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Time-based reward maximization
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Humans and animals time intervals from seconds to minutes with high accu-

racy but limited precision. Consequently, time-based decisions are inevitably

subjected to our endogenous timing uncertainty, and thus require temporal

risk assessment. In this study, we tested temporal risk assessment ability of

humans when participants had to withhold each subsequent response for a

minimum duration to earn reward and each response reset the trial time. Pre-

mature responses were not penalized in Experiment 1 but were penalized in

Experiment 2. Participants tried to maximize reward within a fixed session

time (over eight sessions) by pressing a key. No instructions were provided

regarding the task rules/parameters. We evaluated empirical performance

within the framework of optimality that was based on the level of endogenous

timing uncertainty and the payoff structure. Participants nearly tracked the

optimal target inter-response times (IRTs) that changed as a function of the

level of timing uncertainty and maximized the reward rate in both experiments.

Acquisition of optimal target IRT was rapid and abrupt without any further

improvement or worsening. These results constitute an example of optimal

temporal risk assessment performance in a task that required finding the opti-

mal trade-off between the ‘speed’ (timing) and ‘accuracy’ (reward probability)

of timed responses for reward maximization.
1. Introduction
Many organisms ranging from pigeons [1] to humans [2] share the ability to time

intervals in the seconds-to-minutes range. This ability, called interval timing, plays

a crucial role in adaptive behaviours such as optimal foraging [3,4] and keeping

track of reward rates [5]. Behavioural data show that animals on average are flex-

ibly accurate in their timing behaviour; however, flexibility in accuracy comes at a

cost of imprecision reflected by the substantial trial-to-trial variability in timed

responses. Imprecision in timed responses is assumed to originate primarily

from the endogenous noise in timing processes that underlay temporal control

over responding and to have well-defined statistical properties. For instance,

responding in different interval timing tasks across species conforms to Weber’s

law, which points at the proportionality of timing imprecision (endogenous

timing uncertainty) to targeted intervals. Scalar property, a well-established prop-

erty of interval timing [6], indeed shows that the standard deviation (s.d.) of time

estimates is proportional to the target time intervals [7]. Consequently, every

action or decision that relies on interval timing is by default subjected to temporal

uncertainty and its statistical properties, which dictates that timing tasks inher-

ently require adapting decisions to the noise characteristics of interval timing for

reward maximization. To this end, integrating a psychophysically plausible

model of endogenous timing uncertainty into the framework of reward maximiza-

tion may help define a valid optimal solution to time-dependent decisions by

accounting for the organisms’ time-representational constraints.

Findings from earlier studies that adopted such an analytical approach [8–12]

showed that both humans and rodents can adopt nearly optimal strategies by

taking account of their endogenous uncertainty in tasks that required various

decisions. In one of these experiments [8], humans and mice were trained in a tem-

poral discrimination task that was composed of two types of trials (short latency

trial and long latency trial) presented probabilistically. If a given trial was a short

latency trial, responding at or after the short duration at one of the two loca-

tions (short location) was reinforced. On the other hand, if that trial was instead
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a long latency trial, responding at or after long duration at

the other location (long location) was reinforced. If in long

latency trials a subject’s first response at or after the long dur-

ation was at the short location, or in short latency trials a

subject’s first response at or after the short duration was

at the long location, the subject did not receive reward or suf-

fered a penalty depending on the payoff matrix. The

emergent response pattern in this task was initiating anticipat-

ory responding at the short location and if the short interval

had elapsed without reward delivery there, switching to the

long location. The trial time at which the subject stopped

responding at the short location for responding at the long

location (i.e. switch latency) was treated as the critical temporal

decision output (see also [13]).

Responding in this task leads to four possible conse-

quences: earning reward in short latency trials by not

switching; earning reward in long latency trials by switching

prior to the long duration; missing the reward (or suffering

penalty) in short latency trials by switching prior to the short

duration; and missing the reward (or suffering penalty) in

long latency trials by not switching prior to the long duration.

The expected gain (equation (2.1)) here depends on the short

and long latency trial probabilities, target switch latency

(mean switch latency), and the level of the subject’s timing

uncertainty (coefficient of variation of switch latencies) in

addition to other task parameters described below:

EGð̂tÞ ¼ pðTSÞgð�TSÞFðTS; t̂; v̂ t̂Þ þ pðTSÞgðTSÞð1�FðTS; t̂; v̂ t̂ÞÞ

þ ð1� pðTSÞÞgðTLÞFðTL; t̂; v̂ t̂Þ

þ ð1�pðTSÞÞgð�TLÞð1�FðTL; t̂; v̂ t̂ÞÞ;
ð2:1Þ

where t̂ is the estimate of a subject’s target switch latency, v̂ is

the coefficient of variation of switch latencies, TS is the short

duration, TL is the long duration, p(TS) is the probability of

short latency trial and g defines the payoff matrix (e.g. g(TS)

shows the gain associated with a correct short latency trial),

and F ¼ 0:5 1þ erf ðx� t̂/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðv̂ t̂Þ2

q
Þ

� �
, where v̂ ¼ ŝ /̂t: Opti-

mal target switch latency for a given subject can be determined

by finding the t-value that maximizes the output of equation

(2.1) for that subject’s level of timing uncertainty (v̂). Balcı et al.
[8] manipulated the probability of trial types (for both humans

