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The rise of zebrafish as a neuroscience research model organism, in conjunc-

tion with recent progress in single-cell resolution whole-brain imaging of

larval zebrafish, opens a new window of opportunity for research on interval

timing. In this article, we review zebrafish neuroanatomy and neuromodu-

latory systems, with particular focus on identifying homologies between the

zebrafish forebrain and the mammalian forebrain. The neuroanatomical and

neurochemical basis of interval timing is summarized with emphasis on the

potential of using zebrafish to reveal the neural circuits for interval timing.

The behavioural repertoire of larval zebrafish is reviewed and we demonstrate

that larval zebrafish are capable of expecting a stimulus at a precise time point

with minimal training. In conclusion, we propose that interval timing research

using zebrafish and whole-brain calcium imaging at single-cell resolution will

contribute to our understanding of how timing and time perception originate

in the vertebrate brain from the level of single cells to circuits.

1. Introduction
The ability to gauge the passage of time in the seconds-to-minutes range, defined

as interval timing, is fundamental to vertebrate behaviour and cognition, but the

underlying neural mechanisms at the circuit level remain elusive. Zebrafish

(Danio rerio) offer great potential for studies of timing because of recent progress

in neuroimaging techniques. Specifically, it is now possible to monitor neural

activity in the entire brain at single-cell resolution by using calcium imaging in

larval zebrafish [1,2]. This provides an unprecedented opportunity to investigate

the relationship between brain, behaviour and cognition. In particular, whole-

brain calcium imaging is especially suitable for studying functions that require

cooperation among multiple brain regions. Interval timing is one such cognitive

function because it involves cortico-striatal circuits [3]. To facilitate future inter-

val-timing studies from molecular to cellular and circuit levels, we review

zebrafish forebrain anatomy, neuromodulatory systems and behavioural reper-

toire. Calcium imaging data showing stimulus expectation that arises from

presentation of temporally patterned stimuli are also presented to demonstrate

that imaging the entire brain of a larval zebrafish opens a new window on how

time perception is instantiated in the vertebrate brain.

2. Zebrafish forebrain neuroanatomy
Most cognitive functions rely on the forebrain, which comprises the telencephalon

(cortical and sub-cortical regions in mammals; pallium and subpallium in fish) and

the diencephalon (including the thalamus, pineal body and habenula). While this

basic forebrain organization is conserved across vertebrates (figure 1a) [8], it is still

uncertain whether the fish telencephalon contains a region that is functionally

equivalent to the mammalian neocortex. One recent study implicated the dorsal

part of the pallium as a functional homologue [9], but additional studies are

required. Hence, here we only consider non-neocortical regions in the forebrain

that have defined cognitive functions in mammals, interval timing in particular,

and compare each region with its counterpart(s) in fish.
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Figure 1. Anatomical structures of zebrafish forebrain. (a) Lateral view of a zebrafish forebrain that includes the telencephalon, in which the yellow line indicates the
extent and divides this structure into two hemispheres, and the diencephalon, in which the blue line indicates the boundary between this structure and the optic
tectum (OT) in the midbrain. The green line indicates the olfactory epithelium. The red arrows indicate the lateral line organ. The ADP (magenta area) is proposed to
be the homologue of mammalian hippocampus [4]. (b) Coronal section (from the white dashed arrow b in a) of the telencephalon. The dashed line separates the
dorsal telencephalon (pallium) and ventral telencephalon (subpallium, blue). Subpallium includes the potential homologue of mammalian BG based on GAD67-
mRNA labelling [5]. The EN (green) is the homologue of the globus pallidus internal segment [4]. The dorsal medial pallium (magenta) is the homologue of
mammalian basolateral/lateral amygdala, whereas the ventral subpallium (red) is presumably the homologue of mammalian central amygdala [6]. (c) Transverse
section of the forebrain region (from the white dashed arrow c in a), in which the telencephalon and the habenula (blue arrows) are separated by the yellow dashed
line. The red arrow indicates the habenula commissure that connects the two habenula. This 8-day old fish is a triple transgenic Nacre zebrafish, carrying the
HuC:Gal4 pan-neural driver, GAL4s1011t driver and the fluorescent calcium indicator GCaMP3 under the UAS promoter [7]. Scale bar, 30 mm.
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(a) Zebrafish homologues of basal ganglia:
the subpallium

