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Random forest fishing: a novel approach to identifying
organic group of risk factors in genome-wide
association studies

Wei Yang1 and C Charles Gu*,1,2

Genome-wide association studies (GWAS) has brought methodological challenges in handling massive high-dimensional data

and also real opportunities for studying the joint effect of many risk factors acting in concert as an organic group. The random

forest (RF) methodology is recognized by many for its potential in examining interaction effects in large data sets. However, RF

is not designed to directly handle GWAS data, which typically have hundreds of thousands of single-nucleotide polymorphisms

as predictor variables. We propose and evaluate a novel extension of RF, called random forest fishing (RFF), for GWAS analysis.

RFF repeatedly updates a relatively small set of predictors obtained by RF tests to find globally important groups predictive of

the disease phenotype, using a novel search algorithm based on genetic programming and simulated annealing. A key

improvement of RFF results from the use of guidance incorporating empirical test results of genome-wide pairwise interactions.

Evaluated using simulated and real GWAS data sets, RFF is shown to be effective in identifying important predictors,

particularly when both marginal effects and interactions exist, and is applicable to very large GWAS data sets.
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INTRODUCTION

Many genetic variations have been successfully identified for common
complex diseases by genome-wide association studies (GWAS).1,2

There is converging evidence that interactions can have an
important role in common disease etiology.3–6 However, most
published GWAS studies investigated only the marginal effects of
individual single-nucleotide polymorphisms (SNPs) and not genome-
wide interactions, because there is a dearth of methodology to directly
handle the vast number of possible interaction effects in GWAS data.

Although traditional exhaustive test of all pairwise interactions is
feasible in GWAS,7 it is computationally prohibitive for higher-order
interactions. Adding to the problem, are hard statistical issues. First,
complex interaction models have high degrees of freedom, hence,
compromised power of the test. Second, the extreme number of tests
to examine all interactions would be detrimental for any multiple-
testing correction method.

The method of statistical learning8 is a promising approach for
high-dimensional problems. Many statistical learning techniques were
introduced to genetic analysis in recent years, including multifactor
dimensionality reduction,9 multivariate adaptive regression splines,10

and random forest (RF).11,12 RF is an ensemble method that
combines the result of many classification and regression trees to
make a prediction. The trees were built after introducing two levels of
randomization: randomly sampling subjects to grow each tree and
randomly selecting candidate variables to determine splitting criteria
at each node of the tree (see Supplementary Materials). Each variable
is assigned a measure of predictive importance by RF, entailing both

marginal and interaction effects involving this variable. Use of the
importance measure precludes the need to explicitly model every
possible interaction terms; and makes interaction analysis of many
variables less strenuous. RF was shown to perform well by simula-
tion,13 and in genetic studies with moderate number of variables,
including microarray data analysis14,15 and association analyses with
no more than hundreds of SNPs.13,16,17 It can effectively select the few
important variables out from a large number of irrelevant ones
(noise), and be used when the number of variables is much larger
than the number of observations.

Recent advances such as Random Jungle (RJ)18 have made it
possible to construct large RFs from genome-wide data. However,
direct application of RF to GWAS still poses a real challenge, and only
a few studies were reported in the literature.14,17,19–21 The difficulty
lies in the poor quality of estimates of variables’ importance when
huge forests are constructed indiscriminately from the whole data,
where the majority of the variables are noise. This obstacle must be
overcome for GWAS applications of RF to be practically useful.

Herein, we propose a novel method called ‘random forest fishing’
(RFF) to address the problems. Instead of fitting RF with all GWAS
variables, RFF repeatedly fits RF with relatively small sets of variables
to limit the noise, and uses the fitted results to iteratively update a
core list of important variables. This updating algorithm searches
through the vast parameter space for a globally important group of
variables that gives good prediction of the phenotype. To improve
search efficiency and accuracy, features of genetic programming (GP)
and simulated annealing (SA) are incorporated. In the following
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sections, we present the concept and details of RFF, including how to
use empirical information of genome-wide pairwise interactions to
guide RFF search. The performance of RFF is then evaluated using
simulated and real genome-wide data sets.

