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Themagneto-elastica: from
self-buckling to self-assembly
Dominic Vella, Emmanuel du Pontavice,

Cameron L. Hall and Alain Goriely

Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Spherical neodymium–iron–boron magnets are
permanent magnets that can be assembled into a
variety of structures owing to their high magnetic
strength. A one-dimensional chain of these magnets
responds to mechanical loadings in a manner
reminiscent of an elastic rod. We investigate the
macroscopic mechanical properties of assemblies of
ferromagnetic spheres by considering chains, rings
and chiral cylinders of magnets. Based on energy
estimates and simple experiments, we introduce an
effective magnetic bending stiffness for a chain of
magnets and show that, used in conjunction with
classic results for elastic rods, it provides excellent
estimates for the buckling and vibration dynamics
of magnetic chains. We then use this estimate to
understand the dynamic self-assembly of a cylinder
from an initially straight chain of magnets.

1. Introduction
The self-assembly of magnetic particles is of great general
scientific and engineering interest, appearing as it does in
a range of key applications from microscopic swimming
[1], through water filtration [2] to the manufacture of
high-end electronic devices [3] and the design of new
synthetic viruses [4]. The general scientific problem is to
understand the process by which magnetic particles self-
assemble through a combination of magnetic interactions
and other mechanical forces, and to explore the influence
of the initial distribution of magnets and random
fluctuations on the process of assembly. However,
once formed, the overall macroscopic properties of the
assembly are also of considerable interest. Previous
research has focused on modelling two specific cases:
chains of paramagnetic beads linked by a molecular bond
[5,6] or the preferred arrangement of large ensembles
of dipolar nanoparticles using both experiment and
computation [7,8].
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(a)

(b) (c) (d )

Figure 1. Confinement of themagneto-elastica. A chain consisting ofN = 25 spheres (with diameter 2a= 6 mmandmagnetic
field strength B= 1.195 T) is compressed by bringing its ends closer by a distance�L and forms a shape that is compared with
the elastica with the same end–end compression (solid curves). Results are shown for (a)�L/2aN = 0.19, (b)�L/2aN =
0.56, (c)�L/2aN = 0.68 and (d)�L/2aN = 0.80.

In this article, we consider the collective elastic behaviour of interacting dipolar ferromagnetic
spheres arranged in a chain, and we study the spontaneous self-assembly of such a chain into a
chiral cylinder.

We use collections of millimetre-sized spherical neodymium–iron–boron (NdFeB) magnets
as a paradigm for dipolar self-assembly. These magnets can be easily obtained either as toys
(under the brand names Neocube or Buckyballs) or as well-calibrated magnets for engineering
applications. The high magnetic strength of these spheres can be used to create various shapes and
structures that resist mechanical deformation through their magnetic interaction. The simplest
demonstration of this resistance to deformation is seen by taking a chain of beads and bringing the
ends closer together (figure 1). The deformed chain retains a coherent shape, which is reminiscent
of the classic elastica that is formed by performing the same experiment with an elastic rod or
beam [9]. Because of this similarity, we refer to this shape as the ‘magneto-elastica’, though we
stress that the spheres do not have any elastic connection in the usual sense.

Instead, the spheres interact through their magnetic fields, with the consequence that magnetic
beads that are far apart along the chain but close to each other in space will potentially have
strong interactions that cannot be accounted for using classic elastica theory. These interactions
between widely spaced spheres (along with other issues such as the discreteness of the chain
and imperfections in the application of ‘clamped’ boundary conditions) may explain some of the
discrepancy observed in figure 1 between the confinement of the magneto-elastica and the results
of classic elasticity theory. A detailed analysis of the differences between the magneto-elastica and
the classic elastica would involve the difficulty of quantifying the differences between two shapes.
However, the qualitative similarity seen in figure 1 is striking, suggesting that the concept of an
effective ‘bending stiffness’ for the magneto-elastica may be a useful one. Further demonstrations
of the elastic-like nature of the magneto-elastica can readily be found. For example, chains held
vertically buckle under their own weight, a closed ring oscillates and a cylinder resists bending
but recovers its shape after poking (figure 2). As described below, these experiments give us
opportunities to test quantitatively the hypothesis that the magneto-elastica can be approximated
by a chain with a magnetism-induced bending stiffness.