The mammalian basal ganglia (BG) include the striatum, globus

pallidus, subthalamic nucleus and substantia nigra pars reticu-

lata. A major characteristic of the BG is its dense populations of

GABAergic medium spiny neurons (MSNs), which contain

glutamate decarboxylase (GAD), an enzyme that helps to con-

vert glutamate into GABA. Thus, one method for identifying

the BG homologues in zebrafish, in addition to determining

connectivity or immunohistochemical labelling and in situ
hybridization [9,10], is to locate GAD67-mRNA-rich regions

in the brain. Indeed, GAD67 is expressed in all subpallial

regions in zebrafish (figure 1b) [5]. In particular, the entopedun-

cular nucleus (EN) has been identified as equivalent to the

mammalian globus pallidus internal segment (GPi), which

gives rise to the BG output to the thalamus and habenula

[4,11]. In rodents, primates and humans, the dorsal striatum

is essential for time keeping [12–14]. One current biological

model of interval timing—the striatal beat frequency model—

posits that cortico-striatal circuits are critical for time perception

[15,16]. In this model, the striatal MSNs serve as coincidence

detectors that discriminate different cortical input patterns to

quantify the passage of time [17]. Given that thousands of

cortical inputs project to individual striatal MSNs [18], how

multi-region connections between such large numbers of parti-

cipating neurons give rise to timing is currently unobservable in

mammals owing to the limited number of neurons that can be

recorded simultaneously using traditional electrophysiological

techniques. In zebrafish, it is possible to observe all brain

neurons simultaneously [1,2], and therefore we can monitor

both the pallium and the subpallium concurrently to reveal

the functional microcircuits for interval timing.

(b) Hippocampus and amygdala: the pallium
The zebrafish homologue of the mammalian hippocampus

appears to be the anterodorsolateral pallium (ADP, figure 1a),
because this region displays high spontaneous neural activity

embedded with fast ripple oscillations (above 100 Hz) in the

adult zebrafish brain [4]. The fish lateral pallium is also involved

in trace conditioning, which is a hippocampal-dependent task

in mammals [19]. Nevertheless, more anatomical pieces of evi-

dence are needed to justify that the fish ADP is a hippocampus

homologue, such as whether there are subfields (like CA1, CA3)

in fish ADP with unique intrinsic connections, just to name one.

The involvement of the hippocampus in interval timing is

implied by rodent data showing that the remembered criterion

time is persistently shorter (or earlier) than the actual criterion

time following hippocampal lesions [20,21]. In addition, the

hippocampus may also participate in temporal memory conso-

lidation [22] and in bridging temporal gaps of discontinuous

episodic events [23], leading to a recent proposal that there

are time cells in the hippocampus for representing the flow of

time in episodic-like memories [24].

For the amygdala, a recent review suggests that the dor-

somedial portion of the pallium in Actinopterygii (the ray-

finned fish class that includes zebrafish, goldfish and rainbow

trout) is the homologue of the basolateral/lateral amygdala [6].

The homologue of the central amygdala seems to be located in

the ventral subpallium (figure 1b). In mammals, the basolat-

eral/lateral amygdala process fear-related information, while

pain processing, expression of innate behaviours and anxiety

are subserved by the central amygdala [25]. For timing, a

recent study shows that amygdala neurons are sensitive to tem-

poral reward structure and display expectation/anticipatory

responses to reward [26]. In addition, emotion can modulate

time perception, as demonstrated in rodent and human studies

[27,28], but where and how this modulation occurs at the

circuit level is currently unknown.

(c) Habenula: the dorsal diencephalon
The habenula (figure 1c) is an evolutionarily conserved struc-

ture in vertebrates [29]. It comprises two sub-nuclei—medial

and lateral in mammals and dorsal and ventral in zebrafish
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Figure 2. Schematic diagram of zebrafish neuromodulatory systems in a
sagittal view of the brain. Dopamine: the red areas indicate potential dopa-
minergic regions in the olfactory bulb, subpallium and many regions in the
ventral diencephalon based on expression of TH genes and secondary markers
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[30], and each sub-nucleus has its own distinct input and