MATERIALS AND METHODS

Idea of RFF
The soul of RFF is ‘fishing’. Namely, it makes use of an intuitive idea that:

‘known’ important factors can help draw out other predictors that interact

with them. If a variable contributes to the disease mainly through interaction,

it manifests effects only when its interacting partners are also present, that is,

this variable is most detectable when its interacting partners are used as ‘baits’.

The main steps of the RFF procedure are as follows:

(1) Start the analysis with some initial bait sets. At the very beginning, with

limited knowledge of which variables might be important, the initial bait

sets may include randomly selected SNPs, top SNPs from single SNP tests,

SNPs with known function or in candidate genes.

(2) Sample from remaining GWAS SNPs to form a pool of variables for RF

evaluation. The number of variables in a pool is kept the same as the bait

set size. RF models are fitted with variables from the union of the pool and

the baits. If any important variables were present, they are more easily

picked up in this small variable subset. If all baits were random noise, the

initial RF fittings would hone in on detectable marginal effects.

(3) Update the bait set. Based on estimated variable importance from the RF

fitting in step (2), top ones are retained as the new bait set for the next

iteration. In the updated bait set, noisy and weak baits are replaced by

more important variables from the pool to improve the prediction

accuracy of the whole group.

(4) Evaluate the ‘fitness’ of new bait set against the stopping rule. The fitness is

measured using prediction accuracy of the RF model based on the new set.

The prediction accuracy in RF is the proportion of correct predictions for

binary trait, and the fraction of explained phenotype variance for

quantitative trait. If the fitness stopped improving, or a maximum

number of iterations were reached, stop and output the best bait set as

the final ‘best variable set’. Otherwise, repeat steps (2) and (3) to continue

updating bait sets.

Through the iterative process, globally important variables are eventually

captured in the bait set and further used to ‘fish out’ (prioritize) their

interacting partners. This constitutes a search strategy to find an organic group

of important variables, using collective prediction accuracy of the set as

objective for optimization.

To improve the search efficiency and effectively determine the number of

important variables for output at the end, the RFF search heuristics combines

strengths of three techniques: elements of SA to bring down randomness by

iteratively shrinking bait/pool sizes; features of genetic algorithm to traverse the

huge parameter space; and a dictionary based on empirical pairwise interaction

test results for guided search to promote variables more likely involved in

interactions.

Elements of SA in RFF
SA is a heuristic search algorithm for global optimization, using iterative

random movements that mimic physical process of ‘cooling down’ to the state

of minimum energy (approximate optimum solution).22 During iteration, a

new random perturbation close to the current solution is evaluated and

accepted with some probability depending on its fitness and a global parameter

T called ‘temperature’. This parameter controls the degree of randomness away

from the current solution, and gradually decreases during the entire process. A

‘slow cooling’ protocol allows SA to traverse enough portions of the parameter

space to successfully find the optimal solution in the end.

In RFF iteration, ‘slow cooling’ is achieved by gradually decreasing bait/pool

sizes between iterations. By starting at ‘high temperature’ with relatively large

bait and pool sets, RFF quickly traverses the GWAS SNPs in large chunks, and

allows strong marginal effects being captured in earlier iterations. With strong

effects captured in baits set, later iterations decrease pool sizes to reduce the

number of noise variables included for RF fitting. As a result, subtler effects

such as interactions will start to stand the chance of being captured and

retained across iterations. Similar to standard SA, the decrease of bait size must

be slow enough to allow RFF to evaluate a representative sample of sets at

current size before moving on to smaller ones.