and mice) and the payoff matrix (for humans only) between

different conditions and evaluated the optimality of the empirical

performance. Theyshowed that humans and mice closely tracked

the changes in the optimal target switch latency as a function of

endogenous timing uncertainty and exogenous probabilities,

and earned over 98% of the maximum possible expected gain

that could be attained given the level of their endogenous

timing uncertainty. These findings were recently replicated by

Kheifets & Gallistel [11]. Different from Balcı et al. [8], Kheifets

& Gallistel [11] changed the probability of short and long latency

trials during testing and found that mice adjusted their target

switch latencies rapidly and abruptly in an optimal fashion,

which could not be accounted for by slow reinforcement

learning. These findings overall suggested that not only

humans but also mice could maximize reward by integrating

their endogenous timing uncertainty as well as exogenous

probabilities into their decisions in a normative fashion.

The reward maximization problem that characterizes the

switch task also applies to other temporal discrimination
tasks such as the traditional temporal bisection task [14].

In the temporal bisection task, participants are trained to cat-

egorize durations as short or long depending on their

subjective similarity to short and long reference durations

that de-limit the range of to-be-judged durations; however,

different from the switch task, choice behaviour is manifested

only after the termination of the to-be-judged duration.

Machado & Keen [15] tested pigeons in this task using a

long-box apparatus and reported behavioural patterns similar

to our observations in the switch task; contingent upon

the onset of the timing, signal pigeons moved to the loca-

tion associated with short duration and switched to the

location associated with long duration if the timing signal

lasted longer than the short reference duration. This obser-

vation suggests that the decision dynamics that underlay

choice behaviour in the temporal bisection task are similar to

those that underlay timed switching behaviour. We recently

tested human participants on the temporal bisection task chan-

ging the probability of short and long reference durations, and

computed the optimal target bisection point (duration that the

participant is equally likely to categorize as short or long)

based on experienced exogenous probabilities and their level

of endogenous timing uncertainty (estimated from choice func-

tions). Consistent with our earlier findings in the switch task,

human participants closely tracked the optimal bisection

point, earning nearly (over 98%) the maximum possible

expected gain they could attain given the level of their timing

uncertainty and exogenous probabilities [16].

There are other tasks in which optimal temporal strategy

depends on the level of endogenous timing uncertainty but

in the absence of exogenous probabilistic relations [9,12].

Beat-the-clock constitutes one of these tasks [12]. In this

task, participants are asked to respond as close as possible

to a fixed duration but no later, in order to earn reward.

The magnitude of reward that can be earned increases expo-

nentially with time until a fixed duration and drops to zero

from thereafter. Endogenous timing uncertainty dictates

that in order to maximize reward, participants should aim

at a time point earlier than the fixed duration and how

early they should aim for depends on the level of their

timing uncertainty. Equation (2.2) defines the expected gain

and its dependence on the level of timing uncertainty in

this task:

EGð̂tÞ ¼
ðT

x¼0

pðtĵt; v̂ÞgðtÞdt; ð2:2Þ

where t is a possible response time, t̂ is the estimate of target

response time, g is the right truncated exponential reward

function and p is the probability of responding at t given t̂
and the level of endogenous timing uncertainty (v̂). Optimal

target response time can be determined by finding t̂ that

maximizes the output this function.

Consistent with earlier studies described above, partici-

pants in this task closely tracked the optimal target response

time that changed as a function of the level of timing

uncertainty, and earned 99% of the maximum possible

expected gain they could attain given the level of their

timing uncertainty. There is also evidence for reward

maximization in the sub-second range as a result of integrating

timing uncertainty in temporal reproduction and motor timing

decisions [9,10].

These findings overall suggest that humans can take nor-

mative account of their endogenous timing uncertainty along
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with experienced exogenous probabilities (when dictated by

the task) in order to maximize the reward earned. However,

the scenarios described above constitute discrete-trial para-

digms that do not impose a trade-off between speed and

accuracy of timed responses with respect to reward maxi-

mization. On the other hand, many daily decisions are

characterized by this fundamental trade-off. One of the

tasks that captures speed–accuracy trade-off in the domain

of temporal decision-making is the differential reinforcement

of low rates of responding (DRL), which is traditionally used

in the field of psychopharmacology to test the efficacy of

putative anti-depressant agents [17,18].

In the DRL task, subjects are trained to respond after a

fixed minimum time interval has elapsed (not signalled)

since their previous response. Subjects receive reward only

when they respond after this fixed interval and each response

resets the trial time. Reward rate in this task can be expressed

as p(reward)/mean(IRT) and thus reward maximization

depends on the trade-off between two time-dependent quan-

tities: the reward probability and the inter-response time

(IRT). Probability of receiving reward increases with IRT in

a nonlinear fashion due to timing uncertainty (increasing

the reward rate) whereas time cost increases linearly with

IRT (decreasing the reward rate). Importantly, the optimal

(i.e. reward maximizing) trade-off between the reward prob-

ability and IRT depends on the DRL schedule (i.e. scheduled

minimum wait time) and the level of the subject’s endogen-

ous timing uncertainty. To that end, as in tasks described

earlier, well-established psychophysical properties of interval

timing should be included in the optimality analysis of timed

response inhibition in DRL. Dependence of reward rate on

the level of timing uncertainty and its scalar property [19]

