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Paulo Sampaio4, Chris Todd Hittinger3, Graham Bell2 and Christian R. Landry1
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Exploring the ability of organisms to locally adapt is critical for determining the

outcome of rapid climate changes, yet few studies have addressed this question

in microorganisms. We investigated the role of a heterogeneous climate

on adaptation of North American populations of the wild yeast Saccharomyces
paradoxus. We found abundant among-strain variation for fitness components

across a range of temperatures, but this variation was only partially explained

by climatic variation in the distribution area. Most of fitness variation was

explained by the divergence of genetically distinct groups, distributed along

a north–south cline, suggesting that these groups have adapted to distinct cli-

matic conditions. Within-group fitness components were correlated with

climatic conditions, illustrating that even ubiquitous microorganisms locally

adapt and harbour standing genetic variation for climate-related traits. Our

results suggest that global climatic changes could lead to adaptation to new

conditions within groups, or changes in their geographical distributions.
1. Introduction
It is broadly accepted that global climatic changes are affecting most living sys-

tems. Among these changes, global warming is expected to be a major source of

biome perturbation in the next 100 years. During this period, warming could

exceed the range of temperatures that many living organisms can tolerate

[1,2], especially in taxa that exhibit low adaptability to temperature change.

For instance, Deutsch et al. [3] showed that terrestrial ectotherms, which have

distributions determined by a narrow thermal variation tolerance, would be

highly sensitive to temperature changes. Similarly, Quintero & Wiens [2]

found that most locally adapted vertebrate species probably evolve too

slowly to overcome the global warming expected in the next century. Finally,

many thermal-dependent fitness components varying among populations are

correlated with local climatic conditions in diverse species (e.g. [4,5]).

Despite considerable interest in the local adaptation to temperature in

animals and plants [1,2,6], climatic adaptation in the cryptic biodiversity,

especially microorganisms, has received much less attention [7]. This lack of

knowledge has long been justified by the Baas Becking hypothesis: ‘everything

is everywhere but the environment selects’ [8]. The first part of this postulate,

which has long been debated, implies that if microorganisms form worldwide

populations they should not be considered as part of the threatened biodiver-

sity. However, it is now well established that not all microorganisms are

ubiquitous [9,10]. The second part of the Baas Becking’s hypothesis implies

that microbes could freely adapt in response to environmental changes.

Microbes could form extremely large populations and are thus expected to
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have access to a large pool of beneficial mutations when the

environment changes. This last assumption is supported by

the rapid adaptation of experimental yeast and bacterial popu-

lations to changing environments in the laboratory [11,12]. In

addition, evidence suggests that the adaptation of microbial

populations to changing environments continually increases

with artificially introduced migration [13], challenging theor-

etical predictions that high rate of migration could limit

adaptability to new environments (reviewed in [14]).

Microbial local adaptation in the wild has been reported in

a limited number of studies. For instance, local adaptation was

investigated in several bacterial species by Belotte et al. [15] and

Whitaker [16] in different populations associated with contrast-

ing environments. Distances separating these populations were

small (from a few metres to 40 km), suggesting that they were

not likely to be isolated by geographical barriers. Nonetheless,

the authors found evidence of local adaptation in these special-

ized populations, suggesting that selection was strong enough

to overcome migration in patchy environments [15,16]. Studies

looking for evidence of local adaptation in diverse populations

of specialized microorganisms, such as bacteria and ciliates

with more ubiquitous distribution (50 to several thousands of

kilometres), showed that limited migration and local adap-

tation could shape population structure at this scale [16,17].

In these cases, however, it was difficult to distinguish between

the respective contributions of environmental conditions and

restricted migration, because variation in environmental fac-

tors was often correlated with geographical distance among

sampling sites. Thus, we still do not know whether natural

populations of ubiquitous microbes are limited in space

owing to local adaptation or whether they harbour genetic

variation that could allow adaptation to changes in climatic

conditions.