In practice, it is reasonable to start with bait set size larger than an estimated

number of risk factors, gradually finishing at a bait size below it. Also, to allow

every variable ample chance of being included in the pools for fishing, the sum

of all pool sizes should be several times larger than the total number of GWAS

SNPs. The average times that a SNP would be randomly sampled and

evaluated during the entire fishing process, as estimated by the ratio of the

total pool size to the total number of variables, is termed the overall SNP

coverage. In all experiments reported below, the rate of decreasing baits sizes

were chosen so that, on average, RFF always evaluated about the same number

of variables from all pools combined over any interval of a given length for

pool set sizes (see Supplementary Materials).

Features of GP in RFF
GP23 is a computation method inspired by biological evolution, and terms like

‘mutation’ and ‘crossover’ are used in their algorithmic sense. In RFF, GP is

applied to construct a certain number of RFs in parallel (called populations) at

each iteration (generation) to further enhance computational efficiency. In

each generation, a fixed number of bait sets of the same size are maintained.

Mutation and crossover produce candidates of bait sets for the next generation:

for mutation, the bait sets are each merged with a new pool set; for crossover,

the bait sets are randomly paired and merged. The updated bait sets then

comprise the top-K most important variables by RF evaluation of the

candidate sets, where the size K of the new bait sets is determined by the

cooling scheme of SA. Competition and selection are introduced based on

predictive capacity of the candidates to obtain fittest population for the next

generation.

GA enhances the power of RFF because good predictors will prevail multiple

bait sets in a generation and are less likely lost, and improves computational

efficiency as good predictors propagate among bait sets.

Pairwise interaction-guided search in RFF
In the vanilla RFF, variable pools are generated giving all variables equal

chances. When most variables are noise, the chance that these randomly

generated pools contain any interacting partners of the baits is infinitesimally

small, likely resulting in wasted RF evaluations. Such waste could be reduced if

we introduce some bias toward interacting partners of the baits, by using

pairwise interactions as guidance. More specifically, pairwise interaction tests

are performed first, and then variables having significant interactions with baits

are given more chance to be included in fishing pools.

Software implementation of RFF
The new RFF algorithm is implemented in a standalone Cþ þ program and

also as an R24 package, with the flexibility of using any of the several existing

software as the RF engine, including: the original Fortran program by Breiman

and Cutler,11 the randomForest R package by Liaw and Wiener,25 and the more

recent RJ Cþ þ program by Schwarz and colleagues.18 The first two have

been in wide use in different fields of statistical learning before the advent of

GWAS studies. The RJ was designed for GWAS scale analysis, with greatly

improved memory management and computation efficiency (7� faster than

the Fortran or R RF on a single CPU, and 159x faster using parallel

computation on 40 CPUs18). Although both randomForest and RJ were

tested in analyses presented below, only RJ was used by RFF for analyzing real

GWAS data.

Data simulation
GWAS data were simulated by modeling interactions among multiple risk

SNPs. All interaction models were fully described using penetrance tables that

specify the probabilities of disease status for every possible multi-locus

genotype. Together with genotype frequencies, the penetrance table determines

all genetic effects (marginal and any-order multilocus interactions). In our
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tests, the disease prevalence equals 0.05, with six contributing risk loci. We

consider five scenarios, each characterized by the marginal effects of the six loci

disease. (S1): no marginal effect for all six loci; (S2-1): two rarest loci have

moderate marginal effects (OR¼ 1.5 in recessive model); (S2-2): two most

common loci have moderate marginal effects (OR¼ 1.5); (S3-1) two rarest loci

have strong marginal effect (OR¼ 4); and (S3-2) two most common loci have

strong marginal effect (OR¼ 4). The minor allele frequencies (MAFs) and

marginal effects of the six SNPs are listed in Table 1. For each of the five

scenarios, 10 penetrance tables conformal to the marginal effects were

randomly selected and used for simulation. Marginal and interacting effects

accounts for a total heritability of around 0.12 in all 50 models. In scenario S1,

all genetic contributions come from interactions; in the other four scenarios,

interactions account for 53.2–98.8% of the total heritability (Table 1).