output connections. The medial habenula (using mammalian

nomenclature) receives inputs from the forebrain limbic cir-

cuits, such as the posterior septum, and projects to the

interpeduncular nucleus (IPN), and the IPN further projects

to the raphe nucleus and periaqueductal grey in the brain-

stem. The lateral habenula receives inputs from the BG

(GPi) and projects to the midbrain ventral tegmental area,

the locus coeruleus (LC), and the rostromedial tegmental

nucleus [31–33]. Reflecting these complex connections, the

proposed functions of the habenula are diverse and include

value-based decision-making [34], anticipation of future

events [35] and emotional regulation [36–38]. Although the

habenula, especially the lateral habenula, is downstream of

the BG and upstream of midbrain dopamine areas, both

of which are critical for interval timing [3], it appears to be

an overlooked brain region with respect to timing studies.
[42 – 44]. The dashed line, which is right above the TH1-expressing subpallial
region, separates the pallium and subpallium. Acetylcholine: the green areas
show the ChAT-positive regions in the habenula, subpallium and sparsely in
the ventral diencephalon [45]. Norepinephrine: the blue area indicates the NE
containing cell bodies of the LC. The blue lines indicate its projections to the
forebrain regions, such as the subpallium, pretectum and ventral diencepha-
lon [42]. Serotonin: the magenta areas indicate the 5-HT cell body regions in
the ventral diencephalon, raphe nucleus (below LC), pretectum and the
pineal (between and above Hb) [46]. Note that we have not labelled indi-
vidual subregions in the ventral diencephalon for dopamine (red), ACh
(green) and 5-HT (magenta), because this is beyond the scope of the current
review. Thus, the colour ellipsoids in the ventral diencephalon overlap. Hb,
habenula; LC, locus coeruleus; Ob, olfactory bulbs; OC, optic chiasm;
OT, optic tectum; Pa, pallium; Pi, pineal body; Pr, pretectum; SPa, subpallium;
Vd, ventral diencephalon.
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3. Zebrafish neuromodulatory systems
(a) Dopamine
Dopamine neurons project from midbrain to forebrain

regions, such as the cortex (mesocortical) and the striatum

(mesostriatal) in mammals. Psychoactive drugs that alter

dopamine neurotransmission can also change the perception

of time [39] in a manner that can be characterized as a change

in the speed of a hypothetical internal clock. That is, immedi-

ately following systemic injections of dopaminergic agonists,

the speed of the internal clock is relatively faster, thus leading

to the experience of a longer subjective time for a given objec-

tive time [40]. In contrast, when synaptic dopamine levels are

low, the speed of the internal clock is relatively slower and

time seems to drag [41]. The presence of tyrosine hydroxylase

(TH), a rate-limiting enzyme, which catalyses the transform-

ation of L-tyrosine to the dopamine precursor L-DOPA, can

be used to identify catecholamine neurons in zebrafish.

Because TH is expressed in both dopaminergic and noradren-

ergic neurons, it is not a conclusive marker for dopaminergic

neurons. A secondary marker is required to clearly distinguish

dopamine- and norepinephrine (NE)-releasing neurons in

the zebrafish brain. That said, recent labelling studies revealed

that the olfactory bulb, subpallium and ventral dience-

phalon express TH genes (figure 2, red areas) [42]. In

addition, zebrafish have paralogous TH genes (TH1 and

TH2), two genes that code for similar proteins, while mammals

only have one TH gene [43,44]. The functional differences, if

any, between TH1- and TH2-expressing neurons remain to be

determined as some neurons express one TH gene only while

others express both. In larval zebrafish, the developing puta-

tive dopamine regions start functioning 3–4 days post

fertilization (dpf), immediately after hatching [47]. Indeed,

altering dopamine neurotransmission by exposure to D1 or

D2 receptor agonists/antagonists affects locomotion in 5-dpf

zebrafish [48]. In addition, it is interesting to note that the

TH1-expressing region in the subpallium is near the border

between the ventral pallium and dorsal subpallium that

stretches from anterior to posterior into an elongated striped

area (figure 2, the red area below the dashed line) [43].

Although the function of this striped area remains to be deter-

mined, it is possible that it is the equivalent of the mammalian

dorsal striatum.
(b) Acetylcholine
The neuromodulator acetylcholine (ACh) is also involved in

mammalian interval timing. The effects on interval timing

of modifying ACh levels are quite different from the effects

of dopamine manipulations. In rodent studies, increasing

ACh activity by systemic injection of centrally active cholin-

ergic agonists gradually changes timing performance, as if

the remembered target duration is shorter, while decreasing

brain ACh activity level leads to the opposite pattern [49].