The origin of the resistance to deformation exhibited in figures 1 and 2 is simple to understand
in physical terms. For simplicity, we assume that the magnetic spheres have a uniform internal
magnetization and recall that the external magnetic field around such a sphere is precisely
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(a)

(c)

(b)

Figure 2. Three simple experiments that illustrate the resistance to deformation of assemblies of ferromagnetic spheres.
(a) The self-buckling of a vertical chain of magnetic spheres as further spheres are added. (b) The prolate–oblate oscillation
of a ring of magnetic spheres. Snap-shots of the motion are shown at intervals of 0.021 s. (c) A self-assembled chiral ‘nano-
tube’. In each case, the diameter of the spheres is 2a= 5 mm and the magnetic field strength is B= 1.195 T. (Online version in
colour.)

(a)

(b) (c)

Figure 3. The physical mechanism behind the resistance to deformation of a magnetic chain. (a) In a straight chain all of the
magnetic dipoles are aligned. (b) When deformed the dipoles can no longer be aligned. This frustration gives rise to a torque
that resists deformation. (c) The general problem of determining the dipole orientation for a given deformation is in principle
complicated [11]; here, we consider a model calculation based on computing the energy required to form closed rings from
chains.

dipolar [10]. At equilibrium, a straight chain of spherical magnets is therefore an oriented
collection of magnetic dipoles (shown schematically in figure 3a). However, when this chain is
forced to bend, the dipoles cannot be aligned both with the chain and with each other (figure 3b).
In this frustrated configuration, the magnetic field of each dipole exerts a torque on every
other dipole. The combined resistive torque that is generated acts to straighten the chain locally
and reduce its curvature. This behaviour reminds us of an elastic rod, which exerts a torque
proportional to the curvature κ to resist bending. However, this torque resisting bending is
different from the ‘tension’ that has previously been observed in a chain of paramagnetic spheres
placed in an external magnetic field [5,6].

For an elastic rod, the ratio of the bending moment applied and the curvature induced, κ ,
is called the bending stiffness, which is frequently denoted by K. Provided that the radius of
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curvature is large compared with the typical cross-sectional dimension of the rod, K is a constant,
and, for an elastic rod of radius a and Young’s modulus E, it is well known that

K = π

4
Ea4. (1.1)

The bending stiffness has the dimensions of a force times a length squared, i.e. Nm2. Based on
such dimensional considerations alone, we might expect that a magnetic chain should have an
effective bending stiffness of the form

Keff = B2a4

μ0
f (aκ , N). (1.2)

Here, B is the magnetic field strength (a quantity that is specified by the manufacturer in tesla
where 1 T = 1 NA−1 m−1), μ0 = 4π × 10−7 NA−2 is the permeability of free space, a is the radius
of an individual sphere and f (aκ , N) is a dimensionless function of the dimensionless chain
curvature, aκ , and the number of spheres in the chain, N.

It is not clear a priori whether the function f (aκ , N) in (1.2) is a constant, how it might depend
on N or even why Keff should not depend on derivatives of the curvature. An analysis of this
question for general shapes has been considered in detail elsewhere [11] and shows that there is, in
fact, a non-local contribution to the deformation energy that cannot be explained as a result of an
‘effective bending stiffness’. However, this analysis is complicated to the extent that even deriving
the equilibrium equations for the shape of a chain in all but some very simple cases is impossible.
In this paper, therefore, we adopt a more direct approach: we compute the energy required to
deform a linear magnetic chain into a polygonal ring and, by comparing with the corresponding
elastic result, determine the corresponding dimensionless bending stiffness. In this simplified case
symmetry indicates that the function f (aκ , N) of (1.2) is a function of N alone, f̃ (N). Moreover, we
find that f̃ (N) rapidly approaches a constant value as N increases. Having shown this we then
proceed to use the concept of a magnetic bending stiffness to understand quantitatively some
different experimental scenarios, including those shown in figure 2a,b.

2. The effective bending stiffness

(a) Theoretical background
We begin by considering a single magnetic sphere centred at the origin and recall that,
assuming the internal magnetization is uniform, the external field at a position r due to this
sphere is [10]

B(r) = μ0

4π

3(m · r)r − r2m
‖r‖5 . (2.1)

Here, the dipole moment of a sphere of radius a is m = (4πa3/3)Mm̂ with M the strength of the
internal (uniform) magnetization and m̂ a unit vector in the direction of the dipole moment.
(Note that for the magnetic spheres available commercially the value of B = μ0M is given by
the manufacturers and is typically in the range 1.1–1.4 T.) The approach we adopt here is based
on the calculation of the magnetic energy of various configurations of spheres. The energy of a
single magnetic dipole m in an externally imposed magnetic field, Bext, is [10]

U = −m · Bext. (2.2)

As the external field of a magnetic sphere is precisely the same as a dipole with dipole moment
m, the energy of interaction between two magnetic spheres must be precisely the energy of two
dipoles with the same strength, separation and orientation [11]. Therefore, the total energy of a
collection of N magnetic spheres located at ri with dipole moment mi is

UN = −
N∑

i=1

N∑
j=1
j�=i

mi · Bj(ri)

2
, (2.3)
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where

Bj(r) = μ0

4π

3[(r − rj ) · mj](r − rj) − ‖r − rj‖2mj

‖r − rj‖5

and the factor 1/2 is introduced in (2.3) to ensure that the interaction energy is not double-
counted.

