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Catch the wave: prairie dogs assess
neighbours’ awareness using contagious
displays

James F. Hare, Kevin L. Campbell and Robert W. Senkiw

Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

The jump–yip display of black-tailed prairie dogs (Cynomys ludovicianus) is

contagious, spreading through a prairie dog town as ‘the wave’ through a

stadium. Because contagious communication in primates serves to assess

conspecific social awareness, we investigated whether instigators of jump–

yip bouts adjusted their behaviour relative to the response of conspecifics

recruited to display bouts. Increased responsiveness of neighbouring town

members resulted in bout initiators devoting a significantly greater pro-

portion of time to active foraging. Contagious jump–yips thus function to

assess neighbours’ alertness, soliciting social information to assess effective

conspecific group size in real time and reveal active probing of conspecific

awareness consistent with theory of mind in these group-living rodents.
1. Introduction
Members of group-living species rely upon collective vigilance to detect preda-

tors [1], occasionally synchronizing vigilance so as to enhance the detection of

potential threats [2,3]. As the number of individuals residing within a group

increases, each individual can devote less time to vigilance and more time to

other activities, for example foraging [1,4,5], owing, in part, to the cumulative

effect of each individual’s finite probability of detecting presumptive threats

[6–8]. Where such group-size effects are dependent upon collective detection,

however, individual group members must assess the size of the group in

which they reside [9], and perhaps more importantly, the vigilance of fellow

group members [10,11] to tailor their behaviour to the situation at hand.

Black-tailed prairie dogs (Cynomys ludovicianus) are group-living, semi-

fossorial rodents that are subject to intense predation by terrestrial and avian

predators [12,13]. Classic group-size effects, with diminishing individual allot-

ment of time to vigilance and increasing time devoted to foraging with

increasing group size, have been documented observationally [14] and exper-

imentally [15] among black-tailed prairie dogs, though the mechanism via

which group size is assessed is unknown. Just as synchrony in the activity of

group members promotes social cohesion [16,17] through social facilitation

among individuals [18], fine-tuning one’s foraging–vigilance trade-off relative

to the vigilance of other group members would prove adaptive [11].

We investigated contagious, multimodal ‘jump–yip’ displays of black-tailed

prairie dogs as a potential means of adjusting the instigating individual’s fora-

ging–vigilance trade-off relative to the responsiveness, and hence vigilance, of

neighbouring group members. In instigating a jump–yip bout, an individual

raises its anterior torso above the ground, achieving at least an erect posture,

though sometimes propelling itself from the ground. This postural change is

coupled with the extension of the signaller’s forelimbs and the emission of a

vocalization that can be described phonetically as ‘wee-oo’ [19] as the anterior

torso is raised and then lowered, resulting in a multimodal display lasting

around a second ([20]; see the electronic supplementary material, movie S1).

Unlike other prairie dog vocalizations or displays, the jump–yip is typically

contagious, spreading from the initiator through neighbouring colony members

as ‘the wave’ through a stadium ([20]; see the electronic supplementary

material, movie S2). To date, the function of the jump–yip has proved elusive.
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Initial accounts were purely descriptive [21,22], though sub-

sequent researchers have suggested that the jump–yip

serves as a territorial call [12], an ‘all-clear’ [13,23] or ‘end-

of-danger’ signal [12], a means of promoting social bonding

within the group (‘contact group cohesion’; [19]), an indicator

that the signaller is less likely to show escape behaviour in the

face of threat, promoting temporarily heightened vigilance

among conspecifics [20], or as Owings & Coss [24] suggested

for various animal signals, a means of managing conspecifics.

Here, such management would presumably promote reliance

on conspecifics for predator detection, thereby allowing the

signaller to devote time to activities other than watchfulness.

The acquisition of information from conspecifics proves

adaptive in contexts including foraging [25], habitat choice

[26], mate choice [27], parenting [28], tool use [29], and

both anti-brood parasite [30] and anti-predator responses

[31]. Although social learning and public information use

are often considered tacitly different concepts [32–34], the

effective utilization of socially available information requires

that individuals assess the veracity of the information they

receive [35–37], and sample available information on an

ongoing basis to ensure that information is up-to-date [38].

Such assessment is of particular importance where ignoring

information proves costly [39], as would be the case where

animals are faced with the risk of predation [8].

