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Abstract
Orthostasis means standing upright. One speaks of orthostatic intolerance (OI) when signs, such as
hypotension, and symptoms, such as lightheadedness, occur when upright and are relieved by
recumbence. The experience of transient mild OI is part of daily life. ‘Initial orthostatic
hypotension’ on rapid standing is a normal form of OI. However, other people experience OI that
seriously interferes with quality of life. These include episodic acute OI, in the form of postural
vasovagal syncope, and chronic OI, in the form of postural tachycardia syndrome. Less common is
neurogenic orthostatic hypotension, which is an aspect of autonomic failure. Normal orthostatic
physiology and potential mechanisms for OI are discussed, including forms of sympathetic
hypofunction, forms of sympathetic hyperfunction and OI that results from regional blood volume
redistribution. General and specific treatment options are proposed.
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Introduction: what is orthostatic intolerance?
Orthostasis means ‘standing up’. Thus, ortho-static intolerance (OI) is defined by the
inability to remain upright. It is often erroneously designated ‘orthostasis’. More
specifically, OI can be defined by the inability to remain upright relieved by recumbence
[1]. The overall purpose of this article is to discuss OI in young people, and how it relates to
the autonomic nervous system (ANS) and to the modulation of the ANS by vascular
transmitters.

OI is related to deviations from optimum regulation of heart rate (HR), blood pressure (BP)
and cerebral blood flow (CBF) that make remaining upright impossible. Environmental
factors that promote OI (e.g., hot climate, dehydration) and the ubiquity of many forms of
OI in the general population (simple faint, initial orthostatic hypotension [OH]) make some
forms of OI the result of overtaxed control systems, rather than disease per se. Thus, for
example, any person can be made to suffer a simple faint given sufficient provocation [2];
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therefore, should vasovagal syncope (VVS) be regarded as an illness? The answer is perhaps
yes if it importantly impairs the quality of life.

Signs & symptoms of OI: relation to reduced CBF, sympathoexcitation &
parasympathetic withdrawal

The inability to remain upright can be defined subjectively in terms of patient symptoms
alone or more objectively by the combination of signs and medically associated symptoms.
Typical signs and symptoms include loss of consciousness or less severe cognitive deficits,
such as lightheadedness and dizziness, as well as vertigo, pallor, visual difficulties or
scotomata, fatigue, tachycardia, bradycardia, hypotension and sometimes hypertension,
headache, weakness, abdominal pain and vomiting, palpitations, anxiety, diaphoresis, tremor
and exercise intolerance that is often delayed or may occur as part of a postural syndrome
[3]. Among these, signs and symptoms referable to the CNS, such as loss of consciousness,
severe dizziness and cognitive difficulties, are the most common reasons given for
terminating an orthostatic stressor (upright posture) and seeking recumbence. Many of the
remaining signs and symptoms are directly related to increased sympathoexcitation (e.g.,
pallor, hypertension, headache, palpitations, anxiety, diaphoresis, tremor), vagal withdrawal
(e.g., tachycardia, abdominal pain and vomiting) or vagotonia (bradycardia during VVS).
The capability of assessing CBF along with the measurements of beat-to-beat HR and BP
facilitates the separation of spurious OI, or psychogenic syncope, from bona fide
physiological impairments because reduced CBF is a common feature in all forms of
physiological OI, but not in psychogenic syndromes. Representative-reduced perfusion of
the brain [4,5] is shown in Figure 1 for two common forms of OI – VVS (simple faint) and
postural tachycardia syndrome (POTS). Reduced CBF may be related directly to
hypotension [6,7] and can be related to hypocapnia [8,9], but not always [5]. Because CBF
is autoregulated [10,11], it ought to remain stable within a range of cerebral perfusion
pressures. However, impaired autoregulation results in decreased CBF that becomes directly
dependent on perfusion pressure [4,5]. Thus, swings in BP cause swings in CBF, and any
fall in BP contributes excessively to decreased CBF and impaired brain blood flow. That
being said, virtually all people experience some degree of episodic mild OI during their
lives, although only transiently during intercurrent illnesses or with dehydration [12];
occasional VVS is extraordinarily common [13].