(assuming an inverse-Gaussian distributed response1) in the

DRL task can be expressed by equation (2.3):

RRðt̂ Þ ¼ t̂ �1ð1� waldcdf ðT; t̂ ; l̂ÞÞ; ð2:3Þ

where l̂ ¼ t̂ =v̂2, T denotes the DRL schedule, t̂ is mean IRT

and l̂ � 0 is the Wald shape parameter; waldcdf(T; t̂ ; l̂) is

defined by equation (2.4):

waldcdf ðT; t̂ ; l̂Þ ¼ F

ffiffiffiffî
l

T

s
T
t̂
� 1

� �0
@

1
A

þ exp
2̂l

t̂

 !
F �

ffiffiffiffî
l

T

s
T
t̂
þ 1

� �0
@

1
A; ð2:4Þ

where v̂ ¼
ffiffiffiffiffiffiffiffi
t̂ /l̂

p
.

Optimal target IRT can be determined by finding the t
that maximizes the output of equation (2.3) for a given

level of timing uncertainty, v̂ . We have recently derived a

closed form solution to optimality in this task, which defined

the optimal performance curve (OPC) for the DRL task

(equation (2.5); see electronic supplementary material, File 2

for the derivation). The t-value that satisfies equation (2.5)

is the optimal wait time for the corresponding level of

timing uncertainty (figure 1):

1� waldcdf ðT; t̂ ; l̂Þ � T � waldpdf ðT; t̂ ; l̂Þ ¼ 0: ð2:5Þ

This approach captures exclusively those cases in which

payoff structure does not contain penalties. On the other

hand, many daily scenarios contain explicit penalties for

errors and a more generalized solution to the reward maximi-

zation problem should also account for these costs. Equation
(2.6) defines the generalized form of expected reward rate

when errors were penalized:

RRðt̂ Þ ¼ t�1ðR� ð1� waldcdf ðT; t̂ ; l̂ÞÞ
þ waldcdf ðT; t̂ ; l̂Þ � PÞ; ð2:6Þ

where R is the reward magnitude and P is the penalty mag-

nitude associated with correct and erroneous responses,

respectively. The closed form solution to this problem is

shown in equation (2.7) (see electronic supplementary

material, File 2 for the derivation), which defines OPCs for

the DRL task parametrized by the relative penalty for

errors (figure 1):

R� ðRþ PÞ � ðwaldcdf ðT; t̂ ; l̂Þ þ T � waldpdf ðT; t̂ ; l̂ÞÞ ¼ 0:

ð2:7Þ

Building upon our earlier findings regarding reward

maximization in the DRL task [9], we conducted two exper-

iments that addressed important questions regarding optimal

temporal risk assessment in the context of timed response

inhibition. Earlier studies showed nearly optimal human per-

formance in the DRL task when participants were provided

with instructions regarding task rules and given the opportu-

nity to experience the minimum wait time explicitly prior to

testing. On the other hand, studies conducted with rodents

did not allow this for obvious reasons. In the current exper-

iments, in order to constitute a better analogue to the animal

studies, we tested human participants on the DRL task without

providing any instructions or prior experience with the

minimum wait time and evaluated their performance within

the framework of optimality described above. Current exper-

iments also differ from the limited number of earlier human

DRL experiments in that they extended the degree of train-

ing from single-session testing to multiple-session testing.

Extensive training (i.e. eight sessions) coupled with lack of

instructions allowed us to characterize the acquisition patterns

that lead to optimal/steady-state DRL performance. Finally,

earlier studies did not contain any penalty for early responses
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and thus captured only a limited scope of temporal risk assess-

ment. The second experiment of this study addressed this

issue by introducing penalty for premature responses and

allowed for the evaluation of DRL performance according to

the generalized expected reward rate function.
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2. Material and methods
(a) Subjects
Twenty-four adult participants were tested: Experiment 1 (five

males and seven females with mean age of 20.50 years, s.d. ¼

1.7) and Experiment 2 (three males and nine females with

mean age of 19.16 years, s.d. ¼ 2.1). Participants were recruited

through a publicly available newsletter published on the Koç

University website. The experiment was composed of eight

50-min (fixed test duration) daily DRL sessions and one 20-min

working memory task given after DRL testing. Participants

received monetary reward based on their performance in each

DRL session and fixed monetary compensation for the working

memory task. The experiment was approved by the Institutional

Review Board at Koç University and all participants provided

written consent prior to testing.
(b) Stimuli and apparatus
The visual stimulus consisted of a white square on a black back-

ground. The square briefly changed its colour to red or green to

provide feedback after premature responses (errors) and responses

emitted after the minimum wait time (correct responses), respect-

ively. The display was generated in MATLAB on a Macintosh

computer, using the Psychophysics Toolbox extension [20,21].