Although Baas Becking’s model has been investigated in

natural populations of prokaryotes (reviewed in [18]), studies

of eukaryotic microorganisms are more sparse (see, for

instance, fungi reviewed in [10], ciliates in [17], diatoms in

[19]). There are several differences between bacteria and

eukaryotic microbes that prevent the extension of what has

been observed in the former to the latter. One of the most

important differences is the fact that eukaryote microbial life-

styles, for example those of fungi, are not strictly clonal and

involve phases of sexual reproduction, which allows recombi-

nation, and may thus affect the spread of advantageous

mutations.

The budding yeast Saccharomyces paradoxus is a wide-

spread free-living fungus associated with deciduous trees (see

electronic supplementary material, figure S1 and table S1). In

North America, S. paradoxus is sympatric with its sister species

Saccharomyces cerevisiae, although S. cerevisiae seems to be less

common or absent at higher latitudes [20,21], where tempera-

tures are cooler (see electronic supplementary material, figure

S2a,b). This distribution is in agreement with previous obser-

vations that S. paradoxus is able to grow at lower temperatures

than its sister species [22–26]. In North America, days with oscil-

lations below and above 08C (freeze–thaw cycles) are more

frequent in the south than in the north (see electronic supplemen-

tary material, figure S2c–e), which is also in agreement with the

lower ability of S. paradoxus to tolerate freezing [27]. These obser-

vations suggest that the ecological niche of S. paradoxus is defined

at least partly by climatic conditions. Given that S. paradoxus is

distributed up to the northern boundary of deciduous tree distri-

bution (see electronic supplementary material, figure S1) and that
global changes are expected to disturb the northern boundary of

tree species distributions [28], one would expect that S. paradoxus
populations will also be affected by global changes. This distri-

bution makes it a prime model to study the role of climate

change in adaptation. In addition, S. paradoxus shows important

genetic and phenotypic variation within population and differen-

tiation at the continental [23,29] and on more local scales (for

instance, of the order of 2500 km in North America [30]), consist-

ent with population dynamics and biogeography that are largely

independent of human activities and subjected to limited

migration. Thus, S. paradoxus provides an ideal model to study

the effect of climate warming at the continental scale on a natu-

rally occurring microbe.

Here, we used S. paradoxus northeastern North American

populations as a model to examine whether populations of

microbial fungi could be locally adapted to climatic conditions.

We assembled a set of 27 strains from locations that were repre-

sentative of temperature and freeze–thaw cycle variation

across northeastern North America. We assayed these strains

for two fitness components: growth rates at temperatures cov-

ering the range in which budding yeasts are known to grow

(10–428C) and survival through a freeze–thaw cycle. We

observed significant correlations between these fitness com-

ponents and the climatic conditions at locations where strains

were sampled. These correlations could only be detected

when considering strong phenotypic and genetic divergences

between genetic groups of S. paradoxus in North America.

These results support the existence of local adaptation, both

for growth at high temperature and for survival to freeze–

thaw cycles, which suggests that S. paradoxus populations

could be affected by global climate changes.
2. Material and methods
(a) Collection of Saccharomyces paradoxus
We used a collection of 41 S. paradoxus strains that we previously

collected in a sampling area covering the Saint Lawrence River

Valley and Estuary (Quebec) and British Columbia (see electronic

supplementary material, figures S1 and S2, and table S2) [20]. We

completed our collection with 42 S. paradoxus strains that we

sampled on oak trees from different elevations (140–413 m) on

Mont St Hilaire (Quebec) and eight strains we sampled in Wiscon-

sin (see electronic supplementary material, figure S1 and table S2).

We also used 25 S. paradoxus strains from different collections, iso-

lated from Mont St Hilaire [31], Michigan, Pennsylvania, New

Jersey [29], Saskatchewan, Ontario and Missouri (kindly provided

by J. B. Anderson, M. A. Lachance and P. Sniegowski; electronic

supplementary material, figures S1 and S2, and table S2).

(b) Climatic data
We collected monthly climatic data for 69 geographical locations

uniformly distributed across our sampling area (see electronic

supplementary material, figure S3a). We used the mean annual

temperature (Tm) at each site as a climatic factor to explain vari-

ation in strain growth rate at different temperatures (see

electronic supplementary material, figure S2b). We estimated the

frequency of freeze–thaw cycles to estimate Do, the number of

days per year with alternation of positive and negative tempera-

tures (see electronic supplementary material, figure S2c). We

used Do as climatic factor to explain variation in strain survival

to a freeze–thaw cycle (see electronic supplementary material,

figure S2c–e). Additionally, we defined three main and five subcli-

matic divisions in our sampling area using clustering analysis of
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Tm values (see electronic supplementary material, figure S3b) to

simplify result descriptions, as many of the climatic variables are

correlated with each other.