Normal stressors & the autonomic regulatory framework
Next, we explain the phenomenology and physiology of ortho-static stress. Standing upright
and exercise comprise the most common physical stressors of daily life and “demand the full
capabilities of the reflexes that govern cardiovascular function” [14]. They, therefore,
depend on intact arterial and venous vascular structure, intact vasomotor control and
sufficient blood volume and oxygen-carrying capacity. However, foremost among
compensatory mechanisms are the skeletal muscle pump and the respiratory–abdominal
muscle pump [15,16]. These form the bases for a variety of physical orthostatic
countermaneuvers that will be addressed below [17,18]. The compensatory responses to
orthostasis are diverse and overlapping – thus, mildly reduced blood volume or reduced
vasoconstrictive capabilities are often well tolerated.

Neurohumoral vascular mediators have importance, especially in a modulatory capacity;
they are relatively slow to develop and, therefore, rarely directly determine initial responses
to orthostatic stress [19]. Rapid cardiovascular adjustments depend on the ANS, although
the myogenic response [20] and local flow-dependent mechanisms [21] may have a similar
time course. Nevertheless, the ANS forms the framework for rapid circulatory adjustments
resulting in changes in HR, arterial vasoconstriction, venoconstriction, adrenal secretion,
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renovascular adjustments and cardiac contractility to maintain BP. Within the systemic
circulation, the parasympathetic nervous system via vagal nerve efferents contributes most
to HR changes at rates less than the intrinsic rate [22], although recent work indicates strong
vagal influences on sympatho excitation [23]. In addition, recent data suggest that
parasympathetic ganglia have important effects on nitrergic (nitric oxide [NO] within
nerves) vasodilation of the large cerebral arteries [24].

Rapid autonomic adjustments also depend on local environmental biochemistry produced by
slower endocrine, and local regulatory mechanisms. These more slowly affect the
vasculature in response to changes in posture. However, during more chronic changes, they
can modulate autonomic function and vascular tone. Thus, tonically altered NO and
angiotensin-II act at CNS [25] and peripheral vascular [26] levels to alter the response to
adrenergic vasoconstriction. While parasympathetic control of HR plays an important role in
the beat-to-beat maintenance of BP, the sympathetic nervous system and its primary
vascular neuro-transmitter norepinephrine [27], and cotransmitter neuropeptides Y and ATP
[26], are of paramount importance. Autonomic control of HR and BP during orthostasis is
provided by regulatory subsystems designated ‘baroreflexes’ whose primary concern is the
maintenance of BP under changing conditions. These are loosely grouped into arterial and
cardiopulmonary baroreflexes, which interact with potent mechanoreceptor and
chemoreceptor networks to maintain BP during orthostasis.

Why do we need these control mechanisms? The normal orthostatic
response

Standing up decreases venous return to the heart and shifts a large fraction of central blood
volume, in excess of 500 ml in the adult human, to the dependent body parts – that is, those
below the hydrostatic indifference point located roughly at the diaphragm [28]. It is the
gravitational, hydrostatic gradients established by the upright posture that cause dependent
pooling of blood below the heart.

Initial OH
There is an initial transient fall in BP shortly after standing up, as shown in Figure 2.
Initially, blood is very rapidly redistributed by gravity from the central thoracic circulation
to the dependent body parts: predominantly into the venous vasculature of the lower limbs
and splanchnic circulation [29]. The decrease in BP is inversely related to initial vascular
tone [30]. While compensatory increases in HR begin within a heart beat, a delay of
approximately 10–15 s occurs before the onset of active compensatory sympathetic
responses and BP falls. This initial response, denoted ‘initial orthostatic hypotension’ [31],
is completed within 30–60 s, and BP is restored, often while the typical adolescent balances
precariously while holding onto furniture. Rarely, fainting can occur, particularly if the child
rapidly (say within 15 s) engages in exercise, which further dilates leg vasculature.
Orthostatic counter maneuvers (Table 1) can avoid or remediate the condition [31,32]. This
normal state of transient mechanical dysequilibrium is by far the most commonly
experienced form of OI [33] in the young and is normal. Sympathetic arterial tone
contributes to resting vasoconstriction that affects BP recovery [34]. Arterial tone varies
among individuals [35] and, therefore, alters the time to recovery across individuals.