Responses were collected with a standard computer keyboard.
(c) Procedure of DRL task
Each participant was tested with either a 5 or a 10 s DRL sche-

dule over eight sessions. In Experiment 1, participants earned

a reward when they hit the space key after the minimum wait

time. There was no penalty for responding earlier than this

minimum time. In Experiment 2, participants earned a reward

upon hitting the space key after the DRL schedule; however,

they were penalized for half of the reward amount if they

responded prematurely. The only explicit instruction was to

press the designated key for the opportunity to earn a reward

and to try to maximize reward earned. In Experiment 1, partici-

pants were told that it was possible for them not to receive a

reward upon a key press. In Experiment 2, participants were

told that it was possible to earn reward or suffer penalty upon

a key press. Participants were not provided any other instruc-

tions regarding the DRL task rules and parameters. On the

contrary in the earlier work [9], participants were provided

with these critical instructions regarding the DRL task rules

and parameters. For instance, participants were told that they

would earn reward for their each response emitted following a

minimum wait duration since their previous response and that

this response would reset the trial clock. They were also told

that any response prior to the minimum wait duration would

reset the trial clock without the reward delivery. In the earlier

work [9], participants were also provided with prior experience

with the critical task parameter prior to DRL testing, namely

the minimum withhold duration. Specifically, participants were

presented with the time interval that was equal to the DRL sche-

dule. They were allowed to reproduce this interval for 50 times

and received parametric feedback regarding the accuracy of

each reproduction. This provided prior experience with the DRL

schedule in the earlier study, which was absent in this study.
As in the earlier work [9], participants were asked not to

count. A secondary task was used to suppress chronometric

counting during the DRL tests. At the beginning of each block,

participants were presented with a four-digit number and at

the end of that block a single-digit number. Participants were

asked whether the four-digit number presented at the beginning

of the block contained the single-digit number presented at the

end of the block. The total reward earned from the DRL task-

related responses was multiplied by the proportion correct

from the secondary task. Participants were told that the reward

earned from the primary task was going to be multiplied with

the proportion correct in the secondary task. Working memory

task was the automated version of the operational span task as

described in [22].

(d) Data analysis
Cumulative Weibull distribution functions (with an extra scaling

parameter) were fit to the IRTs ordered according to their actual

order of occurrence. The onset of steady-state responding was

defined in terms of the response that corresponded to the

mean value plus three times the standard deviation estimated

from the best-fit cumulative Weibull distribution. In order to

quantify the abruptness of acquisition, we calculated the time

it took to reach from 25 to 75% of the best-fit scaling parameter.

Acquisition of steady-state performance by one participant in

Experiment 1 (ID:19) and three participants in Experiment 2

(ID:27, ID:29 and ID:39) exhibited atypical patterns. Specifically,

these participants tended to respond after the DRL schedule

similar to other participants, but they initially waited much

longer than the optimal IRT and then slowly converged on the

optimal value gradually by speeding up their responses. Thus,

these participants were excluded from the acquisition analysis

(for these participants, the last three sessions were treated as

the steady-state data for the other analyses). Representative aty-

pical acquisition patterns as well as representative typical

acquisition patterns from both Experiment 1 and Experiment 2

are presented in the electronic supplementary material, figures

S1 and S2, respectively. Note that participants were excluded

only from the acquisition analysis and not from the optimality

analysis that is described next.

Steady-state IRTs were fit with an exponential inverse-

Gaussian mixture function that has been previously shown to

account for IRTs in the DRL task [9]. There were atypical response

patterns of several participants at the session-level during the

steady state. Individual sessions with such atypical responses

were excluded from the analysis for four participants in Exper-

iment 1 and two participants in Experiment 2 (participants were

not excluded from the analysis). For completeness, response pat-

terns of these participants with no omissions and omissions are

presented in the electronic supplementary material, figures S3

and S4, respectively. In order to ensure that results gathered

were not because of the exclusion of participants from the acqui-

sition analysis and sessions from the optimality analysis, we

estimated the parameters once more without any exclusions. All

of the parameters (Speed and Abruptness of acquisition indices,

optimal and empirical IRTs, CVs (coefficient of variance) and

maximum possible expected reward rates) were not significantly

different from the values obtained without any omissions in

either experiments (at alpha level 0.05, not reported).

Best-fit mean and shape parameter of the inverse-Gaussian

portion of the mixture distribution were used to calculate the opti-

mal strategy for the corresponding participant. Mann–Whitney

U-tests were used for the comparison of the acquisition indices

(i.e. rapidness and abruptness), IRTs and CVs between experiments

and schedules within each experiment. Wilcoxon signed-ranks test

was used for all other analysis. Results based on t-test comparisons

revealed the same results (not reported). Alpha level of 0.05 was

used as the significance level in all analyses.



long schedule
short schedule

long schedule
short schedule

normalized target

re
w

ar
d 

ra
te

C
V

C
V

0.50 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

re
w

ar
d 

ra
te

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0 0.5 1.0 1.5 2.0 2.5

(a)

(b)

Figure 2. Heat map of expected reward rates for (a) Experiment 1 and
(b) Experiment 2 for normalized DRL schedule. Curves denote the ridge of
these surfaces indicating the optimal normalized target IRTs for different
levels of timing uncertainty for no penalty (a) and penalty (b) conditions
separately. Each data point corresponds to a participant and each symbol cor-
responds to a different schedule. Note that empirical IRTs were normalized by
the corresponding DRL schedule. Short schedule, 5 s; long schedule, 10 s.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20120461

5
3. Results
(a) Acquisition
We first characterized the acquisition of the DRL responding,

which was particularly relevant given the lack of instructions

and multiple session testing in our experiments. To that end,

we were interested in two different measures of acquisition:

rapidness and abruptness of the acquisition of optimal/

steady-state IRTs.