Unlike the dopamine clock effect described above, the ACh

memory effect develops across several sessions of chronic

drug injection, suggesting that it is probably related to how

temporal memory is consolidated after each training session

and how the remembered temporal content is retrieved

under the influence of chronic cholinergic drug injections

[50]. In zebrafish, immunohistochemical labelling of choline

acetyltransferase (ChAT, an ACh synthesis enzyme) indicates

that there are several ChAT-positive areas in the adult fore-

brain [45]. These include the subpallium and medial

habenula, as well as some distributed regions in the ventral

diencephalon (figure 2, green areas). The ChAT-positive

neurons in the subpallium may be equivalent to the septal

cholinergic neurons in the mammalian basal forebrain,

especially the nucleus basalis of Meynert (NBM) [45]. In

mammals, this region is rich in ACh and projects to the neo-

cortex [51]. Lesioning the NBM in rats reduces brain ACh

activity and leads to longer remembered durations [52]. In

the timing literature, systemic injection of nicotine has been
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shown to increase the speed of the internal clock in rats [53],

possibly through its interaction with dopamine systems, an

interaction recently shown in zebrafish [54]. Notably, a

recent study shows that cholinergic neurons in the rodent

medial habenula display spontaneous pacemaking activity

at a frequency of 2–10 Hz, a range that can be increased by

exposure to nicotine in vitro [55]. Whether this spontaneous

pacemaking activity is related to any aspect of interval

timing remains to be determined.

(c) Norepinephrine and serotonin
Two other major neuromodulators, NE and serotonin (5-HT),

that might be related to timing, are also present in zebrafish

[56]. In brief, zebrafish NE is synthesized in the LC, which

lies in the metencephalon (part of the brain stem) and pro-

jects to the dorsal diencephalon (e.g. pretectum) and ventral

telencephalon (subpallium) in its ascending pathway by

3 dpf (figure 2, blue area and its projections) [42]. In human

studies, blocking NE reuptake with reboxetine (leading to

more NE activity at the synapse) improved the subject’s per-

formance in a temporal discrimination task [57]. The effects

of NE on timing behaviours are usually attributed to working

memory and attention [58].

Regarding 5-HT, a recent study suggests that in zebrafish

there are 5-HT-containing neurons in the pineal, pretectum,

hypothalamus and raphe nucleus in the hindbrain (figure 2,

magenta areas) [46]. In addition, numerous 5-HT projections

are present in the dorsolateral and dorsomedial pallium as

well as the ventral subpallium. These areas may correspond

to the mammalian hippocampus and amygdala as shown

in figure 1b [6]. Accordingly, we can infer that 5-HT in

zebrafish may also participate in the functions of the hippo-

campus and amygdala, such as memory and emotion.

A recent study using calcium imaging shows that neural

activity in the dorsal raphe can modulate how visual infor-

mation is processed when a 5–7-dpf zebrafish larva is in a

heightened emotional state [59]. Different emotional states

may affect information processing and therefore distort the

perception of time [28].
4. Behaviour and cognition in larval zebrafish
Given the potential for using zebrafish to investigate the

neural circuits underlying interval timing, it is important

to develop appropriate behavioural assays. Furthermore, to

directly observe brain activity change as a function of training,

the behavioural training in zebrafish should be completed

during the larval stage, a time window during which the

skull is absent and the brain has relatively low lipid con-

tent—two ideal factors for non-invasive in vivo calcium

imaging. The larval stage of zebrafish lasts from 3 dpf to

approximately 30 dpf. During this period, the brain is still

growing, but most of the critical brain regions and neuromodu-

latory systems are already functioning. At 5–6 dpf, the yolk of

the embryo is completely consumed and the fish’s brain must

be mature enough to support a complex repertoire of foraging-

related behaviour and cognition, possibly including interval

timing. Taking this into consideration, the behavioural and

cognitive abilities of larval zebrafish first need to be explored.