We shall proceed by considering the energies of a chain consisting of N spheres in a linear chain
and in a closed ring.1 Having calculated these energies, we evaluate their asymptotic behaviour in
the limit of large chains, N � 1, by making extensive use of the Euler–Maclaurin formula [12,13],
which is given for completeness in appendix A.

(b) A linear chain
Before calculating the energy of a finite linear chain (figure 3a), we note that it is already known,
in fact, that the closed ring is energetically favourable in comparison with the linear chain for all
N > 3 [14,15]. This is because of the release of energy that occurs when the two spheres at the
end of such a chain are brought close to one another; as such this difference in energy does not
reflect the energy required to frustrate the dipole alignment, which is the basis of the stiffness that
is of interest to us here. Rather than considering the energy of a finite linear chain, therefore, we
instead consider the energy of a line of N spheres embedded within an infinite chain. Orientating
the infinite chain along the y-axis, the position vector of the centre of the ith bead is

ri = 2a(0, i), i ∈ Z. (2.4)

Clearly, in equilibrium the dipole moments must be parallel to the line of the chain; without loss
of generality, we assume that the moments are oriented in the negative direction so that the dipole
moments of the beads are given by

mi = (0, −1)
4πa3

3
M, i ∈ Z. (2.5)

We consider the energy of the bead at the origin in the magnetic field of all of the other beads,
U0. The energy of a chain of length N will thus be U0 × N/2, with the factor of 2 included to avoid
double counting the energy, and the simple form to go from a single sphere to all N arising from
the fact that the outer chain is infinite.

Now, the magnetic field at the origin is

B(r = 0) = μ0

4π

∞∑
i=−∞

i�=0

3(ri · mi)ri − r2
i mi

r5
i

. (2.6)

This will only have a component in the y-direction (and indeed we are only interested in this
component since m0 ∝ j); we therefore calculate

j · B(r = 0) = μ0

4π

∞∑
i=−∞

i�=0

−16πa5Mi2 + 4a2i2(4πa3/3)M
(2a|i|)5 = − ζ (3)

6
μ0M, (2.7)

where ζ (3) =∑∞
i=1 i−3 ≈ 1.202. Hence,

U0 = −m0 · B(r = 0) = −2πζ (3)
9

μ0a3M2 (2.8)

and the energy of the chain of N such magnets is

U(chain)
N = N

2
U0 = −πζ (3)N

9
μ0a3M2. (2.9)

1These configurations are chosen because their symmetry dictates that the dipole moments must be aligned with the tangent
vector of the deformed chain. In fact, this result holds more generally for chains whose curvature is not too large, but involves
a detailed calculation that is not particularly enlightening [11].
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(c) A finite ring
To isolate the effects of bending, we consider a polygonal ring of N spheres, with the centre of the
polygon being at the origin. As N → ∞, this approaches a circle, and so will isolate any curvature-
dependent energy that arises.

Letting R = a csc(π/N) be the distance of the centre of each magnetic sphere from the origin,
we have that the position vector of these centres is

ri = R
[

cos
2π

N
(i − 1), sin

2π

N
(i − 1)

]
, i = 1, 2, . . . , N (2.10)

and, again taking the bead i = 1 to be orientated in the negative y sense, the magnetic moments
are

mi = 4πa3

3
M
[

sin
2π

N
(i − 1), − cos

2π

N
(i − 1)

]
, i = 1, 2, . . . , N (2.11)

since symmetry dictates that mi · ri = 0.
Using symmetry again, it is enough to calculate the energy of the bead i = 1 and multiply this

value by N/2 (again to avoid double counting). To do this, we note that

|r1 − ri| = 2R sin
π

N
(i − 1). (2.12)

We find that

U1 = − π

18
a6M2

R3

N∑
i=2

1 + cos2[π (i − 1)/N]

sin3[π (i − 1)/N]
(2.13)

and hence
U(ring)

N
μ0M2a3 = − π

36
N sin3 π

N

N−1∑
j=1

1 + cos2(π j/N)

sin3(π j/N)
. (2.14)

We note that an equivalent expression has been found previously in studies of the ground state
of dipolar particles [14].