(c) Fitness component assays
We examined two fitness components potentially related to

climatic adaptation for 27 strains representative of our strain collec-

tion and for two control reference strains (S. cerevisiae strain BY4743

and S. paradoxus strain CBS432). Growth rates (six replicates

per strain) were estimated as follows: 150 ml of fresh liquid culture

(yeast extract, peptone, dextrose, YPD) at OD600 ¼ 0.03 (approx.

50 000 cells) were grown for 4 (20, 30, 37 and 428C) or 7 days

(108C), and OD600 was measured every 15 min. Growth rate at

each temperature (GT) was measured as the maximum slope of

the growth curves (see the electronic supplementary material).

Freeze–thaw survival (two replicates per strain) was estimated

as described by Will et al. [27] using colony counting with some

modifications. For each strain and each replicate, a fresh liquid

culture in YPD at OD600 ¼ 0.3 was frozen for 2 h at 2808C and a

replicate culture was stored for 2 h on ice (approx. 48C) as

a control. For each replicate and treatment, cultures were sampled

twice, and 150 and 300 cells were plated on solid YPD medium,

resulting in four replicates per strain and per treatment. Freeze–

thaw survival (FS) was measured as the ratio of colony count

on treatment plates (2808C) over the colony count on control

plates (þ48C).

(d) Genetic origin of Saccharomyces paradoxus strains
PCR products of partial CDS sequences of unlinked genes POP2
(1044 pb, Chromosome XIV) and RPB2 (414 pb, Chromosome

XV) for 102 strains (see NCBI accession numbers in electronic sup-

plementary material, table S2) were amplified as described in

electronic supplementary material (table S3 for PCR primers)

and were sequenced by Sanger sequencing. We completed these

data with sequences available for 19 reference S. paradoxus strains

that are representative of other parts of the world and of all known

genetic groups (see electronic supplementary material, table S4)

[23]. We used these sequences in a phylogenetic approach to

assign S. paradoxus strains to genetic groups previously defined

[29] (see the electronic supplementary material). Additionally,

we developed an RFLP method for the quick identification of

S. paradoxus genetic groups to identify 15 strains from Mont

St Hilaire that we did not include in the sequence analysis (see

the electronic supplementary material, table S2 and figure S6).

(e) Statistical analyses of fitness component variation
For each strain (n ¼ 27, control strains removed), we first removed

outlier measurements and calculated the mean GT (six repli-

cates) and total FS (four replicates) values (see the electronic

supplementary material, figure S4 and supplementary method in

File S1, and File S2). We used a generalized linear model (GLM)

to identify the factors that contribute to variation in individual

strain fitness components GT and FS (see the electronic sup-

plementary material). First, we used Tm as an additive climatic

factor to explain GT ( formula GT1: GT � Tm) and Do as an additive

climatic factor to explain FS ( formula FS1: FS � Do). We then

performed a x2-test to estimate whether the climatic factor signifi-

cantly improved the GLM model (assessed by the part of residual

deviance explained by the factor). We repeated the analysis by

including the information of genetic groups (Gg), first by consider-

ing it as both an additive and interacting factor ( formula GT2: GT �
Tm þ Gg þ Tm:Gg and FS2: FS � Do þ Gg þ Do:Gg), and second

by repeating the first analysis within each genetic group separately

( formula GT3: GT � Tm and FS3: FS � Do). All analyses were

performed in R [32].
3. Results
(a) Fitness estimates at different temperatures and

freeze – thaw survival
We examined the effect of climatic parameters on fitness

components of diverse strains of S. paradoxus collected from

across northeastern North America (see electronic supplemen-

tary material, figure S2a). To ensure a representative

temperature gradient and a broad sample of S. paradoxus
diversity, we measured the growth rates (GT) of 28 S. para-
doxus strains (including the European-type strain CBS432),

and the diploid S. cerevisiae reference strain BY4743 as a control

(see the electronic supplementary material, table S1 and figure

S4), at 108C, 208C, 308C, 378C and 428C, and freeze–thaw sur-

vival (FS). Strains came from a representative subsample of

our collection with respect to geography and climate (see elec-

tronic supplementary material, figure S2a). None of the tested

strains showed significant growth at 428C (data not shown).