A review of the full behavioural repertoire in larval zebrafish

is available elsewhere [60], so here we focus on recent studies

of conditioned behaviours because animal timing work
usually requires conditioning techniques. In addition, tasks

that can be quickly acquired during the larval stage are of great-

est interest for imaging purposes.
(a) Conditioned swimming behaviours
Timing studies using laboratory animals require the animals to

be conditioned to perform a task. The conditioning task can be

Pavlovian, i.e. pairing a conditioned stimulus (CS) with an

unconditioned stimulus (US), or instrumental, such as requir-

ing rodents to press a lever to obtain a reinforcer. The task

can be appetitive or aversive, but most animal timing studies

are based on appetitive conditioning. In fish, swimming can

be conditioned, and variables such as swim speed, tail move-

ment and location in a tank can be measured. For example,

when adult goldfish were trained in a swimming task by pair-

ing a 5 or 15 s light CS with an aversive US (an electrical shock),

the fish displayed a response function (water displacement

induced by fish activity) with a peak centred around the sched-

uled time of shock delivery following 200 training trials

distributed across 20 sessions [61]. In a different CS–US

aversive conditioning task, both adult [62] and larval [63] zeb-

rafish acquired the CS–US contingency (less than 15 s) after

about 10 conditioning trials. In this type of conditioning task,

accurate timing is required to ensure that responses do not

occur too early or too late, but are optimized.

In an escape/avoidance version of the CS–US condition-

ing paradigm, in which the fish could prevent US onset

(avoidance) or terminate it (escape) by swimming to the

non-CS side within 10 s (the CS duration), adult goldfish

attained the performance criterion after 120–180 conditioning

trials with 10 trials per daily session [19]. In the same study,

when a 5-s temporal gap was introduced in between the 10-s

CS and US (i.e. trace conditioning), adult goldfish could still

attain the performance criterion after about the same amount

of training. More importantly, fish that received an ablation

of the dorsomedial pallium (equivalent to basolateral/lateral

amygdala in mammals) after reaching the learning criterion

failed to retain their performance post-operatively, in both

trace and non-trace versions of the task. In contrast, fish

that received an ablation of the lateral pallium, a region

that may be functionally equivalent to the mammalian hippo-

campus, performed normally in the non-trace task, but not in

the trace task. These findings suggest that the dorsomedial

pallium is critical for maintaining avoidance responses in an

aversive CS–US conditioning task, while the lateral pallium

is responsible for keeping track of the temporal gap between

the CS and US. In an appetitive CS–US trace conditioning

paradigm, juvenile rainbow trout (another ray-finned fish

species) learned the task with a 3.4-s trace interval after about

three weeks of training [64]. In addition, in a recent appetitive

Pavlovian conditioning study, adult zebrafish displayed timed

conditioned responses at 4, 8 and 16-s CS–US delay conditions

after one month of training (20 trials per day) [65].

Because adult zebrafish are not suitable for non-invasive

whole-brain calcium imaging (other than imaging the dorsal

surface of the brain after removal of the skull as shown by

Aoki et al. [9]), a recent study examined the time course of

conditioned learning in larval zebrafish [66]. The fish were

trained in an aversive visuospatial classical conditioning task

in a daily session (six trials per session) continuously from 7

to 42 dpf. Fish began showing improvement on the task

when older than 21 dpf and reached the adult performance
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level at around 42 dpf. In an operant version of the task in the

same study, five-week old fish learned the task within 36 trials

(shocks), whereas a group of four-week old fish required 100

shock trials to achieve the same performance level. Fish

younger than four weeks performed even worse. In conclusion,

behaviourally conditioning larval zebrafish can be difficult

compared with conditioning adult fish owing to developmen-

tal constraints. Thus, if one wants to conduct calcium imaging

using a behavioural conditioning paradigm, one needs to opti-

mize the task parameters to ensure that fish can acquire the task

during the larval stage.

(b) Virtual environment and conditioned tail movement
Another requirement of calcium imaging is that the fish’s

head must be immobilized. One solution is to provide a

virtual reality environment such that the visual feedback

the fish receives indicates it is moving (i.e. fictive movement)

[67,68]. Another approach that allows the fish to slightly

‘move’ in a way that does not disturb brain imaging is to

permit tail movement, while the remaining body, especially

the head, is embedded in agarose. Using this approach, one

study showed that a 4-s light CS and a tactile US (that elicits

unconditioned tail movement) activated different popu-

lations of neurons in the cerebellum, while only a few

cerebellar neurons (2.12%) responded to both CS and US

[69]. This learning can be observed in 6–8-dpf larvae

within seven trials of CS–US pairing. In a similar study,

Sumbre et al. [70] observed that tail movement was evoked

and entrained by a strong rhythmic visual pattern, which

included at least 10 cycles of repetitive stimuli and a fixed

inter-stimulus interval (ISI). In addition to tail movement, it

also elicited synchronized calcium transients in the tectum,

a midbrain structure critical for visual information processing

[71]. This rhythmic responding pattern extended beyond the

offset of the visual stimulus presentation for both the tail

movement and the tectal neuron response, as if the fish was

following the visual stimulus rhythm after it stopped. The

finding suggests that the temporal properties of external

stimuli are encoded at the neuronal level and followed by

the fish at the behavioural level.
5. Time-based expectation in the larval
zebrafish brain