In deriving expression (2.14), we have not made any approximations. However, to progress
further we need to evaluate the sum

S =
N−1∑
j=1

1 + cos2(π j/N)

sin3(π j/N)
= 2

(N−1)/2∑
j=1

1 + cos2(π j/N)

sin3(π j/N)
+ O(1) = 2H + O(1) (2.15)

in the limit N � 1. To do this, we would like to apply the Euler–Maclaurin formula (A 1). However,
the summand in H (and hence also its derivatives) grows without bound as jN−1 → 0. In order to
overcome this difficulty, we note that, for j close to 1, the summand in H may be approximated by
a Taylor series for large N (or small π/N). We therefore write H = H1 + H2, where

H1 =
Nα−1∑

j=1

1 + cos2(π j/N)

sin3(π j/N)
, H2 =

(N−1)/2∑
j=Nα

1 + cos2(π j/N)

sin3(π j/N)
(2.16)

and 0 < α < 1.
Now, expanding the summand in H1 for π j/N 
 1 (which holds for N � 1 since j < Nα < N),

we have

H1 =
Nα−1∑

j=1

(
2N3

π3j3
+ 7π

60N
j + · · ·

)
= 2N3

π3

⎛
⎝ζ (3) −

∞∑
j=Nα

j−3

⎞
⎠+ 7π

120
N2α−1 + O(1). (2.17)

The partial sum of j−3 in this expression may be computed using the Euler–Maclaurin formula,
which gives

H1 = 2ζ (3)
π3 N3 − N3−2α

π3 − N3(1−α)

π3 + 7π

120
N2α−1 + O(1). (2.18)
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To evaluate H2, we immediately make use of the Euler–Maclaurin formula, which yields

H2 = N
π

∫π/2−π/2N

πNα−1

1 + cos2 y

sin3 y
dy + 1

π3 N3(1−α) + O(1), (2.19)

where the constant terms occur from the evaluation of the function at the limits of the integral.
Calculating the integral analytically and performing Taylor series expansions about y = 0 and
y = π/2, we find that

H2 = N
π

[
− π

2N
+ O(N−3) + N2(1−α)

π2 − 1
6

− 7
120

π2N2(α−1)

]
+ 1

π3 N3(1−α) + O(1). (2.20)

Combining this result with that for H1, we see that the terms involving α all cancel (as they must,
since α was arbitrary) and we are left with

S = 4ζ (3)
π3 N3 − 1

3π
N + O(1). (2.21)

Using this result in (2.14) we find that

U(ring)
N

μ0M2a3 = − π

36
N

π3

N3

(
1 − π2

2N2 + · · ·
)

× 4ζ (3)N3

π3

(
1 − π2

12ζ (3)N2

)
+ O(1), (2.22)

or

U(ring)
N

μ0M2a3 = −πζ (3)
9

N + π3

18

[
ζ (3) + 1

6

]
N−1 + O(N−2). (2.23)

(d) Energy due to bending and the effective bending stiffness
In determining the energy of deformation, it is the difference in energies between the deformed
and undeformed states that is of interest. Comparing the ring and the linear chain, we find that
the ring has an energy that is higher by an amount

�UN

μ0M2a3 = U(ring)
N − U(chain)

N
μ0M2a3 = π3

18

[
ζ (3) + 1

6

]
N−1 + O(N−2). (2.24)

As expected, the ring state is energetically unfavourable compared with the straight
configuration—there is an energy penalty to be paid by bending the chain into a closed loop.
The energy change can be computed exactly for different values of N by evaluating the sum in
(2.14) numerically, which gives the energy of a closed ring, and comparing it with the energy of a
linear chain of the same length, which is given by (2.9). This numerical computation of the exact
energy difference between the deformed and undeformed configurations shows that the closed
loop is energetically unfavourable for all N ≥ 4, but that for N = 3 the closed loop, i.e. triangular,
configuration is actually energetically favourable compared with the straight chain.

Figure 4a shows the asymptotic behaviour of �UN for large N. We observe that the leading
order behaviour of the asymptotic result (2.24) is in excellent agreement with numerical
computations of the change in energy for even quite moderate N � 10. Furthermore, the error
in (2.24) appears to be O(N−3), although we are only able to formally justify that this error should
be O(N−2). This suggests that a cancellation occurs in the calculation of the N−2 term in (2.24) that
we are not able to access using the relatively simple calculation outlined here.