Saccharomyces paradoxus strain CBS432 had a maximal

growth rate at 208C and showed no growth at 378C, whereas

S. cerevisiae BY4743 had the maximal growth rate at 308C
and showed significant growth at 378C (see electronic sup-

plementary material, figures S4 and S5). FS was higher for

CBS432 (0.20) than for BY4743 (0.00; electronic supplementary

material, figures S4 and S5e). We observed high variability

among North American S. paradoxus strains for all traits

measured, with the exception of growth rate at 108C, which

remained low for all strains (see electronic supplementary

material, figures S4 and S5a). Unlike the European strain

CBS432, most North American S. paradoxus strains could

grow at 378C and seven of them showed faster growth rate

than S. cerevisiae at this temperature (see electronic supplemen-

tary material, figure S5d ). Similarly, 13 strains were more

tolerant to a freeze–thaw cycle than the S. paradoxus-type

strain CBS432, and seven of them were almost unaffected by

this stress (mean survival . 0.50; electronic supplementary

material, figures S4 and S5e).

We tested whether among-strain variation for fitness com-

ponents was explained by the climatic factors at the sampling

locations. We found that the climatic factor Tm had no signifi-

cant effect on GT at any temperature ( p . 0.5; electronic

supplementary material, figure S5a–d and table S6). We

observed a negative correlation between the number of

days per year with alternation of positive and negative temp-

eratures (Do) and latitude (r ¼ 0.83, p , 0.001; electronic

supplementary material, figure S2d). FS was positively and

significantly correlated with Do (estimate: 0.010+0.001,

p , 0.001; electronic supplementary material, figure S5e and

table S6) and the proportion of residual deviance explained

by Do was weak but significant (0.03; p , 0.001). We tested

for the correlation of strain growth rates (GT) among

four different temperatures in a two-way crossed ANOVA.

The main effect of strains was significant (F26,78 ¼ 2.25,

p , 0.01, random-effects model) and the strain � temperature

interaction was modest but significant (F78,540 ¼ 1.90,

p� 0:001). Two-thirds of the strain � temperature inter-

action variance were attributable to genetic correlations

among strains at different temperatures (responsiveness;

electronic supplementary material, table S5). All pairwise

genetic correlations between temperatures were positive,

with a Pearson correlation of þ0.4 or more (see electronic

supplementary material, table S5).
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(b) Identification of Saccharomyces paradoxus
genetic groups

We tested whether the large unexplained fraction of fitness

component variation could be explained by heterogeneity in

the lineages of S. paradoxus strains, because North American

S. paradoxus strains belong to three genetic groups, as pre-

viously described by Kuehne et al. [29]. From the

phylogenetic tree based on the nucleotide sequences of two

unlinked loci, we assigned a representative sample of 102

strains from North America to these groups, including the 27

strains we used for fitness component assays (figure 1). The

two markers were sufficient to discriminate the three groups

(namely A, B and C) previously described with a larger

number of loci (see electronic supplementary material, figure

S7). Grouping of strains within groups A, B and C was strongly

supported by bootstrap analyses (figure 1). Two strains from

southern Quebec clustered with four strains from Pennsylvania

previously associated with the non-indigenous West Eurasian

genetic group (group A; figure 1a) [29]. Fifty-seven strains

from across our sampling area (except Saskatchewan and East-

ern Quebec) clustered with 12 isolates belonging to the main

previously described indigenous American S. paradoxus
group (group B; figure 1a) [23,29,33,34]. The 32 remaining

strains clustered in the third group, which is genetically distinct

from all other S. paradoxus strains (group C; figure 1a). This

group was previously described as a single diverging isolate
from Pennsylvania (YPS667) (see electronic supplementary

material, figure S7) [29], but our collection expands its range

further north to Quebec (30) and Saskatchewan (2). Group A

showed 2.63+0.53% of nucleotide divergence with group B,

in agreement with previous studies [23,29,33]. Group C

showed 3.01+0.57% and 2.06+0.43% of divergence with

groups A and B, respectively (see electronic supplementary

material, figure S7). We found significant genetic variation

within groups B (0.33+0.09%) and C (0.04+0.01%), and

none in group A (see electronic supplementary material,

table S8 and figure S7).

