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endogamous/consanguineous populations, and that it can be
improved by making use of precise estimates of the inbreeding coeffi-
cient based on the analysis of genomic patterns of homozygosity.”
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Upon revisiting our published work on the genetic architecture of
adult height,! we noted the following sentence: ‘Height was measured
with a stadiometer to the nearest 0.1 cm. Genetic association studies
generally do not utilize information regarding precision of phenotypic
measurements. We suggest that doing so addresses a long-standing
issue between clinical importance and statistical significance. In this
specific instance, we suggest that effects smaller than 0.1cm are
clinically insignificant, as they are not measurable; the issue then
becomes how to incorporate this limit into statistical approaches in
human genetics investigations such as genome-wide association
studies (GWAS).

One solution to this problem is based on classical measurement
error. Assume that the observed value of the outcome (dependent
variable) y" is equal to the true, underlying value of y plus a random
component e. In ordinary least squares (OLS), the true model
y=Xp + & becomes y' = Xf + e+ & Assuming that (1) the two errors
are uncorrelated, (2) the expected values of both errors are 0, and (3)
both error terms are uncorrelated with the independent variable, the
OLS estimate B is a consistent and unbiased estimate of f.
However, the variance of f3 increases from (X'X) 'var(g) to
(X'X) " '[var(e) + var(g)]. Consequently, test statistics accounting
for measurement error will be smaller. Critically, claims of
statistical significance will be limited by the precision of the
measurement of the outcome.

A second solution to this problem is to use protected inference.
Classical inference is based on testing what is called a point null
hypothesis: in GWAS, a normally distributed test statistic can be
formulated as (f — f,)/SE B) with the point null value fy=0. In
slightly simplified terms, ,B is “called consistent if it converges to the
true value of f with enough data, ie, a suitably large sample size.
However, the probability mass of any point in a continuous
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distribution is 0. Consequently, statistical significance can be
attained for trivial effects by simply increasing the sample size
(Figure la). Under protected inference, the null hypothesis is an
interval rather than a point. We suggest two ways to implement
protected inference. We can control the false positive error rate at the
borders of the null interval, allowing the test to become overly
conservative within the null interval (Figure 1b). Alternatively, we can
control the false positive error rate at a fixed value across the entire
null interval (Figure 1c). We recommend this latter approach,
oy b= g
0 otherwise
corresponding to the limit of precision, eg, 0.1cm for our stadi-
ometer. Either way, protected inference prevents arbitrarily large
sample sizes from yielding statistical significance for trivial effects.

formulating the test statistic as , with f§; now
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Figure 1 Power in classical vs protected inference. The gray dashed lines
represent the significance level «=0.05. (a) Classical inference involves
testing the point null hypothesis that the effect size is 0. (b) Protected
inference involves testing a null interval hypothesis. In this implementation
of protected inference, the false positive error rate is controlled at the
borders of the null interval. (c) In this alternative implementation of
protected inference, the false positive error rate is fixed across the entire
null interval.



Another way to address measurement error is through use of
repeated measures. In a repeated measures design, the dependent
variable is measured multiple times for each individual to account for
within-individual variability. However, each measurement is still
limited by the precision of the instrument, so that repeated measures
designs will not protect against trivial effects.

Returning to our example, we standardized our measurement error
(0.1cm corresponded to 0.0103 SD) and compared it with the
standardized effect sizes reported for 180 loci for human height
identified by meta-analysis of GWAS.? The smallest effect reported in
their follow-up (Stage 2) analysis was 0.010 SD, suggesting that the
detection of genetic loci influencing human height is near its limit;
increasing the sample size will have limited utility until the precision
of the measurement of height improves.

Clinical importance ought to have much to do with statistical
significance. The use of statistical models that account for the
precision of measured traits, either through measurement error
models or null interval testing, will eliminate the problem of trivial
effects, thereby helping to reconcile clinical importance and statistical
significance.
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