Once hemodynamic stability is reestablished, blood volume is continuously reduced during
continued standing still by micro-vascular filtration from plasma to interstitium [36]. While
lymphatic activity and reabsorption of interstitial fluid helps to restore blood volume [37],
this process is incomplete, and an ongoing reduction in blood volume and venous return
occurs. This can be avoided by invoking the skeletal muscle pump by moving around or by
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external mechanical compression through compression garments [38]. Since venous return
equals cardiac output under steady conditions, there is a net reduction in central blood
volume, stroke volume, cardiac output and CBF during quiet standing. HR, total peripheral
resistance, sympathetic nervous activity, vagal withdrawal and BP increase (Figure 3).
Diastolic BP increases more than systolic BP, and pulse pressure decreases coincident with
reduced stroke volume.

The restoration of BP and partial restoration of systemic venous return during orthostasis is
due in large measure to the reduced stretch and inactivation (unloading) of the inhibitory
arterial baroreflexes. This results in vagal withdrawal, sympathetic vasoconstriction variable
changes in myocardial sympathoexcitation [39], active venoconstriction within the
splanchnic circulation [40] and passive venoconstriction of pooled blood within the
splanchnic vasculature and legs by elastic recoil. Venous return is, thus, partially corrected,
and central blood volume is partially but incompletely restored [41]. The cardiopulmonary
baroreflexes are also unloaded when upright and potentiate the arterial reflexes [42]. Thus,
BP is restored and any reduction in BP normally occurs during initial OH. Despite
unchanged or even increased BP, increased sympathetic activity continues (Figure 3), which
depends on arterial baroreflex resetting by cardiopulmonary reflexes [43] and by the effects
of reduced pulse pressure and pulsatility [44]. Thus, diastolic BP, which correlates best with
sympathetic nerve activity in humans [45], is increased at the level of the carotid sinus.
Diastolic pressure is increased, and reduced stretch, therefore, does not occur while upright.
Nevertheless, arterial baroreflexes enhance HR and sympathetic mediated vasoconstriction
because the reduction in pulse pressure and the shift of the baroreflex to a higher HR and BP
when upright enable HR to remain increased via vagal withdrawal and promotes increased
sympathetic nerve activity and vasoconstriction – the normal compensatory response to
orthostasis [46].

Orthostatic stress test & tools to study OI
Orthostatic stress tests assess orthostatic capability. The most physiologic test is standing in
place without exercising. This allows some muscle pump activity that may mask defects in
the ANS [47]. Therefore, clinicians sometimes use devices such as the motorized tilt table
[48], which passively places the patient upright while restricting leg movement. Lower body
suction or negative pressure, which closely simulates hemorrhage, can duplicate some
findings of orthostasis even while remaining supine. Tilt and lower body suction or negative
pressure can produce fainting in everyone [2].

Instrumentation that measures BP, HR and cardiac rhythm, cardiac output (e.g., indicator
dilution, inert gas rebreathing), regional blood flow (e.g., ultrasound, venous occlusion
plethysmography, impedance plethysmography) and blood volume have all been bundled
with clinical tilts. Recent conscious human studies of sympathetic control of orthostasis
began in earnest with the use of microneurography to measure peripheral sympathetic nerve
activity [45]. Other advanced techniques using norepinephrine sympathetic nerve spillover
[49] to measure the effect of adrenergic vasoconstriction on local blood flow [50], and, most
recently, to directly assess the integrity of norepinephrine synthesis and metabolic products
by vascular biopsy [51–53], can be used to find the actual mechanism of OI in sufferers.

Orthostatic hypotension
OH is defined as a sustained reduction of systolic BP > 20 mmHg or diastolic BP > 10
mmHg within 3 min of standing or head-up tilt to ≥60° [54]. The requirement of a sustained
reduction rules out internal OH. This definition is recent (2011) and was assembled by a
consensus panel [54]. Before that, there was no consistent definition of OH. Nonneurogenic
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OH can be caused by drugs, dehydration, blood loss, age and illnesses that secondarily cause
acute or chronic hypovolemia. Neurogenic OH is identified with autonomic failure due to
inadequate release of norepinephrine from sympathetic vasomotor neurons, leading to
vasoconstrictor failure [54]. Neurogenic OH is rare in the young as most causes of
autonomic failure are acquired with age either as a primary (e.g., pure autonomic failure) or
secondary (diabetes) disease. Autonomic failure can be primary with preganglionic,
postganglionic or both forms of sympathetic dysfunction [55]. However, there exist
congenital genetic variants such as familial dysautonomia (Riley–Day syndrome) [56] and
the exquisitely rare dopamine β-hydroxylase deficiency [57]. Autonomic failure can be
autoimmune [58] and may present with the postinfectious Guillain–Barre syndrome,
although autonomic dysfunction seems to have little effect on ultimate outcome [59]. Most
commonly, autonomic failure is acquired as a secondary aspect of systemic disease, such as
diabetes [6]. Sympathetic cardiac denervation is a central aspect of Parkinson's disease [60]
and may be found in other forms of autonomic failure. Cardiac parasympathetic innervation
is also often defective, resulting in a steady fall in BP with little reflex tachycardia during
orthostatic challenge as shown in Figure 4.