Our genetic screen of 102 S. paradoxus strains in North

America revealed that, with the exception of the location

where strain YPS667 was isolated (Buck Hill Falls, PA [29]),

groups B and C were largely spatially segregated, and

locations where groups B and C were found together were

all located close to the 58C isocline separating climatic areas

1 and 2 (figure 1b). Strains from group A were only found

close to the 58C isocline or further south, often in the same

locations as other groups (figure 1b). We found that groups

B and C were distributed following a north–south gradient,

with B strains more frequent in the south (areas 2 and 3)

and C strains more frequent in the north (area 1; figure 2a).

We observed the same pattern with altitude at a very local

scale in Mont St Hilaire (Quebec), where group B was present

at all altitudes, and group C was only found at sites near the

mountain top (figure 2b).
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(c) Fitness component variation in the light of
genetic groups

We revisited the analysis of growth and freeze–thaw survi-

val, this time considering genetic groups. In our set of

strains, six belonged to group A, 11 to group B and 10 to

group C (see electronic supplementary material, table S2).

A substantial and significant part of among-strain fitness

component residual deviance (0.23–0.66) was explained by

differences among groups (electronic supplementary

material, table S7). At 108C and 208C, group B grew signifi-

cantly faster than group C, and group A was intermediate

(figure 3a,c, respectively). At 308C, groups B and C were

indistinguishable, and grew significantly faster than strains

of group A (figure 3b). We observed the strongest effect of

genetic groups for growth at 378C and for freeze–thaw survi-

val ( p , 0.001; electronic supplementary material, table S7).

At 378C, group B grew significantly better than both

groups A and C, which showed similar fitness (figure 3d ).

Freeze–thaw survival was significantly higher in group B

than in group A, and significantly lower in group C than in

both other groups (figure 3e). For growth at 208C and

freeze–thaw survival, the interaction between climatic indi-

cators and genetic groups explained an additional and

significant part of residual deviance (0.32 and 0.18, respect-

ively, p , 0.001; electronic supplementary material, table

S7). We thus repeated the analysis within each genetic

group independently for each fitness component and found

that strains responded differently to climatic factors at 208C
and 378C, and for freeze–thaw survival (see electronic sup-

plementary material, table S7), but not at 108C and 308C
(data not shown). In group C, most of residual deviance at

208C and 378C (0.80 and 0.65, respectively) was explained by
mean annual temperature Tm ( p , 0.001 and p , 0.01, respect-

ively; electronic supplementary material, table S7). We

observed no such tendency in groups A and B. Higher

among-strain variation in freeze–thaw survival was observed

in group B (figure 3e). A main part of the residual deviance in

freeze–thaw survival in group B was explained by the number

of freeze–thaw days per year Do at sampling sites of the strains

(0.41, p , 0.0001; electronic supplementary material, table S7).

Although the variation was about 100-fold lower in group A

and 15-fold lower in group C, most of freeze–thaw survival

in groups A and C was also explained by Do (0.47, p , 0.001

and 0.49, p , 0.05, respectively; electronic supplementary

material, table S7). Overall, growth at 208C and 378C in

group C (estimates: 0.004+0.001, p , 0.001 and 0.015+
0.004, p , 0.001, respectively) and freeze–thaw survival in

groups B and C (estimates: 0.095+0.005, p , 0.001 and

0.022+0.002, p , 0.001, respectively) were significantly

positively correlated with climatic factors (figure 3c–e). In

group A, freeze–thaw survival was significantly negatively

correlated with Do (estimates: 20.005+0.002, p , 0.05).
4. Discussion
Here, we used S. paradoxus to investigate whether popu-