(i) Rapidness (speed) of acquisition
Average onset of steady state occurred around the 19th

(s.e.m. ¼ 5.87, median ¼ 18.90, IQR ¼ 33.00) minute of Exper-

iment 1 (with no penalty for errors) and 6th (s.e.m. ¼ 2.86,

median ¼ 0.60, IQR¼ 14.30) minute of Experiment 2 (with

penalty for errors) and this difference was statistically signi-

ficant (U ¼ 21, Z ¼22.17, p , 0.05). Rapidness of acquisition

did not differ between the DRL schedules (5 and 10 s)

in either Experiment 1 (U ¼ 8, Z ¼21.28, p ¼ 0.25) or Exper-

iment 2 (U ¼ 6, Z ¼20.98, p ¼ 0.41). There was a significant

negative correlation between working memory span and

onset of steady state in Experiment 1, r(9) ¼ 20.59, p , 0.05,

although in the same direction this relation was not significant

in Experiment 2, r(7) ¼ 20.11, p ¼ 0.38.

(ii) Abruptness of acquisition
The mean abruptness index normalized by the schedule was

14.28 (s.e.m. ¼ 6.39, median¼ 4.54, IQR ¼ 13.70) in Exper-

iment 1 while it was 8.32 (s.e.m.¼ 3.99, median¼ 2.21,

IQR ¼ 15.11) in Experiment 2. This difference between two

experiments was not significant (U¼ 41, Z ¼20.65, p ¼ 0.52).

There was no significant correlation between working

memory span and abruptness in either Experiment 1,

r(11) ¼ 20.33, p , 0.16 or Experiment 2, r(9)¼ 0.05, p ¼ 0.45.

(b) Steady-state responding
We first evaluated whether the IRTs after acquisition (mean þ
3 � s.d.) exhibited a trend for slowing or speeding. In both

Experiment 1 and Experiment 2, the group average slope of

the linear regression fits to post-acquisition data points were

0.00 (median 0.00) suggesting that IRTs remained very stable

after the acquisition took place. An exponential inverse-

Gaussian mixture distribution function was fit to steady-state

IRTs in Experiment 1 (mean v2 ¼ 0.91, s.e.m.¼ 0.03,

median ¼ 0.95, IQR ¼ 0.09) and in Experiment 2 (mean

v2 ¼ 0.91, s.e.m. ¼ 0.02, median ¼ 0.94, IQR ¼ 0.08). When

an exponential-Gaussian mixture distribution function was

fit to the same dataset, the v2 values decreased to 0.88

(s.e.m. ¼ 0.03, median ¼ 0.93, IQR ¼ 0.11) and 0.85 (s.e.m. ¼

0.03, median ¼ 0.88, IQR ¼ 0.09) for Experiment 1 and

Experiment 2, respectively. Wilcoxon signed-ranks test

showed that this difference was significant for Experiment 1,

Z ¼22.90, p , 0.01, and Experiment 2, Z ¼23.06, p , 0.01.

(c) Optimality analysis
The optimality analysis of steady-state responding in both

experiments showed that participants aimed for the optimal

IRT that was parametrized by the payoff structure and par-

ticipants’ timing uncertainty level. Figure 2a,b depicts the

performance of each participant tested with 5 or 10 s sche-

dules in Experiment 1 and Experiment 2, respectively.
These figures show the heat map of the expected reward

rates (for normalized DRL schedules) expressed over a par-

ameter space composed of target IRT and the level of

timing uncertainty (CV). Ridges of these two ‘surfaces’ are

indicated by the black curves, namely the OPCs for the

DRL task with two different payoff structures. OPCs indicate

how long participants should aim to wait (normalized by

DRL schedule) before responding again given their level of

timing uncertainty and payoff structure.

We calculated how much participants earned compared to

how much they could maximally earn given these endogenous

and exogenous parameters. In Experiment 1, participants

achieved 99.1% (s.e.m. ¼ 0.41%, median ¼ 99.8%, IQR ¼

1.26%) of the maximum possible expected reward rate for

their level of timing uncertainty. In Experiment 2, this value

was 98.6% (s.e.m. ¼ 0.62%, median ¼ 99.7%, IQR ¼ 1.95%).

We also conducted this analysis adopting a more conservative

approach. We divided the difference between the empirical

expected reward rate and the expected reward rate if targeting

the schedule (ER(t̂ ) – ER(T )) by the difference between the

maximum possible reward rate and empirical expected

reward rate if targeting the schedule (ER(t̂ o) – ER(T ), where

t̂ o is the optimal IRT). The average of this conservative esti-

mate of proportion of the maximum possible reward rate
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was 97.9% (s.e.m.¼ 0.95%, median¼ 99.5%, IQR ¼ 3.62%) in

Experiment 1 and 98.0% (s.e.m. ¼ 0.86%, median ¼ 99.6%,

IQR ¼ 2.74%) in Experiment 2. The proportions of maximum

expected reward rates gathered without excluding the sessions

with atypical response patterns were nearly identical to the

values reported above (means ranging between 97.8 and 99.1%

and medians ranging between 99.2 and 99.7%). Briefly, partici-

pants nearly maximized their rewards in both experiments.