Supportive care and treatment of the underlying illness are essential (Table 1). Thus, in the
case of dopamine β-hydroxylase deficiency, droxidopa, which bypasses the missing enzyme,
can provide definitive remediation [61]. It may also be the drug of choice for most
neurogenic OH as it can provide norepinephrine production through alternative pathways
[62]. Supportive therapy focuses on decreasing symptomatic OH and syncope. Such therapy
would include physical countermaneuvers, including compression garments and dietary
changes (increased salt, rapid water drinking). Supportive drug therapy often aims to
increase blood volume by promoting salt and water retention (fludrocortisone) or by
increasing red blood cell mass (recombinant erythropoietin) [55]. Defects in erythropoietin
may occur as part of the denervation in autonomic failure [63]. Short-acting pressor drugs
such as midodrine or drugs that enhance autonomic activity (atomoxetine, yohimbine or
pyridostigmine) are also used [55,64].

Rapid water ingestion of approximately 16 ounces deserves special mention. Studies in
adults have demonstrated that intake of water free of solute can increase BP and improve
sympathetic vasoconstriction after a sufficient time has elapsed for the water to reach the
small intestine, approximately 20 min [65]. The therapeutic effect of water encompasses all
OI, including OH, POTS and VVS [66] and can be successfully used to prevent blood
phobic VVS. Effects last for several hours. The mechanism is dependent on osmolarity and
may depend on TRPV4 C-fiber receptors within the portal system [67]. This is a very
important, simple and effective palliation that is not often considered by clinicians.

Common variant OI: POTS & postural VVS
Postural tachycardia syndrome

POTS is defined by day-to-day symptoms of OI associated with excessive upright
tachycardia, but not with hypotension (Figure 5) [9,68]. Excessive tachycardia in adults is
defined by an upright increase in HR exceeding 30 bpm or to a HR exceeding 120 bpm.
Recall that the normal HR response to orthostasis is an increase in HR, while the autonomic
failure patient often has no significant increase in HR when upright. Larger HR increments
on tilt are observed in healthy young subjects without POTS [69], which is important to
know in avoiding overdiagnosis. The threshold for an excessive increase in HR in the young
exceeds 40 bpm. Symptoms must be concurrent with the excessive tachycardia. No
symptoms, no POTS. Tachycardia and concurrent symptoms are very often observed during
extremely prolonged orthostatic testing, which are therefore to be avoided if the specific
diagnosis of POTS is to be made. POTS has often been divided into subgroups designated
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‘neuropathic POTS’, in which it is assumed that partial sympathetic denervation or
adrenergic hypoactivity is present, and ‘hyperadrenergic POTS’, in which upright adrenergic
overactivity dominates the picture.

Neuropathic POTS
As originally described, neuropathic POTS is caused by decreased sympathetic adrenergic
vasoconstriction in the lower limbs, associated with reduced leg norepinephrine spillover
[70] and reduced vasoconstriction of the lower extremities [71]. There is often increased
blood flow (‘high flow’) in the lower extremities, even while supine. Another neuropathic
variant has normal lower extremity hemodynamics (‘normal flow’) but decreased regional
sympathetic adrenergic vasoconstriction in the splanchnic circulation [72]. Neuropathic
POTS can represent an autoimmune autonomic neuropathy [58]. Thus, when upright,
neuropathic POTS patients have greater than normal redistribution of blood to the dependent
vasculature, causing baroreflex-mediated tachycardia and vasoconstriction in the remaining
vascular beds that have intact innervation. The cardiac baroreflex response is also blunted in
POTS [73]. Central hypovolemia can also result in hyperpnea and hypocapnia in nearly 50%
of patients [74] through a baroreflex-mediated mechanism [75].