We hypothesized that the instigation of a jump–yip bout

serves to probe neighbouring individuals for feedback regarding

their current vigilance state. If that were the case, we predicted

that subsequent time devoted to personal vigilance by bout insti-

gators would be directly proportional to the latency of the first

conspecific to respond to the instigator’s jump–yip (greater

delay in response indicating reduced alertness of neighbours),

and inversely proportional to the number of conspecifics joining

a jump–yip bout (a smaller number indicating reduced collec-

tive vigilance) as well as the overall duration of the bout

(reduced length of contagion indicative of lesser collective vigi-

lance). Given the well-documented trade-off between foraging

and vigilance in black-tailed prairie dogs [13–15], we also pre-

dicted that the allocation of time to foraging by bout

instigators would be inversely correlated with the latency of

the first conspecific to respond in kind with a jump–yip and

positively correlated with the number of individuals recruiting

to, and the overall duration of jump–yip bouts.
2. Material and methods
To ascertain whether instigator vigilance and foraging behaviour

were affected by subsequent jump–yip bout properties (latency

to first response, number of individuals recruited and bout dur-

ation), we video recorded a total of 173 jump–yip bouts during

November 2003 and from May through September 2004 within

16 distinct prairie dog towns spread across six populations,

including 14 naturally occurring towns in South and North

Dakota, USA, and two introduced towns in Winnipeg, Manitoba,

Canada (see R.L. Senkiw M.Sc. thesis for further details; down-

loadable at: http://mspace.lib.umanitoba.ca/bitstream/1993/

2842/1/MSc%20Thesis.pdf). To ensure our results were uncon-

founded, we eliminated bouts interrupted by the appearance of

predators, prairie dog vocalizations other than those constituting

part of the jump–yip bout, humans or vehicles, and those where

the behaviour of the bout instigator could not be distinguished

because it was out of frame or out of focus in the video recording,

or where any ambiguity existed regarding the identity of the

bout initiator. Thus, our final dataset included data from
27 independent bout initiators from 14 distinct towns (one to

three bouts per town) among the six populations, for which we

quantified the proportion of time the bout instigator engaged

in vigilance (with its head above the horizontal plane) and the

proportion of time spent foraging (head below the horizontal

plane, grazing or chewing) in the 1 min subsequent to the

second syllable of the bout instigator’s ‘wee-oo’ call. Postures

in which the head was below the horizontal plane but where

neither active grazing nor chewing occurred were not scored as

vigilance or foraging. Limiting estimation of vigilance and fora-

ging to only 1 min maximized the likelihood that the bout

instigator’s behaviour was attributable solely to properties of

the current jump–yip bout. Bouts were considered independent

of each other if at least 4 s elapsed without an individual mani-

festing a jump–yip, based on the 5 s criterion Smith et al. [20]

employed to delineate unique bouts, and on an obvious discon-

tinuity in the distribution of individuals recruiting to bouts after

4 s in our larger 173-bout sample of videotaped jump–yip bouts.

For each bout, we recorded the latency (s) for the first individual

to respond with a jump–yip to the bout instigator, the number of

jump–yip responses within each bout and the overall duration of

each bout (s). We applied linear regressions to test for relation-

ships between those three independent variables, and the

proportions of time the bout instigator devoted to either vigi-

lance or foraging in the post-bout period, considering those

statistically significant where p , 0.05.
3. Results
The proportion of time devoted to vigilance by bout initiators

was unaffected by the latency for the initial respondent

to recruit to a contagious jump–yip bout (F1,25 ¼ 0.03,

p ¼ 0.87; figure 1). Further, although time allocated to vigi-

lance tended to decrease with both an increasing number of

respondents and increasing bout duration, those declines

fell short of statistical significance (F1,25 ¼ 2.86, p ¼ 0.10 and

F1,25 ¼ 2.89, p ¼ 0.10, respectively; figure 1). Similarly,

although there was a trend toward decreasing time devoted

to foraging with increasing latency of conspecifics to respond

to the initial propagation of a jump–yip, that change was not

statistically significant (F1,25 ¼ 1.31, p ¼ 0.26; figure 1). Stat-

istically significant relationships were detected for the

proportionate allocation of time to active foraging, relative

to both the number of respondents recruiting to a given

jump–yip bout (F1,25 ¼ 5.87, p ¼ 0.02) and the overall dur-

ation of contagious display bouts (F1,25 ¼ 4.50, p ¼ 0.04).

Bout instigators increased time allocated to foraging with

both an increasing number of individuals recruiting to a

jump–yip bout and increasing bout duration (figure 1).