Participant’s reward rates were significantly higher than the

reward rates they would attain if their mean IRT was equal

to the DRL schedule (if they were targeting the DRL

schedule) in Experiment 1 (Z ¼23.06, p , 0.01) and in

Experiment 2 (Z ¼23.06, p , 0.01). There was no significant

difference between the two schedules in terms of the percentage

of maximum expected reward rate attained in either Experi-

ment 1 or 2 (U¼ 13, Z¼20.80, p¼ 0.48 and U ¼ 9, Z ¼21.44,

p¼ 0.18, respectively). Note that this comparison was conducted

after normalization by the corresponding DRL schedule.

We then compared the empirical normalized IRTs of the par-

ticipants with the corresponding optimal normalized IRTs using

Wilcoxon signed-rank test; there were no significant differen-

ces between empirical and optimal values in either Experiment

1 (Z ¼20.86, p ¼ 0.39) or Experiment 2 (Z ¼20.71, p ¼ 0.48).

Normalized empirical IRTs in Experiment 2 were significan-

tly longer than the normalized IRTs in Experiment 1 (U ¼ 24,

Z ¼22.77, p , 0.005). Coefficient of variations obtained in

Experiment 2 were significantly higher than the CVs obtained

in Experiment 1 (U ¼ 31, Z ¼22.37, p , 0.05).

Deming regression fits revealed a significant relation

between the optimal and empirical IRTs for both Experi-

ment 1 (figure 3a) and Experiment 2 (figure 3b): F1,10¼ 188.4,

p , 0.001, slope ¼ 1.34 in Experiment 1 and F1,10¼ 61.46,

p , 0.001, slope ¼ 1.77 in Experiment 2. When we excluded

the participant that had empirical IRT longer than two stan-

dard deviations from the mean in Experiment 2, the slope

decreased to 1.38, F9¼ 75.74, p , 0.001. Note that best-fit

regression lines crossed over the identity line in both exper-

iments. This observation suggests that participants had a

tendency to respond earlier than the optimal when the
optimal IRT was closer to the DRL schedule and later than

the optimal when the optimal IRT was farther from the

DRL schedule. This pattern suggests an over-adjustment of

IRTs in relation to the level of timing uncertainty. These

small biases, however, resulted in only negligible costs in

terms of the reward rate attained.
4. Discussion
This study aimed to expand the scope of temporal decision-

making research by addressing novel questions to bridge

the gap between interval timing and decision-making fields.

To that end, we investigated the temporal risk assessment

performance of human participants in the DRL task with

two different schedules (5 and 10 s) and payoff structures

(i.e. penalty versus no penalty for premature responses) and

evaluated it within the framework of optimality based on the

statistical decision theory.

Our results indicated that humans can maximize reward

rate by taking normative account of their endogenous

timing uncertainty even when instructions regarding the

task rules were absent, when the exact minimum wait time

itself was never experienced, and when premature responses

were explicitly penalized. Observed performance was com-

parable, if not closer to optimality, when compared with

earlier single-session DRL experiments with instructions,

prior experience of the minimum wait time, and no penalty

for errors [9]. Overall, our findings corroborated optimal

(reward maximizing) performance of human and/or non-

human animals in other timing tasks where time was an

explicit component of the decisions: switch task [8,11], tem-

poral bisection task [16], beat-the-clock task [12], temporal

reproduction [10] and motor timing [23]. Different from

these discrete-trial tasks, however, our experiments demon-

strated the optimality of temporal decisions when the task

rules imposed a trade-off between the ‘speed’ (i.e. response

time) and ‘accuracy’ (i.e. probability of reward) of temporal

decisions, a relation that has been shown to adaptively
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guide decisions in other free-response non-temporal tasks [9].

Thus, our findings also expanded the scope of optimal

speed–accuracy trade-offs to the domain of interval timing

and temporal decision-making.

Acquisition of the optimal DRL responding in the absence

of instructions occurred early during training (mostly within

the first session) in an abrupt fashion. This constituted one

of the fundamental differences from the DRL acquisition

pattern of rats, which is typically gradual. After the acqui-

sition took place (as captured by cumulative Weibull fits),

the performance was very stable and nearly optimal given

the DRL schedule, payoffs and level of participants’ timing

uncertainty. These findings support a model-based guidance

of human timed behaviour in the DRL task and constitute a

challenge for gradual reinforcement learning-based accounts

of performance (see also [12]).

We expected earlier acquisition of timed responding when

participants suffered monetary penalty (penalty . 0) for

premature responding as this penalty would locally/transi-

ently or globally motivate longer wait times, which would

presumably facilitate the acquisition of the DRL task. This is

exactly what was observed; participants learned the optimal

wait time earlier in the second experiment (penalty . 0) com-

pared with the first experiment (penalty ¼ 0). It is of interest

to examine whether similar manipulations (e.g. in the form

of time-out period for premature responses) would lead to

the same findings in non-human animals. There were no differ-

ences between schedules in terms of the rapidness of the

acquisition of DRL responding, which does not corroborate

the view that acquisition scales with the degree of temporal

uncertainty (for review, see [24]). This discrepancy can be

attributed to the peculiar features of the DRL task such as the

acquisition of response inhibition and the absence of discrete

timing cues.