Finally, we compare the energy of deformation in (2.24) with that of an elastic rod of bending
stiffness K and length L that is bent round to form a circular ring of radius R = L/2π . The energy
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Figure 4. Numerical and asymptotic results for the effective bending stiffness. (a) The numerically computed change in energy
�UN as a function of N (points) rapidly tends to the asymptotic result (2.24) (dashed line). Although the error estimate in (2.24)
leads us to expect that E (N)∼ N−2, numerical computations reveal that in fact E (N)∼ N−3 (see inset). (b) The behaviour
of the dimensionless bending stiffness f̃ (N)= f (sin(π/N), N), with f as defined in (1.2), computed numerically (points) and in
the limit N � 1 (dashed line).

of an elastic ring is simply UB = K/2 × L/R2 = 2π2 K/L. By identifying this energy with the energy
(2.24) of our magnetic ring of length L = 2aN, we obtain an effective bending stiffness

Keff = μ0M2a4 π

18

[
ζ (3) + 1

6

]
≈ 0.239

B2a4

μ0
. (2.25)

Compared with an elastic rod with a circular cross section, radius a and bending stiffness K =
Eπa4/4 the effective bending stiffness in (2.25) corresponds to an effective Young’s modulus Eeff ≈
0.956B2/μ0 π ≈ 400 kPa; our magnetic solid is a rather soft material.

We note that the form of (2.25) is identical to that given on purely dimensional grounds in
(1.2). However, we also note that the dimensional analysis that led to (1.2) was not able to tie
down the dimensionless function f or indeed to determine whether it should depend on N. In
fact, we have found that, to leading order in N−1, the bending stiffness is a constant independent
of N. This result is compared with numerical results in figure 4b, where we see that, as expected,
the numerically computed f̃ (N) ∼ (π/18)[ζ (3) + 1/6] as N → ∞. While this notion of an effective
bending stiffness only holds exactly for the closed rings considered here [11], the remainder of
this paper is concerned with determining whether this concept is useful in gaining quantitative
understanding of some more general scenarios beyond that for which the above analysis is
strictly valid.

3. The heavymagneto-elastica
A vertical column of magnetic spheres will buckle once its weight reaches a critical value, as
shown in figure 2a. A purely numerical approach to this problem is to compute the shape that
minimizes the gravitational and magnetic energies of a finite chain of spheres; such an approach
reveals that sufficiently short chains remain vertical, while the chain buckles above a critical
length (i.e. number of spheres), as is also observed experimentally. However, this minimization
process does not highlight the underlying physics at play in such scenarios. A complementary
approach is to use the classic result [16] that a heavy elastic rod with bending stiffness K and
linear mass density ρ� buckles when its length

L ≥ Lc ≈ 1.986
(

K
gρ�

)1/3
. (3.1)

For the chains of magnetic spheres considered here, L = 2aN and ρ� = 2πρa2/3. Using the effective
bending stiffness Keff from (2.25) we thus expect that buckling will occur if

N > Nc ≈ 0.4817G−1/3, (3.2)
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10

10–4

G
10–3

N

5

N
c ª 0.4817G –1/3

Figure 5. Experimental, numerical and asymptotic results showing the regions of (G, N) parameter space for the buckling of a
chain ofmagnets under its ownweight. Squares correspond to experiments inwhich the chain buckled, while circles correspond
to experiments in which the chain remained straight. Crosses correspond to the results of direct numerical computations (using
the optimization toolbox of Matlab) which, for a given number of spheres, gives the critical magneto-elastic number Gc at
which buckling occurs. The dashed line gives the corresponding approximate relationship (3.2), which is obtained using the
idea of an effective magnetic bending stiffness and the classic result for the buckling of a heavy elastic column [16]. (Online
version in colour.)

where we have introduced the magneto-gravitational number

G = μ0ρga
B2 (3.3)

to characterize the relative importance of the magnetic properties and the weight of the spheres.
Experiments with spheres of different radii a in the range 1.5 mm ≤ a ≤ 4 mm and different

magnetic strengths 1.195 T ≤ B ≤ 1.4 T were conducted to determine the number of spheres
required for self-buckling (with a vertical clamp at the base). (In these, and the other experiments
described in this paper, we do not measure the value of B directly but rather assume that the
value given by the manufacturer is correct.) In these experiments, a chain that is sufficiently short
to stand vertically despite gravity is first formed. Additional spheres are then added to the top
of the chain and whether the chain remains straight or buckles is noted. The largest (respectively,
smallest) values of N for which the chain remained vertical (respectively, buckled) are presented
for a number of values of the magneto-gravitational number G in figure 5. We observe that the
scaling for the critical number of spheres at which buckling occurs, (3.2), is in good agreement
with experiments while the prefactor given in (3.2) overestimates Nc by around 10%.