That said, bout duration was positively correlated with the

number of respondents (r ¼ 0.82), though neither bout

duration nor the number of respondents recruiting to a

jump–yip bout was well correlated with latency to response

(r ¼ 0.32 and r¼ 0.09, respectively). Significant differences or

pronounced trends for bout initiators to alter their allocation

of time to foraging and vigilance in accord with our predictions

exist for five of the six relationships examined, which in itself,

should occur rarely by chance alone (binomial p¼ 0.11).
4. Discussion
Instigators of jump–yip bouts increased their proportionate

allocation of time to foraging as the responsiveness of conspe-

cifics increased. The absence of any relationship between
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Figure 1. Proportionate allocation of black-tailed prairie dog jump – yip bout instigator time to foraging and vigilance relative to the latency (s) of the first respon-
dent to contribute to a contagious bout of calling, the number of respondents recruiting to the bout and the overall duration (s) of the jump – yip bout evoked
(*p , 0.05).
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bout instigator time allocation to vigilance and latency of

initial conspecific response is not attributable to bout instiga-

tors consistently manifesting maximal vigilance, in that the

proportion of time devoted to vigilance varied considerably

across the range of response latencies observed. Moreover,

bout instigators are undoubtedly constrained to devote time

to vigilance so as to assess bout response characteristics

prior to adjusting their foraging–vigilance trade-off

accordingly. The effect of conspecific responsiveness on the

proportion of time devoted to foraging is not attributable to

variation in group size proper, in that treating aboveground

group size as a covariate did not alter our findings. Jump–yip

displays thus function to promote the accrual of information

regarding collective vigilance within the group, clarifying

earlier speculation regarding the function of these displays.

While conspecific responsiveness to the instigation of a

jump–yip bout significantly affected the time bout initiators

allocated to foraging, only an inconsequential change was

detected in instigator personal vigilance with variation in con-

specific response. How accurately our simple postural assay of

the head being held above the horizontal plane reflects an indi-

vidual’s state of vigilance remains an open question, as does

consideration of any potential cost associated with the use of

this socially acquired information [40].

Our results are consistent with the assertion by Owings &

Coss [24] that tonic communication functions to manage con-

specifics, in this case providing up-to-date, context-specific

information on the vigilance of conspecific group members.

Among group-living species, accurate decision-making is facili-

tated via the use of social information [41,42], particularly where

certain group members are less well informed than others [43].

Conspecific neighbours constitute a particularly important

source of information where animals are subject to predation

risk [44], and reliance on that information may, in and of

itself, prompt social contagion [45]. In mimicking the evasive

behaviour of neighbours, group-living insects avoid unseen
predators (the ‘Trafalgar effect’; [46]). Similarly, schooling fish

avoid previously un-encountered predators by mimicking

their neighbours’ behaviour [47].

Based on both previous empirical findings and an individ-

ual-based model, Beauchamp et al. [11] argued that selection

would favour monitoring and copying the vigilance of neigh-

bours, resulting in collective waves of vigilance that would

facilitate collective detection of predators. Given the coevolu-

tionary nature of predator–prey relationships, however,

predators might be expected to cue-in on, and coordinate

their attacks relative to lulls in such waves. Our empirical find-

ings for black-tailed prairie dogs reveal collective waves of

coordinated behaviour, presumably optimizing foraging effi-

ciency of individuals reciprocally sharing information

regarding collective vigilance. Participants within a bout thus

likely benefit via reciprocal altruism [48] among resident

town members, with any risk of enhanced detection by

presumptive predators owing to the production of this con-

spicuous display being shared among signallers. Such

broadly subscribed patterns of display behaviour may also

serve as a potent pronouncement of vigilance [49], thereby

reducing predation risk among town members in general.

The wave-like spread of jump–yip displays through towns

of black-tailed prairie dogs is consistent with literature impli-

cating the use of public information in social evolution

[33,34] and contagious displays in particular, in the evaluation

of conspecific social awareness [50]. Yawning in humans and

other primates [51,52] and laughter among humans [53] pro-

vide familiar examples of contagious displays. Platek et al.
[51], among others, have reported that such behaviours are

associated with self-processing and empathy in humans.

Indeed, emotional contagion among humans has been con-

sidered at least an important precursor to more advanced

‘Theory of mind’ abilities [54], wherein contagion represents

the first step toward respondent awareness of the emotional

state of the instigator by invoking that same state in the
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respondent [55]. Emotional contagion in humans, however,

transcends superficial motor mimicry and represents a means

of sharing affect of considerable evolutionary antiquity [56].

Although the existence of a relationship between empathy

and social contagion has long been recognized for non-

human primates [57], it has more recently been reported for

dogs [58]. Applied to our findings, it is evident that in respond-

ing to the emergent display properties of neighbours recruited

to a jump–yip bout, black-tailed prairie dogs manifest at least a

rudimentary awareness of the state of conspecific group mem-

bers. As Barrett et al. [59] aptly point out, communication and

mind are intimately intertwined, in that the ‘mind’ is a form of

social participation or process, rather than an entity unto itself,

ultimately serving to rationalize the organism’s social environ-

ment. In this light, it is not surprising that these highly social

animals have evolved coordinated social behaviour and com-

mensurate cognitive abilities [60] promoting their success in

the face of intense predation pressure. Further study is required

to elucidate additional nuances of the mechanism, along with

the ultimate implications of this newly discovered, adaptive

social contagion in prairie dogs.
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