In the simulation, SNPs with MAF Z1% were selected from those shared by

HapMap26 CEU panel and Affymetrix 50K Human Gene Focused Array, and

their genotypes were simulated using an in-house R package simGWA that

extends an existing Cþ þ program GWAsimulator27 so as to correctly specify

disease models with complex interactions. Simulated data have LD patterns

resemble that of GWAS studies in Caucasians using the 50K arrays. The final

data sets contained genotypes of 40 011 SNPs for 500 cases and 500 controls,

with 100 replicates generated for each of the 50 models. Extra data were

simulated for a few scenarios for larger samples sizes (2000 cases and 2000

controls) when required to demonstrate appreciable power.

Simulation test of RFF
The simulated data sets were used to evaluate several fishing strategies by RFF,

using: (1) tests without pairwise interaction guidance (RFF.nointx); (2)

empirical guidance by results of pairwise interaction tests, using a low SNP

coverage of 4x (RFF.intx1); (3) same guidance as (2), using a high coverage of

24x (RFF.intx2); (4) theoretical guidance by ‘synthetic’ interactions over a set

of designated SNPs, using a coverage of 4x (RFF.intx3). Two kinds of

‘synthetic’ interactions were made to mimic real studies: background noise

interactions were produced by allowing each SNP to randomly interact with

four other SNPs on average (following Poisson distribution) and a dense

cluster of interactions over a designated set of SNPs by linking any two

designated SNPs with interaction at an elevated chance of 60%. For power

analyses of the five scenarios, the designated set in RFF.intx3 are the six risk

SNPs so as to introduce an ideal guidance; to demonstrate that guided RFF is

immune to chance clustering of irrelevant interactions, we also tested

RFF.intx3 using a designated set of six random SNPs.

Test power is approximated by the frequency of observing a risk locus in the

final best variable set returned by 1000 RFF tests (10 models� 100 replicate

data sets) for each of the five scenarios. In all simulation tests, RFF was

performed using the R package with randomForest as RF engine with the bait

sizes being gradually decreased from 100 to 3. There are other tunable

parameters used by the RF engine and the RFF fishing process, all of which are

described in Supplementary Tables 2 and 3 of Supplementary Materials

together with their values used in this paper.

Other statistical tests
The performance of RFF is compared with single SNP w2 test and two other

interaction analysis methods: conventional RF using RJ, and pairwise SNP–

SNP interaction test using PLINK28 (‘–fast-epistasis’). In results by RJ, SNPs

are ranked by their importance values; in results by PLINK, SNPs are ranked

by their highest interaction test statistics with any other SNPs.

Power for these tests is defined as the frequency of observing a risk locus

among the top-K variables, where K equals the size of the best variable set

returned by RFF.

Real GWAS data analysis
To demonstrate that RFF is indeed capable of analyzing real GWAS data, it is

applied to a pilot GWAS data set from a real study of hypertensive heart

disease (HHD). The HHD data set contains 75 cases and 75 controls,

genotyped using the Affymetrix Mapping 500 K Array Set. Genotype data

underwent quality control for array quality (missing rate o0.05, mean

heterozygosity between 0.25 and 0.3) and for SNP marker quality (call rate

40.99 for SNPs with MAF o0.05, call rate 40.95 for all other SNPs, and

Hardy–Weinberg test P-value410�6). After quality control, 389 344 SNPs, in a

sample of 70 cases and 70 controls were used for RFF analysis. RFF search

started with 10 parallel bait sets each with 2500 random SNPs. The bait sizes

gradually decreased to 50 SNPs after 624 generations, at an overall SNP

coverage of 10x. Empirical guidance was applied using fast-epistasis test results

by PLINK. RFF was performed using the Cþ þ package with RJ as the RF

engine. We also compared RFF results with those by the other methods

described above, with an additional run of RJ using tuning parameters as in

Goldstein et al21 (details in Supplementary Materials).

RESULTS

RFF analysis results of simulated data
All RFF tests returned relatively small sets of important predictors
(Table 2), out of the total of 40 011 SNPs in the test data. The average
sizes of returned bait sets are about 30, and most sets are less than or
equal to 50 (97.77–99.20%).