To investigate whether the difference between experiments and theory observed in figure 5 is
due to experimental uncertainties or rather the errors that are inevitably introduced in applying
a result derived for a continuous, elastic problem to this discrete scenario, we also performed
numerical computations of the discrete problem. In these computations, N identical spheres are
aligned in a linear configuration that is slightly tilted with respect to the vertical (at an angle
π/100) and with their magnetic dipoles aligned in the same direction. The optimization toolbox
in Matlab was then used to find the minimum energy configuration of these spheres by adjusting
their position and the orientation of their magnetic moments. For a given number of spheres,
this leads to a numerically computed value of the critical magneto-gravitational number, Gc,
at which buckling occurs. These results are quantitatively consistent with experiments, which
were performed with a fixed G (figure 5). This suggests that the error between the approximate
result (3.2) and experiment is due to the approximations made in deriving this result (e.g. the
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discreteness of the experimental system and long-range interactions between spheres), rather
than inaccuracies in experiments. Nevertheless, the concept of a bending stiffness that is purely
magnetic in origin gives a reasonable quantitative understanding of experiments.

4. Two dynamic scenarios
Having seen the reasonable success of the theory of the classic elastica to determine the behaviour
of a chain of magnetic spheres in a static scenario, it is natural to ask whether the idea of an
effective bending stiffness is also useful in understanding some dynamic scenarios. This is the
subject of this section.

(a) Oscillating rings
A classic dynamic demonstration of the restoring force owing to elasticity is to pinch an elastic
ring and observe the ensuing oscillations. This classic problem was first considered by Hoppe
[9,17], who showed that, for an elastic ring with bending stiffness K, radius R and linear density
ρ�, the oscillation frequency of the nth mode is given by

ω2
n = K

ρ�R4
n2(n2 − 1)2

n2 + 1
. (4.1)

Performing the same experiment with a magnetic chain is simple (see figure 2b for some
snapshots of this motion); a chain with N spheres in it will form a ring of radius R ≈ Na/π and will
have ρ� = 2πρa2/3. The experiment considered here corresponds to the prolate–oblate oscillation
mode, i.e. n = 2, and so, after substituting Keff from (2.25), we expect that

ω = π2
{

3
5

[
ζ (3) + 1

6

]}1/2 B
(ρμ0)1/2aN2 , (4.2)

or, alternatively, in a dimensionless form

Ω ≡ (μ0ρ)1/2aω
B

= π2
{

3
5

[
ζ (3) + 1

6

]}1/2
N−2. (4.3)

To test these results, we performed a series of experiments in which magnetic chains of
different lengths, sphere radii and magnetic strengths are formed into rings and placed on a
smooth horizontal table. The rings are then pinched and released. The frequency ω of the resulting
oscillations was measured from high-speed video footage obtained using a Finepix HS10 camera
at frame rates of up to 240 Hz. The experimental results are plotted in figure 6. We see excellent
quantitative agreement between experiments and the simple theoretical analysis, which is based
on the idea of an effective magnetic bending stiffness developed in §2.

(b) A self-assembling cylinder
As a final example of the utility of the notion of an effective magnetic bending stiffness developed
in this article, we consider a problem that has, to our knowledge, no classic analogue in the theory
of elasticity. This experiment is shown schematically in figure 7: a long chain of M + P spheres is
laid on a horizontal surface with one end clamped and the other end rolled into a small cylindrical
helix. The cylindrical portion, containing P spheres, has radius R(N), and there are N spheres in
each circuit of the cylinder (so that any sphere k is in contact with its neighbours k ± 1 and the
spheres k ± N and k ± (N + 1) along the helix). The straight chain initially consists of M magnets
lying on a table along the x-axis (figure 7). For ‘seeding’ cylinders of sufficiently large diameter,
this configuration is unstable, and the straight portion of the chain spontaneously wraps itself
onto the cylinder extending the initial cylindrical helix (see the electronic supplementary material
for movies of this process).
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both a torque and a force on the cylinder. For sufficiently large ‘seeding’ cylinders, the cylinder spontaneously rolls up the chain,
increasing the length (but not the radius) of the cylinder. (Online version in colour.)

(i) A simple scaling law

A simple scaling argument, using the idea of a bending stiffness developed in §2, allows us to gain
some understanding of this self-assembly phenomenon. We begin by noting that self-assembly
occurs because it is energetically favourable for the spheres within the chain to be aligned with,
and brought closer to, their neighbours; this is achieved by wrapping up into a cylinder. However,
to do this they must go from being in a linear configuration (with dipoles aligned) to being in a
curved configuration (with dipoles partially frustrated). Any excess energy gain that remains
once this penalty has been paid can increase the kinetic energy of the sphere. While in the initial
stages of the motion this energy gain may also be used to accelerate the whole cylinder, at late
times we expect the cylinder to be travelling at a steady speed, v∞, so that the change in energy
is converted solely into kinetic energy.

