are made for estimators of ŜY (yi∣X = x0) based on τ̂1 and τ̂W respectively. Table
1 suggests that the estimator of SY (yi∣X = x0) based on τW is not particularly reliable,
especially when τ = 0.8. Table 1 also suggests that the performance τ̂1 improves as τ
increases while the opposite is observed for ŜY (yi∣X = x0) based on τ̂1. The results in Table 2
suggest that our estimator of Var(τ̂1) provides a reasonable measure of the variability of τ̂1

A second set of simulations was conducted to investigate the performance of the goodness-
of-fit test presented in Section 3.2. Samples of 200 pairs with (cf1, cf2) = (0.2, 0.4) were
generated from the Clayton, Frank and Gumbel families using the transformation method of
Genest & Rivest (1993). Proportions of rejection of the null hypothesis corresponding to the
Clayton copula are reported in Figure 2. These simulations show that the rejection rate of
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this test is comparable with the nominal level. Furthermore, it indicates that the Gumbel
copula is easier to distinguish from the Clayton copula than the Frank, in accordance with
well known properties of these copulas.

4. A Piecewise Clayton Copula
4.1 Model and Method of Inference

Rejection of the null hypothesis by the test presented in the previous section implies that the
assumption of a constant cross-ratio over the positive quadrant does not hold for the data at
hand. Nan et al.(2006) discuss a copula model that relaxes this assumption and assumes that
the cross-ratio depends on one of the time-to-events variables, say X. They considered a
partition 0 = w0 < w1 < ⋯ < wK of the support of X such as the cross-ratio is constant inside
each grid (x, y) ∈ Ak × [0, ∞] and equal to θk, where Ak = [wk−1, wk). Under such conditions,
(3.2) becomes

(4.1)

and the resulting model is referred to as a piecewise Clayton copula. In web Appendix C we
show that the conditional Kendall tau τAk = E[ψ12∣ν12(Ak)] is related to θk through

(4.2)

where a = SX(wk), b = SX(wk−1) and

(4.3)

Nan et al. (2006) assume a piecewise Clayton copula for (T1, T2) and estimate the model
parameters {θk, k = 1, …, K} by adapting the methodology of Shih and Louis (1995). This
approach ignores the ordered nature of (T1, T2) and as a consequence, the resulting estimator
of Pr(T1 > T2) not identically equal to zero, as it should be. A more appealing approach is to
assume a piecewise Clayton copula for (X, Y) since no order restrictions are required for
these variables. Moreover, if the presence of a cycle of 45 days or more signals early
changes prior to the onset of menopause, Y may well be a more natural quantity to focus on
for some scientific questions.

For k = 1, ⋯, K, we estimate τAk by (2.7). An estimate of θk is then obtained as the solution
of τ̂Ak = g [ŜX (wk), ŜX (wk−1), θk]. The resulting estimate θ̂k, along with (4.1), yields an
estimator for SY (y∣X = x). The variance of θ̂k involves those of τ̂Ak, ŜX (wk) and ŜX (wk−1)
and some covariance terms, and thus is complex to compute. We suggest using the Jackknife
method to estimate Var(θ̂k) and Var [ŜY (y∣X = x)].

4.2 Numerical Applications
Analysis of the Tremin Trust Data—We consider the data used by Nan et al. (2006)
who analyzed follow up data from 562 women who were less than 25 years of age at the
time of recruitment, provided data on the age of menarche, and were on study at 35 years of
age. The purpose of this study is to characterize the association between several bleeding
makers such as the age at the first 45-day cycle, and menopause.
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Consider a reproductive life cycle where T1 = X represents the age at the first cycle of at
least 45 days duration, and T2 is the age at menopause; Y = T2 − X is then the time from the
first 45 day cycle to menopause. At the end of the study, 193 women were observed to reach
menopause among the 357 women who experienced the 45-day marker. We first test the
assumption of a constant cross-ratio between X and Y by the procedure derived in Section
(3.2). We find Q = −4.507, s.e.=1.0875 and p-value=3.4 × 10−5 leading us to reject the null
hypothesis of a constant cross-ratio. We consider then a piecewise Clayton copula where the
cross-ratio is assumed constant within the same intervals of T1 = X adopted by Nan et al.
(2006), namely: 35 – 39, 40 – 45, 46 – 49 and 50+ years of age. These boundaries satisfy ŜX
(wk) = {0.8383, 0.562, 0.281}. We estimate τ̂Ak, k = 1, 2, 3, 4 using equation (2.7) and
obtain τ̂A1 = −0.049 (s.e.=0.160), τ̂A2 = −0.374 (s.e.=0.068), τ̂A3 = −0.235 (s.e.=0.095) and
τ̂A4 = −0.139 (s.e.=0.112). Inverting these estimates yields θ̂1 = 0.411; 95% C.I.
[0.145;15.023], θ̂2 = 0.184; 95% C.I. [0.129;0.260], θ̂3 = 0.327; 95% C.I. [0.202;0.673] and
θ̂4 = 0.756; 95% C.I. [0.472;1.175].