The performances of RFF were first compared with the single SNP
test and the conventional RF (using RJ). As seen in Figure 1 (and
Supplementary Figure 3), the w2 test only detected the SNPs with
marginal effects. Conventional RF, when applied blindly to the vast
number of SNPs in the simulated GWAS data, were no more powerful
than singe SNP w2 test for capturing risk SNPs.

In contrast, all RFF methods show some increase in power for
detecting weak risk SNPs that contributes to disease only through
interactions. For vanilla RFF without interaction guidance, the
increase in power is only obvious in S2-2 and S3-2, where there are
two SNPs with moderate to strong marginal effects. More improve-
ments were seen for RFF.intx1 with empirical guidance, for which
power was increased cross-the-board for all SNPs with or without
marginal effects. Moreover, increasing SNP coverage (RFF.intx2)
added additional power to the test, most obvious in S2-2 and S3-2.
Using ideal theoretical guidance by synthetic interactions in RFF.intx3,
substantial power increase was observed for most scenarios. For the
best scenario S3-1, power to detect every single risk SNPs is Z60%,

Table 1 Five scenarios of disease models used by the simulation

tests

Genotype relative risk ratio

Heritability

explained by

interactions (%)
Scenario SNP1 SNP2 SNP3 SNP4 SNP5 SNP6

S1 1:1:1 1:1:1 1:1:1 1:1:1 1:1:1 1:1:1 100

S2-1 1:1:1.5 1:1:1.5 1:1:1 1:1:1 1:1:1 1:1:1 98.6–98.8

S2-2 1:1:1 1:1:1 1:1:1 1:1:1 1:1:1.5 1:1:1.5 96.3–96.8

S3-1 1:1:4 1:1:4 1:1:1 1:1:1 1:1:1 1:1:1 91.6–92.8

S3-2 1:1:1 1:1:1 1:1:1 1:1:1 1:1:4 1:1:4 53.2–58.1

MAF 0.05 0.1 0.2 0.3 0.4 0.5

Genetic effects of each disease SNP are described by genotype relative risk ratios (i.e., risk for
minor-allele-homozygotes: risk of heterozygotes/risk of major-allele-homozygotes). SNP1, SNP2,
y and SNP6 are the six disease variants. Scenarios with marginal effects are in boldface.

Table 2 Size distributions of final best variable sets returned by RFF

in simulation tests

Minimum Maximum Mean r50

RFF.nointx 4 66 30 97.77%

RFF.intx1 3 81 28.31 98.31%

RFF.intx2 4 56 32.14 99.20%

RFF.intx3 3 66 23.12 98.46%

Random forest fishing in GWAS
W Yang and C Charles Gu

256

European Journal of Human Genetics



and power to capture three out of four weak SNPs is Z80%
(Figure 2).

Although RFF performed generally better in the comparisons
shown above, it was under-powered because of the relatively small
sample size. More practically appreciable power improvement by RFF
was shown by the additional tests using a larger sample size of 4000,
where power was improved by vanilla RFF and guided RFF. The
results for worst scenario S1 and best scenario S3-1 are shown in
Figure 2. In S1, the guided RFF had power of B40% (RFF.intx1) to
over 50% (RFF.intx3) to detect most of the risk SNPs, even though
none of these SNPs had marginal effect. In S3-1, RFF.intx1 had over
61% of power to detect every risk SNPs, and RFF.intx3 over 97%. In
contrast, single SNP test and the conventional RF still detected only
strong marginal effects.

In Figure 1 (and Supplementary Figure 3), comparisons were also
made to the pairwise interaction test by PLINK. As expected, the
pairwise interaction test performs the best among all methods when
there is weak marginal effect (S2-1) or not at all (S1). However, as
some marginal effects become stronger, RFF test begins to show its
advantage. In scenario S2-2, three of the risk SNPs have better power
using RFF.intx2. In scenarios S3-1 and S3-2, the advantage of
RFF.intx3 was most pronounced. For a sample size of 4000, under
best scenario S3-1, all six risk SNPs showed better power by RFF.intx3.