Consider therefore an element of the linear chain �� as it is assimilated into the helix. We
assume that the energy released as the element is taken from the chain and brought into contact
with its neighbours is some constant, γ , per unit length; the total energy released for this
element is then just γ��. However, there is a bending energy penalty, 1/2KeffR(N)−2��, and
any remaining energy will be used to give this element a kinetic energy ρ�v

2∞�� (assuming
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the cylinder rolls, its kinetic energy is Mv2∞, rather than 1/2Mv2∞). Equating these energies, we
therefore expect that

ρ�v
2
∞ ≈ γ − π2

2
Keff

N2a2 , (4.4)

which may be written

v2
∞ ∼ B2

μ0ρ

(
γ̃ − 1

N2

)
= B2

μ0ρ

(
1

N2
c

− 1
N2

)
. (4.5)

In (4.5), γ̃ = 1/N2
c represents a dimensionless adhesive energy gain and the significance of Nc will

become apparent shortly.
There are two interesting, surprising and important features of the scaling law (4.5) that we

discuss now, before going on to repeat a more detailed version of this calculation. Firstly, we note
that the speed appears to depend only on the number of spheres in each winding of the seeding
cylinder, N, and the strength of the magnetic field, B; in particular, v∞ is independent of the sphere
radius, a. Secondly, v∞ becomes imaginary if N < Nc so that Nc may be interpreted as the most
tightly wound cylinder that can still self-assemble. Though surprising on first reading, this latter
result makes physical sense since, if the cylinder is too tightly wound, the energy penalty to be
paid upon winding up into a helix is prohibitive in comparison with the energy that is released
by coming into contact with one’s neighbours.

(ii) A more detailed calculation

We now estimate the forces acting on the spheres in the helical configuration. If the straight
portion of the chain is long enough (M > 15) and the number of helical repeats is large enough
(P/N > 6), the force Fx and the torque τz acting on the cylinder from the chain are well
approximated by constants. We assume that the cylinder rolls without slipping and that its
velocity is purely along the x-axis (as defined in figure 7). Since the cylinder increases in mass
as it rolls, it will reach a terminal velocity given by v2∞ = (Fx + τz/R)/2ρl. Equivalently, from an
energy conservation principle, the energy before and after a sphere is transferred from the line to
the cylinder is

Ustraight
M + Ucyl

N,P + Ecyl
P = Ustraight

M−1 + Ucyl
N,P+1 + Ecyl

P+1, (4.6)

where Ecyl
P = Pρ4/3πa3v2∞ is the kinetic energy of the rolling cylinder and Ucyl

N,P is the total
magnetic energy of a chain of P spheres wound into a helical cylinder with N spheres in
each winding. This energy can be estimated asymptotically for N � 1 by realizing that the
cylinder tends to a hexagonal lattice as N tends to infinity and that, to order N−1, the energy
required to bend a straight chain is equivalent to the bending energy of the ring. The magnetic
energy density (per sphere) in an infinite hexagonal lattice can be evaluated numerically to be
−μ0M2a3πζ (3)(2 + α)/18 where α ≈ 0.295. Therefore, we have

Ucyl
N,P

μ0M2a3 = − Pπ

18N

[
ζ (3)(2 + α)N − π2

(
ζ (3) + 1

6

)
N−1 + O(N−2)

]
. (4.7)

(Note that the O(N−1) term here, which corresponds to the bending stiffness discussed earlier, is
not affected by the change in geometry from a ring to a helix.) Assuming a perfect motion along
the x-axis without sliding and in the absence of other forms of friction, the steady velocity of the
cylinder is

v2
∞

μ0ρ

B2 = 1
144

[6αζ (3) − π2N−2(6ζ (3) + 1) + O(N−3)]. (4.8)

Note that the structure of (4.8) is identical to that determined from the scaling analysis of §4b(i),
particularly (4.5). Of course, this detailed analysis allows us to determine a numerical value for
γ̃ = 1/N2

c ; we find that γ̃ ≈ 6.17−2 and so N = 7 is the minimal number of spheres in each turn
of the helix before it can roll, independent of all physical parameters. We again note that both
(4.8) and (4.5) predict a linear scaling of the velocity squared with N−2. We now turn to some
experimental tests of these predictions.
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(iii) Experimental results

We performed experiments for helices made of spheres with a variety of sizes and magnetic
strengths as well as varying the size of the seeding cylinder. We do indeed observe that helices
only self-assemble if the radius of the cylinder is sufficiently large, as predicted by both the scaling
argument, (4.5), and the more detailed calculation that led to (4.8). However, contrary to the
prediction of (4.8) that self-assembly will occur provided that N ≥ 7, we find experimentally that
N ≥ 9 ± 1 is required. In figure 8, we observe a linear relationship between v2 and 1/N2 and very
little dependence on the size of the spheres, despite a doubling of the sphere diameter; both of
these observations are in agreement with our theoretical arguments.