Since the acquisition of task representation depended on

experienced response-outcome contingencies, we also expected

higher working memory capacity to facilitate the acquisition

of optimal/steady-state responding. This expectation was con-

firmed by Experiment 1; participants with higher working

memory span acquired time response inhibition earlier. How-

ever, this relation did not hold for Experiment 2. It is possible

that differences in the effect of penalty on acquisition (e.g.

owing to differential penalty processing) masked the effect of

working memory span on the same measure in Experiment 2.

It is also possible that the sample size was adequate for the

timing study but not for the working memory task. Future

studies can use larger sample sizes to investigate this relation.

Different from steady-state performance in non-human ani-

mals, human participants exhibited lower proportion of

untimed responses despite the purely experiential nature of

the current experiments. These responses are typically emitted

very shortly after the previous response. Balcı et al. [9] argued

that non-timed responses might help agents detect beneficial

alterations in environmental statistics (e.g. shift to a shorter

DRL schedule). This would constitute a long-term adaptive

strategy in unstable environments particularly given the mini-

mal time cost exerted by these responses [25]. The difference

between rats and humans in terms of the frequency of non-

timed responses might be related to their different expectations

regarding the stability of the environmental conditions.

Humans might be less willing to explore possible changes in

the schedule based on their prior belief that task parameter

values remain stable throughout the experiment. On the other
hand, environmental statistics are less stable in nature, and for

non-human animals and smaller organisms. Alternatively,

these results can be explained by the superior inhibitory control

of humans compared to the rats. These issues can be addressed

empirically with experiments in which the DRL schedule (mini-

mum wait time for reward) unpredictably shortens and

lengthens without signalling. We are currently conducting

such tests with humans in our laboratory.

This study has a number of methodological advantages

over the previous studies with instructions and prior experience

of the DRL schedule. Acquiring the task-relevant parameters

purely based on experienced response-outcome contingencies

with no instructions or experience of task parameters minimizes

the likelihood of adopting task-related top-down auxiliary pro-

cesses (at least early in training). Investigations of optimal

temporal decision-making often consider steady-state perform-

ance. Our methodological approach on the other hand also

allowed the characterization of acquisition of timed response

inhibition in relation to optimality. Finally, lack of instructions

minimized the gap between the human and non-human

animal versions of the task, increasing the interspecies general-

izability of the conclusions and emphasizing the translational

nature of temporal risk assessment.

Optimal performance under uncertainty appears to be a

common feature of human and animal time-based decision-

making [9]. This is not surprising as time is a determinant

of the amount of reward earned in many biologically critical

situations humans and non-human animals have faced in

their evolutionary history. Given that interval timing is a

primitive and fundamental function observed in many differ-

ent species with similar psychophysical properties, its noise

characteristics might have indeed been well-integrated into

decision-making mechanisms over the course of evolution.

In other words, the nervous system of many vertebrates

might be pre-wired to parametrically convert the endogenous

timing noise into an adaptive bias signal during decision-

making when reward maximization requires it.

DRL task’s usefulness in psychopharmacology and its abil-

ity to characterize impulsive behaviour have attracted the

attention of behavioural neuroscientists. The most prominent

neuroanatomical target of these studies had been the limbic

system, which is also implicated in interval timing [26–35].

For instance, hippocampus [27–29,33,35] and amygdala [33]

lesions have been shown to result in clear impairments of

DRL performance in the form of increased responses per rein-

forcer. Unfortunately, many of these reports did not present

the complete response curves, which does not enable the

characterization of observed deficiencies differentially as

being due to an increase in frequency of non-timed responses

(exponential portion of our mixture model) or due to a leftward

shift of the timed response curve (inverse-Gaussian portion of

our mixture model) or both.

Few studies that presented the response curves revealed

that lesions of dentrate gyrus, a subregion of hippocampal for-

mation [29] resulted in a leftward shift in the timed portion of

the response curve. Bilateral hippocampus lesions showed

similar effects but they also increased the frequency of non-

timed responding (see fig. 3 in [28]). The leftward shift in IRT

curves is consistent with the assumed role of hippocampus in

timing accuracy [26,32,34]. For instance, hippocampal lesions

have been observed to result in leftward shifts in bisection

curves [32] and peak response curves [26,31,32]. Single cell

recordings in DRL [35] and other tasks with time gaps [30]
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also revealed time-dependent activity of hippocampal cells.

For instance, a subgroup of hippocampal cells gradually

decreased their firing rate over the course of the trial until the

emission of the response and went back to basal levels after

responding in the DRL task [35].

On the other hand, the effect of hippocampal lesions on

DRL performance might not be due to its effects on timing

processes itself but primarily because of its disruption of

inhibitory control over timed anticipatory responding. To

that end, hippocampus might affect DRL responding by

modulating nucleus accumbens (NAc) activity via gating its

cortical inputs [36]. Based on previous studies, NAc core

and its target structures indeed appear as possibly crucial

structures in timed response inhibition. For instance, lesions

of NAc core but not NAc shell cause a leftward shift in

DRL response curve, which become more apparent with

longer DRL schedules [37]. Biological and pharmacological

manipulations of downstream regions of NAc core, such as

blocking the NAc core–ventral pallidum GABAergic path-

way [38] and lesions of subthalamic nucleus (STN) [39] also

impair DRL performance. The effect of other downstream

regions on DRL performance is not well investigated but an

entopeduncular nucleus (or GPi in humans) inhibitory role

on action (and increase in premature responses with its inac-

tivation) has been shown using lesions and inactivation

methods [40].