Given that a larval zebrafish as young as 4 dpf can repeat

the temporal pattern of a series of visual stimuli [70], we

assumed that imaging the entire forebrain under a similar

condition may reveal the neural circuits involved in this

type of timing. We developed a triple transgenic line carrying

HuC:Gal4, a pan-neural driver, GAL4s1011t and the fluor-

escent calcium indicator GCaMP3 under the UAS promoter

[7] in pigmentless Nacre zebrafish. Five (n ¼ 5) larval zebra-

fish (6–8 dpf) from the F2 in-crossed generation were

imaged under a two-photon microscope. Fish were anaesthe-

tized by a muscle relaxant, mivacurium, 20 min before the

experiment and mounted in 2% low-melting agarose in a

glass-bottom dish, surrounded by two pairs of LEDs (red

and UV) outside the dish and on each side anterior to the

fish. Each fish was presented with a stimulus sequence that

comprised four repetitions of the same-colour, same-duration

stimulus with a fixed 20-s ISI as illustrated in figure 3a. This
visual sequence design was intended to evoke a rhythmic

neural response in the brain as shown in the tectum by

Sumbre et al. [70]. Because fish were imaged under conditions

of otherwise complete darkness, each LED illumination was a

long flash of light to the whole recording chamber. All five

fish completed five blocks of testing: Block 1 was the baseline

recording without any stimulus, Blocks 2 and 3 comprised

20-s stimulus (red in Block 2 and UV in Block 3), whereas

Blocks 4 and 5 comprised 30-s stimulus presentations

with red and UV, respectively. Each block took about 5 min

to complete and the inter-block interval was about another

5 min. During light exposure, the brain was imaged at five

focal planes, at an interval of 1 s per z-stack.

We noted that a number of neurons fired strongly when a

fifth stimulus would have occurred had one been scheduled,

although no stimulus was actually delivered as indicated by

the fifth rectangular box in figure 3a. We term these cells

omitted stimulus response (OSR) neurons, consistent with

prior usage [72]. As shown in figure 3b, we divided the brain

image into five subregions. The average number of recorded

neurons from each subregion across blocks is plotted in

figure 3c. A two-way ANOVA treating block (five blocks)

and brain regions (five areas) as factors confirmed that there

was no significant change ( p ¼ 0.91) of the number of neurons

across five blocks, suggesting that our automated cell segmen-

tation routine using an IMAGEJ algorithm across recording

blocks was reliable (see the electronic supplementary material

for details). The OSR neurons were defined as those showing

lower than a mean of 1.2 F/F0 (a ratio change over baseline

fluorescence level) value during the presentation of the stimu-

lus sequence in conjunction with showing higher than 1.7 F/F0

value in at least 3 consecutive seconds during the 20-s window

in which a fifth stimulus would have occurred had the stimu-

lus presentation pattern been continued. These thresholding

criteria (1.2 and 1.7) ensure that the identified OSR neurons

were responding the strongest during the omitted stimulus

time period, but were less active during the presentation of

the stimulus sequence.

For statistical purposes, we grouped data from Blocks 2

and 3, in which the stimulus duration was 20 s into the first

level of the block factor. Data from Blocks 4 and 5 were grouped

as the second level of the block factor. The colour factor com-

prised red, UV and baseline. For the number of identified

OSR neurons among the five subregions, a two-way ANOVA

on each subregion confirmed a significant colour effect in the

habenula ( p , 0.05) and the pallium ( p , 0.01). A significant

block effect was also observed in the habenula ( p , 0.01),

pallium ( p , 0.01) and tectum ( p , 0.001). The interaction

between colour and block was significant only in the pallium

( p , 0.05) region. No OSR neurons were identified in the olfac-

tory bulb or the ADP region. Because the recording area

covered a small portion of the tectum only (figure 3b), the

tectum data are not representative and are excluded from

further discussion. Hence, we focus on the habenula and pal-

lium OSR data. As illustrated in figure 3d, more pallium OSR

neurons were observed in the red block after the stimulus dur-

ation was increased from 20 to 30 s, which was confirmed by a

significant interaction between colour and block ( p ¼ 0.013)