We conclude that there is a significant association between the 45-day cycle and menopause
only if the bleeding event occurs inside the age interval 40 – 49. This is in accordance with
the results of Nan et al. (2006), who detect a significant association between T1 and T2 in the
same region. Nan et al. (2006) present plots of Pr(T2 > t2∣T1 = t1) versus t2 for different
values of t1. This probability is equal to Sy (t2 − t1∣X = t1) and thus can be estimated by our
model. The results are presented in Figure 3 for t1 ∈ {36, 39, 42, 45, 48, 51}.

Figure 3 is again in accordance with the one produced by Nan et al. (2006) for women who
experience the 45 days cycle marker after 40 years of age. However, we obtain different
results for women who experience the 45 days cycle before age 40. In particular, we
estimate that such a woman has about a 20% chance of experiencing menopause before age
45 (see the X = 36 and 39 curves), while this probability is estimated to be approximately
null by Nan et al. (2006). This suggests a lack of fit of one of the models and thus there is a
need for appropriate goodness-of-fit tests for such copulas models. This is beyond the scope
of this paper.

Simulations—A second set of simulations were conducted to assess the performances of
the estimator of τAk given by (2.7). Censored samples were generated following the
piecewise Clayton copula with conditions similar to those of the Tremin Trust dataset: n =
562, bound-aries such as SX(wk) ∈ {0.8383, 0.562, 0.281} and τAk ∈ {−0.049, −0.374,
−0.235, −0.139}. The marginal distributions of X and Y were exponential with means 1 and
1/2 respectively. The distribution of C was taken as Weibull with parameters such as cf1 =
0.35 and cf2 = 0.65. The empirical means of τ̂Ak from 1000 iterations are -0.049 (s.e.=0.10),
-0.373 (s.e.=0.066), -0.229 (s.e.=0.054) and -0.136 (s.e.=0.053).

The squared roots of the means of the estimated variances are {0.09, 0.064, 0.057, 0.055}.
These simulations show that the τ̂Ak are virtually unbiased and that their variances are
consistently estimated.

5. Discussion
In this paper, we consider nonparametric estimation of the association between successive
gap times when the second gap time is subject to dependent censoring. This dependent
censoring is induced by the association between the first and second gap times and is present
even when the process itself is independently right-censored. Inverse probability weights are
used to obtain a nonparametic estimate of Kendall’s tau. This estimator is then used to make
inferences about the conditional survivor function SY (y∣X = x) under a Clayton copula.
While this is possible by (3.2) for the Clayton copula, this particular relation does not hold

Lakhal-Chaieb et al. Page 10

Biometrics. Author manuscript; available in PMC 2014 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for other copula families. Alternative ways of estimating SY (y∣X = x) under arbitrary copula
functions warrant investigation for settings where the Clayton copula is inappropriate.

Recurrent event processes are increasingly arising in health research and gap time models
frequently offer an appealing framework for analysis. Generalizations of the proposed
estimator of Kendall’s tau would facilitate inferences about gap time models for recurrent
event processes with copula formulations. Such models would allow the estimation of

This is an area warranting development.

We employed a piecewise Clayton copula formulation in Section 4. Such models have
received relatively little attention in the literature and methods to assist in specification of
the regions with a constant cross-ratio would be helpful since at present they are based on ad
hoc graphical methods. Derivation of formal goodness-of-fit tests for these models and
objective procedures for specifying these regions would increase their practical utility.

In many settings event times are not observed precisely, but individuals are only assessed at
periodic inspection times creating interval-censored data on gap times. In the context of a
three-state progressive model, the intermediate event may be subject to interval-censoring
and the terminal event right-censoring, or both events may be interval censored. In this case
nonparametric estimation of the association between gap times is considerably more
challenging, and parametric assumptions may be required.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Empirical estimates of conditional median time from cancer occurrence to death given
cancer occurrence date.
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Figure 2.
Empirical power based on 1000 samples of size 200 from Gumbel, Frank and Clayton
copulas.
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Figure 3.
Empirical estimates of conditional survivor functions for menopause given age at first cycle
of ≥ 45 days duration.
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Table 2

Empirical means of the estimates of Var(τ̂1) with their empirical coverage rate

n = 100 n = 200

τ cf1 = 20% cf1 = 40% cf1 = 20% cf1 = 40%

0.2 (6.9) 95.3 (9.0) 94.0 (3.1) 95.0 (4.5) 94.5

0.5 (4.0) 94.6 (4.8) 94.8 (2.2) 94.2 (2.6) 95.5

0.8 (1.0) 95.2 (1.4) 93.8 (0.6) 94.3 (0.6) 94.5
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