Therapy for neuropathic POTS (Table 1) includes general supportive measures such as
physical countermaneuvers, increased salt and water intake and exercise (see below).
Pharmacotherapy has focused on improving sympathetic vasoconstriction, which
unfortunately uses medications with widespread systemic effects. Midodrine, an α-1
adrenergic agonist, can be helpful and has few side effects apart from piloerection [76].
Droxidopa is in trials outside the USA and has great expectations. Mestinon®
(pyridostigmine) [77] an acetylcholinesterase inhibitor, alone or in combination with
midodrine, can be very helpful through its potentiation of cholinergic ganglionic nerve
activity and through its muscarinic effects.

Hyperadrenergic POTS
The tachycardia of hyperadrenergic POTS is caused by increased presynaptic or post-
synaptic adrenergic potentiation. This might include central sympathetic activity and
increased sympathetic nerve activity. Increased supine sympathetic activity has been
reported [68], but not universally [78]. To date, the author's laboratory has only observed
increased upright muscle sympathetic activity in POTS. One cause of hyperadrenergic
POTS is increased synaptic norepinephrine. The norepinephrine transporter deficiency
heterozygote [79] is the prime example of this mechanism, but has been found as an
autosomal mutation in only one pedigree. Less extensive, possibly epigenetic, NET
deficiency has also been demonstrated recently and may have a wider prevalence [52].

Alternative considerations of mechanism include modulation of the adrenergic synapse
through enhanced norepinephrine synthesis and release and enhanced post-synaptic affinity,
which may be modulated by local and humoral transmitters. Thus, for example, the
reciprocal actions of NO and angiotensin-II, respectively, reduce and enhance adrenergic
activity. The role of NO as an inhibitory neurotransmitter is now well known [80]. Nitrergic
NO released from nerves having parasympathetic activity act at presynaptic and
postsynaptic sites to decrease adrenergic transduction [81], the process by which a
sympathetic nerve impulse causes vascular smooth muscle contraction. This includes
reduction of the release and binding of norepinephrine from the neurovascular synapse [82],
interference with postsynaptic neurotransmission [83], chemical denaturing of
norepinephrine [84] and downregulation of adrenergic receptors [85]. Conversely, studies of
sympatho excitation show that angiotensin-II acts through AT1 receptors to increase
production of reactive oxygen and nitrogen species within the brain at presynaptic
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sympathetic neurons [86], and acts in the periphery, where it produces pre- and post-
synaptic augmentation of sympathetic transduction and upregulation of adrenergic receptors
[85]. In addition, the release and binding of norepinephrine is facilitated [82], as are the
effects of norepinephrine. This depends critically on the formation of reactive oxygen and
nitrogen species [87], which also decrease NO [88], often uncoupling NO synthase [89].
This mechanism occurs in a variant of ‘hyperadrenergic POTS’ associated with tachycardia,
pallor, vasoconstriction (‘low flow’) and absolute hypovolemia even while supine [90]. NO,
plasma renin and serum aldosterone are decreased [91], while plasma angiotensin-II [92] is
increased by a defect in angiotensin-converting enzyme-2 [93].

β-blockers have been used in forms of hyperadrenergic POTS with variable success (Table
1) [94,95]. Innovative treatment with angiotensin receptor blockers and droxidopa are under
investigation. Exercise has always been a mainstay of rehabilitation in these patients. Recent
work indicates that gravitational deconditioning (e.g., bed rest) is a frequent concomitant of
the illness and that a graded exercise program can be very effective in improving overall
patient well-being [95].