and post-hoc comparisons ( p , 0.01 by Fisher LSD). Thus,

the effects shown in figure 3d were largely driven by the

increase of red OSR neurons. As illustrated in figure 3e, a

significant increase of the number of OSR neurons was

observed as a function of colour ( p , 0.05) and block
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Figure 3. (a) Schematic diagram and time line of the experiment design. The stimulus is turned on four times for 20 s in Blocks 2 and 3 and 30 s in Blocks 4 and 5,
all with a fixed ISI at 20 s. Block 1 is baseline recording, during which no stimuli were presented. The missing fifth stimulus (the empty dashed rectangular box) is
the time window in which we identify the OSR neurons throughout the brain. In Block 1, the first empty dashed rectangular box (labelled AA) was used as the time
window to obtain the baseline number of neurons meeting the OSR criteria for comparison with Blocks 2 and 3. The second empty dashed rectangular box in Block
1 (labelled BB) was used as the baseline window to obtain the OSR for comparison with Blocks 4 and 5. (b) Schematic diagram of cell segmentation of the whole
brain using IMAGEJ automated algorithm (see the electronic supplementary materials for details). The brain is dissected into five different regions—blue for the
habenula, red for the pallium, yellow for the anterior-dorsolateral pallium, light blue for the olfactory bulb and green for the tectum. The entire brain was scanned
at five different z-planes with a distance of 12 mm between planes. With a range of 48 mm from top to ventral, the imaging covers the entire habenula and most
of the pallium (1 pixel ¼ 0.215 mm). (c) Mean (+s.e.m.) number of segmented neurons as a function of five recording blocks in each of the five subregions. There
was no significant difference ( p ¼ 0.91) in the factor block and no significant interaction ( p ¼ 0.31) between block and brain regions across the five blocks
indicating that the number of identified neurons remain at the same level across blocks. (d ) Mean (+s.e.m.) pallium OSR neurons for colour and block conditions.
The symbol †† indicates a significant difference for the factor of colour ( p , 0.01) while the symbol ** indicates a significant difference for the factor of block
( p , 0.01). The symbol ‡ indicates a significant interaction between colour and block ( p , 0.05). (e) Mean (+s.e.m.) habenula OSR neurons for colour and block
conditions. The symbol † indicates a significant difference for the factor of colour ( p , 0.05), while the symbol ** indicates a significant difference for the factor of
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beginning of the block indicates the time window (6 – 40 s) where the mean baseline fluorescence level (F0) was taken. The list of neurons from top to bottom is
sorted by ascending standard deviation (s.d. from min to max) during the stimulus sequence, thus neurons with lesser response during the stimulus sequence
appear at the top of each colour condition. There were 81 habenula OSR neurons (Rows 1 – 81) in the UV condition and 83 habenula OSR neurons (Rows
101 – 183) in the red condition. In the baseline, only 27 habenula neurons (Rows 201 – 227) met the OSR criteria owing to spontaneous activity in the habenula.
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( p , 0.01), but no significant interaction was found. This

suggests that the habenula showed an equivalent increase in

OSR neurons in both the red and UV blocks ( p ¼ 0.92 by

Fisher LSD) when the stimulus duration was increased to 30 s.
In summary, our data confirm the possibility of using

whole-brain calcium imaging at single-cell resolution in tem-

poral processing experiments. Specifically, the number of

habenula OSR neurons in the red and UV blocks was
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significantly increased in later recording blocks, either because

of more training experience with the stimulus sequence or

because the stimulus duration was increased from 20 to 30 s.

By looking at the ratio heatmap in figure 3f, the habenula

OSR appears to result from timing of the ISI as some of

the OSR neurons began showing excitation at the offset

of each stimulus presentation, and reached the highest

response level during the omitted stimulus time period. The

OSR response observed here is conceptually similar to the

anticipatory response shown in the lateral habenula in pre-

vious primate studies [35], but differs in that there was no

reward or punishment in our paradigm. Therefore, stimulus

valence through conditioning is probably not required to

evoke a habenula anticipatory response, but a sequence of

visual stimuli with a fixed ISI is sufficient. On a related note,

the detection and prediction of periodic visual stimulus patterns

has also been shown in the retina ganglion cells [72] and the

tectum [70], but our experiment differs in the length of the

stimulus duration, ISI duration (in the millisecond range in

[72]), and the number of stimulus repetitions (a minimum of

10 repetitions in [70]) that are required to evoke an OSR. Here,

three exposures of the fixed ISI were enough to evoke an OSR

in the habenula after the fish had some experience with the

same stimulus sequence. Our data also indicate that a 6–8-dpf

larval zebrafish can time up to 20 s within 1 h of training.
6. Future interval-timing studies using zebrafish
Zebrafish offer several advantages for the study of the neural