However, our theoretical estimate of the speed is about three to four times too large since it
does not take into account the many dissipative effects present: the rolling of a cylinder made of
discrete spheres (raising and lowering the centre of mass at each step), the rolling friction with
the table and between the spheres, the audible noise generated as new spheres are added to the
cylinder (see the electronic supplementary material for a video with soundtrack demonstrating
this noise), the motion of the straight chain on the table along the z-axis, the force component
along the y-axis, and so on. Rather than modelling the details of these dissipative effects, we
use the experimentally observed number for rolling Nc ≈ 9 to estimate that the efficiency of
conversion of magnetic energy into kinetic energy as spheres are brought into the helix is
E ≈ (6.17/9)2 = 47%. Modifying (4.8) by setting α → αE , we see that our theoretical estimate
captures the main trends of the data, but still overestimates significantly, with vtheo ≈ 2vexpo. We
attribute the remaining discrepancy to the fact that our estimate of dissipative effects accounts
only for effects that prevent the cylinder from rolling up in the first place (cf. static friction) while
many dynamic dissipative effects also exist.

5. Conclusion
Systems of interacting spherical magnets constitute a conceptually simple and experimentally
testable physical system for which all the interactions between the constituent units are known.
The question addressed here, fundamental to many problems in physics, is to relate the
macroscopic behaviour to the microscopic interactions. Indeed, Cauchy and Poisson related the
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macroscopic elasticity of crystals to the microscopic interactions between molecules [9]. Here, we
have presented an example of this process by considering the simplest possible configurations of
a chain of dipoles and determined a macroscopic effective bending stiffness. While the fact that
the magnetic dipoles in a magnetic chain should resist bending of the chain is obvious (figure 3),
the analogy is only mathematically exact in certain very specialized geometries [11]. We have
therefore investigated the utility of the simple physical notion of an effective ‘bending stiffness’
by attempting to understand three simple experiments using it. We have found that the concept of
an effective bending stiffness gives excellent results for the problems of the buckling of a standing
column and the oscillations of a ring, while providing a qualitative understanding and the key
features for the self-assembly of a chain into a cylindrical helix. However, detailed asymptotic
calculations for other configurations [11] show that, in fact, this is not the whole story: interactions
between widely spaced spheres can also play a role.

The idea of a magnetic bending stiffness may have consequences for modelling the mechanics
of chains of ferromagnetic particles along the lines of those models developed previously for
chains of paramagnetic particles [5,6]. However, we also highlight the possibility that the heavy
magneto-elastica and oscillating ring experiments may be useful in their own right as simple
assays through which the strength of spherical permanent magnets may be determined. In
particular, the oscillation frequency of a circular ring grows linearly with the field strength B
and so is quite sensitive to variations in B. Similarly, the number of beads that can be formed into
a straight vertical chain without buckling under its weight grows as B2/3 and so is also sensitive
to variations in B.

A natural generalization of the questions addressed here is the elasticity of two-dimensional
sheets of magnets for which the same ideas can be applied. Moreover, the mathematical technique
of approximating sums to obtain energies is applicable to a wide range of problems in other
branches of materials science, from self-assembly of particles to understanding the mechanical
properties of crystals. Not only do we expect that these mathematical approaches to particle
interactions will have broad applications in the physical sciences, but we have confidence that,
in particular, systems of magnets will become both a testing ground for new ideas in physics and
a perfect demonstration tool for classic physical problems.
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Appendix A. The Euler–Maclaurin formula
Given a function, f ∈ C2p[mε, nε], the Euler–Maclaurin formula gives the following asymptotic
result as ε → 0:

n∑
i=m

f (iε) = ε−1
∫nε

mε

f (x) dx − B1[f (mε) + f (nε)]

+
p∑

k=1

B2kε
2k−1

(2k)!
[f (2k−1)(nε) − f (2k−1)(mε)] + R, (A 1)

where Bi are the Bernoulli numbers, B1 = −1/2, B2 = 1/6, B3 = 0, . . .; n − m is an increasing
function of ε; and R is a remainder term given by

R = ε2p
∫nε

mε

P2p

({
x − mε

ε

})
f (2p)(x) dx, (A 2)

where Pi(x) are the Bernoulli polynomials, P1(x) = x − 1/2, P2(x) = x2 − x + 1/6, etc., and
{x} = x − �x� is the fractional part of x.
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