Postural syncope (VVS, acute OI & simple faint)
Syncope (fainting) is defined as ‘complete loss of consciousness due to transient global
cerebral hypoperfusion characterized by rapid onset, short duration and spontaneous
complete recovery’ [96,97]. Approximately 40% of people will faint during their lives; half
of these presenting during adolescence. The peak age for first faint is 15 years [98]. Most
syncope is caused by systemic hypotension and reduced CBF. Syncope can be caused by
OH as already discussed. OH is easily ruled out by a 3-min standing test (Figure 4).
Syncope is divided among cardiovascular syncope, comprising arrhythmic or structural
cardiopulmonary disease, and reflex or neurally mediated syncope. Cardiovascular syncope
has a poor prognosis unless specifically treated. Reflex syncope has an excellent prognosis
[99]. Postural syncope and emotional or phobic syncope comprise VVS [96], the largest
subgroup within the reflex syncope category. Regional or system-wide loss of
vasoconstriction is an element in all VVS, at least as a terminal event; it may not always be
due to loss of sympathetic nerve activity as discussed below. Postural syncope is acute OI
wherein loss of consciousness is often preceded by a prodrome of OI symptoms, particularly
lightheadedness, nausea, sweating, weakness and blurred vision. Traditionally, postural
syncope was believed to be due to reflexes from a hypercontractile underfilled heart
analogous to the Bezold–Jarisch reflex [100]. Evidence to the contrary has accrued: the
afferent signal would be short-lived because of baroreceptor unloading [101]; very few
afferent nerves were excited in the original experiments by Oberg and Thorén in the
moribund hemorrhaged cat [102]; VVS can occur in a ventricular denervated transplant
recipient [103]; and the heart is neither empty nor hypercontractile prior to syncope [104].
As yet we do not completely understand the pathophysiology of simple faint [105].

In the most common variant of postural faint occurring in young patients, postural faint
comprises three stages (Figure 6), which strongly resemble the circulatory changes found
during hemorrhage [106]. After initial OH and restoration of circulatory homeostasis, BP
stabilizes while HR increases in Stage 1. BP stability distinguishes postural faint from true
OH. BP often exhibits rhythmic fluctuations during this stage referred to as ‘Mayer waves’
[107] with an approximate 10-s period (0.1 Hz). Similar periodicity is shared by fluctuations
in HR, sympathetic nerve activity and peripheral resistance. The fluctuations are the closed
loop time for sympathetic baroreflex response – that is, the time it takes for detection and
compensation for BP changes [108]. Oscillations are accentuated during central blood
volume reductions such as occur during orthostasis. During this stage, total peripheral
resistance increases to sustain BP in the face of a reduced cardiac output (Figure 3).
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During Stage 2, BP slowly declines as the baroreflex increases HR further. The decrease in
BP is most often related to decreased cardiac output [109] even though sympathetic activity
[110] and peripheral arterial resistance [111] are sustained. Thereafter, resistance and
pressure oscillations decrease despite sustained sympatho excitation. Hyperpnea and
hypocapnia occur at this stage in most patients [112]. In some patients, Stage 2 is
abbreviated. This is especially true for patients with asystolic syncope (Figure 7) in whom
episodes occur abruptly. Asystolic syncope may have some associated tonic posturing, but is
distinguished from epilepsy by decreased EEG activity in the former and by nearly
immediate resolution of opisthotonic posturing by recumbence. Despite appearances,
asystolic faints are not cardiogenic but reflex mediated and are a relatively uncommon form
of simple vasovagal fainting that may also be found in phobic fainting.

Several mechanisms have been proposed for VVS in some patients. Patients with decreased
resting BP can have reduced tyrosine hydroxylase and NE synthesis. A group of
normotensive patients can have excess NET [113]. A selective deficit of splanchnic
vasoconstriction and venoconstriction have also been demonstrated [72]. Prodromal OI
symptoms begin during the second stage and clinicians might, therefore, entertain a
diagnosis of POTS in the laboratory setting. Clinical history offers the best way to
distinguish patients with acute episodic faints with long periods free of symptoms (postural
syncope) from POTS, in which symptoms are chronically present. Indeed, the prodrome of
simple faint and the signs and symptoms of POTS are similar because they may have similar
initial pathophysiology – excessive reduction in central blood volume resulting in reflex
tachycardia [71,72,114]. Postural fainters corresponding to pale and vasoconstricted
hyperadrenergic POTS patients are not observed in practice. For the most part, in our
experience, POTS patients have day-to-day symptoms but do not faint, while syncope
patients have episodic faints, but not daily symptoms. This distinction has become less clear
with time: thus, some chronic OI (POTS) patients faint and some episodic fainters also have
underlying daily symptoms of OI. However, fainting of POTS patients in the laboratory
must be viewed cautiously and cannot, by itself, be regarded as proof of ‘real-world’
fainting. A real-world clinical history compatible with fainting is compulsory.