Excitatory and inhibitory connections between these basal

ganglia structures and their effect on thalamus activity

suggest that NAc core might modulate the output/manifes-

tation of dorsal striatal temporal processing at multiple

levels [7,41] (GPi/SNr and STN). Prefrontal inputs (e.g.
anterior cingulate cortex, dorsal agranular insular areas, pre-

limbic cortex) to Nac core [42,43] are on the other hand

potential candidates as the source of adaptive bias signal

and its parametrization by timing uncertainty. Future neuro-

imaging studies can provide clues regarding the precise role

of this network in adaptive timed response inhibition.

In summary, our results provided strong evidence for opti-

mal temporal risk assessment performance of humans in a task

that imposed a trade-off between the ‘speed’ and ‘accuracy’ of

timed responses. This work further extended the scope of opti-

mal temporal risk assessment performance to those conditions

in which errors (i.e. premature responses) were penalized.

These findings overall pointed at the robustness of reward

maximization in the context of temporal decision-making.

Importantly, optimal performance was observed in the absence

of instructions and pre-training with task parameters, and

purely based on experienced response-outcome contingencies

constituting a better analogue of animal studies. Acquisition

of optimal performance was rapid and abrupt; speed of acqui-

sition was further facilitated by penalizing errors and higher

working memory span. Future studies can investigate the

neural correlates of timed response inhibition and its inter-

action with timing uncertainty focusing on the afferent and

efferent projections of ventral striatum.

Funding statement. This work was supported by an FP7 Marie Curie
grant PIRG08-GA-2010-277015 to F.B.

Endnote
1Inverse-Gaussian distribution fits the DRL data as well as timed
responses in other interval timing tasks better than the Gaussian
distribution (see Results, e.g. [12]).
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23. Landy MS, Trommershäuser J, Daw ND. 2012 Dynamic
estimation of task-relevant variance in movement
under risk. J. Neurosci. 32, 12 702 – 12 711. (doi:10.
1523/JNEUROSCI.6160-11.2012)

24. Gallistel CR, Gibbon J. 2000 Time, rate, and
conditioning. Psychol. Rev. 107, 289 – 344. (doi:10.
1037/0033-295X.107.2.289)

25. Wearden JH, Culpin V. 1998 Exploring scalar
timing theory with human subjects. In Time and the
dynamic control of behavior (eds V DeKeyser,
G d’Ydewalle, A Vandierendonck), pp. 33 – 49.
Gottingen, Germany: Hogrefe and Huber.

26. Balci F, Meck WH, Moore H, Brunner D. 2009
Timing deficits in aging and neuropathology. In
Animal models of human cognitive aging (eds JL
Bizon & AG Woods), pp. 1 – 41. Totowa, NJ:
Humana Press.

27. Bannerman D, Yee B, Good M, Heupel M,
Iversen S, Rawlins J. 1999 Double dissociation
of function within the hippocampus: a
comparison of dorsal, ventral, and complete
hippocampal cytotoxic lesions. Behav. Neurosci.
113, 1170 – 1188. (doi:10.1037/0735-7044.113.
6.1170)

28. Cho YH, Jeantet Y. 2010 Differential involvement of
prefrontal cortex, striatum, and hippocampus in DRL
performance in mice. Neurobiol. Learn. Mem. 93,
85 – 91. (doi:10.1016/j.nlm.2009.08.007)

29. Costa VCI, Bueno JLO, Xavier GF. 2005
Dentate gyrus-selective colchicine lesion and
performance in temporal and spatial tasks.
Behav. Brain Res. 160, 286 – 303. (doi:10.1016/j.
bbr.2004.12.011)

30. MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H.
2011 Hippocampal ‘time cells’ bridge the gap in
memory for discontiguous events. Neuron 71, 737 –
749. (doi:10.1016/j.neuron.2011.07.012)

31. Meck WH. 1988 Hippocampal function is required
for feedback control of an internal clock’s criterion.
Behav. Neurosci. 102, 54 – 60. (doi:10.1037/0735-
7044.102.1.54)

32. Meck WH, Church RM, Olton DS. 1984
Hippocampus, time, and memory. Behav. Neurosci.
98, 3 – 22. (doi:10.1037/0735-7044.98.1.3)

33. Pellegrino LJ, Clapp DF. 1971 Limbic lesions and
externally cued DRL performance. Physiol. Behav. 7,
863 – 868. (doi:10.1016/0031-9384(71)90053-9)

34. Yin B, Troger AB. 2011 Exploring the 4th
dimension, hippocampus, time, and memory
revisited. Front. Integr. Neurosci. 5, 36. (doi:10.
3389/fnint.2011.00036)

35. Young B, McNaughton N. 2000 Common firing
patterns of hippocampal cells in a differential
reinforcement of low rates of response schedule.
J. Neurosci. 20, 7043 – 7051.

36. O’Donell P, Greene J, Pabello N, Lewis BL, Grace AA.
1999 Modulation of cell firing in the nucleus
accumbens. Ann. NY Acad. Sci. 877, 157 – 175.
(doi:10.1111/j.1749-6632.1999.tb09267.x)

37. Pothuizen HH, Jongen Rêlo AL, Feldon J, Yee BK.
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