The false positive rates (FPRs) of all tests were evaluated by
counting the occurrences of irrelevant SNPs among the top SNPs (for
w2 tests, conventional RF and pairwise interaction tests) or final best
variable set (for RFF). ‘Irrelevant’ SNPs are defined by SNPs not on
any of the chromosomes that have a risk SNP. The expectation of
observing such random SNPs among the top 31 SNPs would be 31/
40 011¼ 7.7� 10�4. Almost all tests have FPR around this value
(Figure 3).

We note that guided RFF was immune to chance clustering of
irrelevant interactions: when applied to the 4000-subject samples in
S1 and S3-1 with a dense cluster of ‘synthetic’ interactions falsely
introduced over six random SNPs, there was no power increase for
detecting them.

RFF analysis results of real GWAS data
Application of guided RFF to real GWAS data of the HHD study
made some interesting findings. Figure 4 shows how fitness of the bait
set changed as the generation evolved. The fitness rose from 0.65 in

Figure 1 Power for detecting each risk SNPs using 500 cases and 500 controls. The power to detect the six risk SNPs are shown for the five scenarios.

‘Chi2’ represent w2 tests; ‘RJ’ for Random Jungle test; ‘Pairwise’ for pairwise SNP–SNP interaction test by PLINK fast-epitasis. In all tests, we declared the
top 31 SNPs as ‘detected’ to estimate the power. ‘RFF.nointx’ and ‘RFF.intx’ are RFF tests without and with guidance by interactions. ‘RFF.intx1’ and

‘RFF.intx2’ used empirical guidance based on the pairwise interaction tests, with SNP coverage of 4 and 24, respectively; and ‘RFF.intx3’ used theoretical

guidance based on synthetic interactions clustered over the six risk SNPs.

Figure 2 More appreciable power in S1 and S3-1 using 2000 cases and

2000 controls. Other details are same as in Figure 1 caption.
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the first generation and reached 1 in generation 157. It dropped again
after generation 391 as bait size became too small. The smallest set
with highest fitness rate was returned by RFF as the final best variable
set. It contained 213 SNPs, assigned to 196 genes according to
Affymetrix’s annotation. We applied functional annotation tool from
DAVID (Database for Annotation, Visualization and Integrated
Discovery),29 and found ‘enriched’ association with three disease
traits, including ‘atherosclerosis’, ‘coronary lipoprotein’, and ‘long QT

syndrome’, and in several pathways involved in hypertension
etiology(see Supplementary Table 4). On the other hand, none of
the 213 SNPs reached GWAS significance threshold (1.3� 10�7) by
single SNP tests (209 SNPs with P-value Z1� 10�4).

When compared with the top 213 SNPs from the other tests, RFF
had 92 in common with single SNP w2, 1 with the pairwise interaction
test, 95 with RJ using default parameter values, and 105 with RJ using
tuned parameter values (Supplementary Tables 5 and 6). There were a
total of 40 genes assigned to the RFF-found SNPs that were not in top
213 by any of the other tests; and functional annotation of the
40 genes by DAVID suggested enrichment in ‘atrasentan phamaco-
kinetics’. This was quite interesting because atrasentan is a selective
endothelin-A receptor antagonist mostly used for their vasoconstric-
tive properties to treat hypertension.30

DISCUSSION

We showed a practical approach to analyzing GWAS data to detect
risk SNPs involving high-order interactions by applying the novel idea
of RFF. RFF inherits the feature of RF in capturing both marginal and
joint effects of multiple variables, and overcomes its limitation in
dealing with extremely noisy data. We presented evaluation analyses
using SNPs as predictors of binary disease traits. However, RFF is not
limited to genetic markers — covariates such as sex, age, and other
environment factors may be included for potentially important gene–
environment interactions. Similarly, if population substructure is a
concern in analysis, variables accounting for the effects of the
substructures (eg, principal components from EIGENSTAT) may be
treated in a similar manner like other covariates. The disease
phenotype is also not limited to dichotomous traits — quantitative
traits can be tested using regression-based RF. Compared with
standard RF, the new method is more suited for massive data such
as GWAS where majority of variables are noise and interaction effects
are abundant.