lations of budding yeasts were adapted to local climatic

conditions. We found evidence that these populations are

locally adapted and that the global patterns of adaptation

are also affected by historical factors that are reflected in

the presence of distinct evolutionary lineages in our sampling

area. Our results support previous observations suggesting

that climatic factors play a major role in the ecological differ-

entiation of budding yeasts [22–27,35,36], but this time

within species. For instance, S. paradoxus and its sister species

S. cerevisiae naturally occur in very similar ecological niches in

terms of available substrates, and they are sympatric in many

places in the world [24,37], including North America (see

electronic supplementary material, figure S1). Interestingly,

the natural distribution of S. paradoxus seems to be slightly

shifted further north in America (see electronic supplemen-

tary material, figure S1) and Europe [38] when compared

with S. cerevisiae. These differences between S. cerevisiae and

S. paradoxus distributions are surprising, considering that

their worldwide distribution suggests large dispersion capa-

bilities. This contrast provides evidence for their adaptive

divergence, rather than limited migration, at least at local

geographical scales [30]. Phenotypic divergence between

S. cerevisiae and S. paradoxus is limited to only a few traits,

but their ability to grow at different temperatures [22–26] is

the most consistent with their geographical distribution [20].

Another consequence of temperature gradients in North

America is that soils and surfaces of trees may remain frozen

during longer periods in the north than in the south, where

temperature oscillates around freezing temperature for longer

periods (see electronic supplementary material, figure S2d).

This phenomenon could be another explanation for the shifted

geographical distributions of S. cerevisiae and S. paradoxus [20],

as it was previously shown that they have contrasted tolerance

to freeze–thaw cycles [27]. Additional evidence for the promi-

nent role of temperature on budding yeast distribution was

found in Saccharomyces eubayanus, a cold-adapted yeast that

has only been reported in Patagonian forests, where climate

is comparable with that of northeastern North America [35].
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Figure 3. Among-strain variation in fitness components (growth at different temperatures and freeze – thaw survival) is explained by differences among groups and
by variation within groups. The following conditions were tested for 27 S. paradoxus strains: growth in liquid-rich medium at (a) 108C, (b) 308C, (c) 208C, (d ) 378C
and (e) survival to a freeze – thaw cycle. (a – e) T-test comparison between fitness of three genetic groups represented by boxplots (A, green; B, red; C, blue);
(c – e) dots indicate the measurements of fitness components; curves indicate fitness component values expected under GLM models within each group separately
( formula 3) as a function of climatic factors (c,d) Tm or (e) Do. Significance of the climatic estimate is shown next to the curve only for p � 0.05. Within-
group analyses are not shown for growth at 108C and 308C (where differences were not significant). p-value ranges are indicated by the following symbols:
***p , 0.001; **p , 0.01; *p , 0.05; 8p , 0.1.
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The importance of adaptation to temperature in yeast ecology

has also been suggested for Saccharomyces kudriavzevii and

Saccharomyces uvarum, which have maximum growth tempera-

tures of 32–358C, and naturally coexist with S. cerevisiae and

S. paradoxus in some parts of the world [24]. Hence, temperature
appears to be one of the only traits that had been systematically

associated with the divergence of ecological niches among

budding yeasts [26]. Our study system therefore establishes a

new paradigm for the study of ecological genetics in a model

organism, and potentially its link with speciation. In addition,
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we found that temperature plays a major role in the divergence

and local adaptation of S. paradoxus, suggesting that climatic

conditions may affect population divergence within species.

The fact that isolates of S. paradoxus are adapted to the local

conditions at which they were sampled may reflect adaptation

at two different time scales. First, based on the assignment of

the strains to the three known North American groups [29],

we observed a north–south gradient in the distribution of

groups B and C (figure 2a), which is consistent with our

hypothesis that climatic variables determine strain distri-

butions. The shift in frequencies between the two groups is

found around the 58C isocline. This gradient was also observed

at a very local scale on Mont St Hilaire (Quebec), where group

C was only found at high altitude near the mountain top,

whereas group B was present at all altitudes (figure 2b).