mechanisms underlying interval timing in vertebrates. For

example, genetically encoded calcium indicators that report

calcium-dependent neural activity can be easily developed

and maintained in zebrafish to establish reliable transgenic

lines, as demonstrated by our data. By using the Gal4/UAS

system [73], specific neural populations can be labelled with

Gal4 driver lines based on these cells’ genetic properties [7].

On the behavioural side, there are two ways to conduct

timing studies—motor timing or perceptual timing. The

motor timing approach, such as swimming in a certain

location of a tank at a certain time window, may not be plaus-

ible in young larval zebrafish because of two concerns. First,

it may require a sustained amount of training for a larval zeb-

rafish to learn a visuospatial task, as demonstrated by Valente

et al. [66], such that by the time the fish has acquired the task,

the brain is no longer accessible for non-invasive imaging

techniques, unless the skull is removed, and even then only

the brain surface is accessible for imaging [9]. Second, a

behaving and moving zebrafish head is certainly not ideal

for imaging. However, there are exceptions to the second con-

cern. A recent study successfully applied calcium imaging of

the tectum while a 5-dpf larval fish was capturing a moving

paramecium (a protozoan that larval fish hunt for food) [74].

This study was possible because larval fish often swim in
intermittent bouts, thereby allowing the calcium signals in a

non-moving tectum to be recorded in between the swimming

bouts while the prey-capturing behavioural sequence was

still ongoing. This new experimental approach may provide

some hints for developing future behavioural and cognitive

tasks, including timing tasks.

The use of perceptual timing tasks that allow investi-

gation of how the fish perceives the duration of a stimulus

or a sequence of stimuli is more plausible given the current

technical limitations. A perceptual timing task can also be

combined with restricted tail movement as some previous

studies have shown promising results (CS–US conditioning

in [69] and CS-entrained rhythms in [70]) in young larval

fish, with minimum training required. It is also possible to

train a larval fish in a different environment before imaging

and then record the brain calcium signals to the same stimu-

lus under a microscope, but this depends on how well a fish

can generalize what it learned across different contexts.

State-of-the-art research on interval timing suggests that it

is a cognitive function that relies on multiple brain regions,

with cortico-striatal circuits currently under the research

spotlight [75,76]. However, the details of how neurons in cor-

tico-striatal circuits generate the sense of time remain to be

elucidated. Using traditional electrophysiological recording

techniques to record only a subset of neurons in the circuits

is not sufficient to reveal the entire timing network. Imaging

studies of the entire zebrafish forebrain at single-cell resol-

ution (e.g. figure 3b) may provide this knowledge. For

example, by combining whole-brain calcium imaging in con-

junction with exposing fish to psychoactive drugs that alter

the neurotransmission of dopamine or ACh, we can examine

how clock-speed and temporal memory consolidation/

retrieval are modulated at cell and circuit levels.

In addition, a developing brain following intense behaviour-

al training may also be dynamically changing by itself owing to,

for example, neurogenesis, synaptogenesis and synaptic prun-

ing. As traditional in vivo extracellular electrophysiological

recording techniques cannot distinguish between new and old

cells over the course of several days, learning-dependent cellular

and synaptic modification cannot be represented by frequency

information of action potentials recorded near the electrodes.

In contrast, whole-brain calcium imaging in zebrafish will be

able to preserve these dynamic changes as there are calcium

indicators for imaging cell bodies [77] and synaptic terminals

[78] and structural changes owing to development or behav-

ioural training [79]. As interval timing is a complex cognitive

function that usually requires several days of training to adjust

behaviour properly, its underlying cellular and synaptic

change over the course of training will become visible under

a microscope.

The experiment was approved and under the guidance of the
Institutional Animal Care and Use Committee (IACUC) of the Biological
Resource Centre at Biopolis (#120771).
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