One advantage of RFF is the improved estimate of variable
importance under extremely high level of noise. It achieves this
through the iterative process that encourages stronger marginal effects
being detected in earlier stages and lets their interaction partners with
weaker marginal effects being fished out in later stages when noise is
much reduced. Although strong marginal effects prescribe excellent
power for RFF, this dependency on marginal effects is far less than for
standard RF. As the simulation result shows, even in the situation
when none of the risk SNPs has any marginal effect, with enough
sample size, the power to identify them can still be high. Compared
with other methods, RFF showed more balanced power between risk
SNPs with detectable marginal effects and those involved mainly
through interactions. It has good power in situations where both
marginal and interaction effects are important, which is usually the
case for complex diseases.

Another advantage of RFF is the flexibility it allowed to introduce a
guidance mechanism. We showed that guided search using empirical
pairwise interactions downplayed the need for a strong marginal effect
and improved the search efficiency; more importantly, using wrong
guidance did not increase the power of detecting random SNPs (it
may affect the search speed, though). Therefore, in practice, one may
apply various kinds of guidance based on domain/expert knowledge
without worrying about inflated false discoveries. For example,
because cholesterol levels are known risk factors of coronary heart
disease, one may introduce synthetic interactions among cholesterol-
related candidate genes to help quickly fish out relevant coronary
heart disease variants.

Figure 3 False positive rates. The false positive rates of the tested methods

are displayed side by side (in different shade) for each of the five scenarios

with the ‘default’ sample size of 1000 (500 cases, 500 controls), and for

the two low-powered scenarios with an increased sample size of 4000
(2000 cases, 2000 controls; with ‘_4k’ affixed to their scenario labels).

Figure 4 Random forest fitness (RFF; prediction rate) of variable sets as

RFF generation evolves. The fitness values of RF constructed at each

generation are plotted against the decreasing size of baits/pool sets

(fishSize). The vertical line indicates the generation with the smallest

variable set size at which the maximum fitness was achieved.
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The use of iterative process to approximate an optimal solution by
RFF is similar in spirit to some recent extensions of RF. The
‘backward elimination’14,15 iteratively discard the least important
variables and refit RF over all remaining variables until finding a
‘non-redundant’ subset; another RF application17 selects the most
important variables by repeatedly fitting RF to chunks of 5000
randomly selected variables and then eliminating those with least
importance averaged over all constructed RFs. The RFF is different in:
(1) it always limits the number of predictors piped into RF to reduce
‘fitting to noise’ for more reliable estimates of variable importance;
and (2) it forces slowly decreasing bait/pool sizes to accommodate
relevant variables that arrive late in the iterative process.

Our RFF implementation allows for ‘plug-in’ of existing RF engines
in real GWAS studies. In our tests, the RFF Cþ þ program with RJ
as RF engine used B3 h on a single CPU to finish analyzing 500K
GWAS data in 140 subjects. For very large data sets, RFF may be easily
parallelized by distributing RF fitting on a large number of computer
nodes and evaluating their fitness in parallel to update the bait sets.

In summary, the new RFF method can be applied to identify
organic group of important risk factors in GWAS studies without
directly modeling obscure interaction effects. Further analyses may be
applied over the identified group to study details of relationships
among the risk factors and how they contribute jointly to the disease
(eg, by explicit modeling of high-order interactions or network
analysis). Results from the RFF application to the real study of
HHD should be viewed with caution, pending replication in large
samples. Nonetheless, the evaluation demonstrated that the RFF
method is capable to meaningfully handle real GWAS data and as
such to facilitate analysis of genome-wide interactions studies to
improve our understanding of many complex diseases.
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