Mont St Hilaire is located close to the 58C isocline and its

400 m of elevation probably captures the transition to a slightly

colder climate. We observed strong phenotypic differences

between these S. paradoxus genetic groups, suggesting diver-

gent evolution for growth rate at these temperatures and for

freeze–thaw survival (figure 3). However, group B strains

grew on average systematically faster at all temperatures,

except for 308C, and it survived freeze–thaw cycles better

than group C. The geographical distribution of groups B and

C is in agreement with their respective abilities to grow at

high temperature (378C) and to survive to a freeze–thaw

cycle, which both represent extreme conditions faced in

nature. The fact that group B has faster growth rate at 108C
than group C is counterintuitive, because it is group C that is

mainly found in cold regions. One possibility is that growth

at 108C and 378C could be genetically correlated because

they share some of the same physiological mechanisms,

which we know to be partly true for S. cerevisiae [36]. Shared

mechanisms could also be an explanation for the positive

correlations we observed between strain individual perform-

ances at different temperatures in S. paradoxus, indicating no

specialization to a particular temperature (see electronic sup-

plementary material, table S5). In these cases, adaptation to

high temperatures could exapt strains to low temperatures at

the same time. We must consider other adaptive traits that

could have been fixed among groups and might provide an

advantage to group C in its habitat, for example the ability to

use a larger spectrum of substrates than group B. For instance,

the nature of sugar sources greatly varies among oak species,

which may allow for the maintenance of stable budding

yeast communities composed of species with different optimal

growth temperatures [24]. Furthermore, freezing tolerance

seems to be linked to other adaptive traits, such as copper

resistance [39] and carbon metabolism [27,40]. For example,

Will et al. [27] demonstrated that the loss of genes involved in

freeze–thaw survival in S. cerevisiae provided a higher fitness

in environments with high sugar concentration. A comprehen-

sive survey of genomic variation underlying adaptation to

temperature and metabolism in North American S. paradoxus
populations, together with additional investigations of fitness

components under competition between groups, is needed to

map and better understand the functional mechanisms under-

lying these complex ecological trade-offs.

We found within-group genetic variation in agreement

with previous genomic estimations in American, European

and East Asian S. paradoxus groups [23,30,41]. Together

with the genomic evidence that these groups are not clonal

lineages [41], the phenotypic data show that there is ample
genetic diversity within groups. For instance, as we observed

for nucleotide polymorphism (see electronic supplementary

material, figure S7 and table S8), variation in freeze–thaw

survival was higher in group B than in groups A and

C. Phenotypic variation was correlated with local climatic

conditions within groups, suggesting adaptation on smaller

geographical and temporal time scales. Also, we observed a

significant interaction between climatic and genetic factors,

suggesting that strains responded differently to climate,

depending on their genetic group. Within group C, growth

rates at 208C and 378C were positively correlated with cli-

matic conditions. Similarly, freeze–thaw survival was

positively correlated with climatic conditions in group B

and, to a lesser extent, in group C (figure 3). We also

observed a weak and negative but significant correlation

between freeze–thaw survival and climatic conditions in

group A. Given the low phenotypic variation we observed

in this group, the absence of polymorphism owing to its

recent introduction [29] and its sparse distribution in North

America, this counterintuitive effect should be carefully inter-

preted and must be validated with a larger sampling effort.

Short-term adaptability is expected to be a major factor

in the response of organisms to rapid global changes [1].

The strong phenotypic differences among budding yeast

species suggest that, with global warming, their distribution

could be shifted to higher latitudes, provided the trees on

which they live also expand their distribution (but see [28]).

Similarly, one would expect the areas of sympatry between

species to move towards high latitudes. Such a scenario

would probably have impacts at both the species and group

levels in S. paradoxus. In North America, the fact that adap-

tation to local temperature and nucleotide diversity seems to

be more limited for group C than for group B suggests that

the former harbour less standing genetic variation and could

be less likely to adapt to global warming. Moreover, with the

possible shift of S. cerevisiae further north, one can speculate

that competition would increase in S. paradoxus populations

between groups B and C, possibly enhancing the exclusion of

the less adapted group. Hence, local adaptation could poten-

tially have profound impacts on microbial populations

subjected to global warming. Just as S. cerevisiae has become

a prime model for laboratory studies over the years, our

work suggests that its sister species S. paradoxus could be a

very powerful model to study the ecological genomics of

global warming in the wild.
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