In the last stage, Stage 3, CBF, BP and HR rapidly fall in that order, apparently defying BP–
CBF causality [115]. Similar effects are often seen in nonlinear systems of all kinds
whenever a sufficiently strong external signal entrains linked signals. Thus, recent work
shows that both cardiovagal and sympathetic baro reflex efferent arms are impaired prior to
fainting, and Mayer waves disappear. Similarly, cerebral autoregulation becomes impaired
with entrainment of CBF, BP and HR by an extrinsic signal, which may be hyperpneic
respiration [4,116]. Why baroreflex integrity is lost is not yet known. But this results in
abnormal BP–HR and BP–muscle sympathetic nerve activity functional relationships such
that HR, BP and sympathetic nerve activity all decrease, resulting in bradycardia,
hypotension and sympathetic silence [117]. The faint is associated with marked systemic
vasodilation, while CBF falls with declining BP. Recent work challenges the necessity of
sympathetic silence as the precipitant of the final hypotension [118]. While vasodilation
always occurs, the sympathetic baroreflex can malfunction with or without sympathetic
silence because of a loss of the functional relationship between BP and sympathetic
activation. Loss of functional connections between BP and sympathetic nerve activity, but
not HR, occurs in patients with vasodepressor syncope where vasodilation without
bradycardia occurs. While there is a loss of the sympathetic efferent baroreflex causing
progressive loss of compensatory vasoconstriction, the cardiovagal baroreflex remains
intact.

POTS and postural syncope are both associated with hyperpneic hyperventilation [8,74,112].
Hyperpnea and resultant hypocapnia precede unconsciousness in virtually every VVS
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patient [112]. Hypotension and bradycardia might be explained by the pulmonary stretch
reflex unfettered by compensatory baroreflex effects [116,119]. The cause of hyperpnea is
unclear but may relate to the ventilatory efferent arm of the arterial baroreflex [75]. Similar
findings of hyperpnea are found in approximately 50% of POTS patients with central
hypovolemia who do not faint.

First time postural noncardiogenic fainting with no sequelae requires no pharmacologic
treatment. The first-time fainter rarely knows what is happening to him. Once suitably
apprised, countermeasures can be employed as shown in Table 1. These include avoidance
of precipitants and physical countermaneuvers; the most effective countermaneuvers are
lying down with legs up or squatting. Both propel blood from the lower body below the
diaphragm back into the central circulation. Other countermaneuvers include those that
enhance the skeletal muscle pump (e.g., leg crossing) or activate the exercise pressor reflex
(isometric hand grip) [15,17,38]. Generally enhanced salt and water intake is encouraged
and has shown some efficacy in small studies employing very large amounts of salt loading
[120]. Rapid water ingestion offers an effective therapeutic effect. Thus, once syncope
patients have staved off the faint with physical maneuvers, they are counseled to consume
16 ounces of water before attempting to stand up. In older patients, confounding use of
antihyper tensives or diuretics need to be considered. Pharmacotherapy (atenelol or fludro
cortisone) has not been shown to be more effective than placebo in younger patients in large
multicenter studies [121]. Reports of exquisite sensitivity to midodrine are found in Chinese
children [122] but are not uniformly born out in other populations [123]. Other
pharmacologic strategies tested in small studies include selective serotonin reuptake
inhibitors, including paroxetine, which showed efficacy in a 68-patient double-blind
randomized study of a select patient subset [124]. Ambulatory asystolic faints have recently
been shown to improve with pacemaker insertion in patients >40 years [125]. Work into the
fundamental molecular physiology of fainting is ongoing in our laboratory and in others.
Our hope is to determine specific therapy based on specific pathophysiology. We have only
considered the well-known forms of OI. It is entirely likely that there are other forms that
are not well described will emerge.

Expert commentary
OI is very common. Autonomic failure with true neurogenic OH can represent life-
threatening disease. Otherwise, OI is not life threatening. Autonomic regulation is usually
abnormal or maladaptive in disorders of orthostatic tolerance and often relate to suboptimal
sympathetic adrenergic function. Mild OI, especially initial OI, is universal and rarely
harmful. Other forms of OI can seriously impact on quality of life. True neurogenic OH,
which can signal the presence of potential life-threatening autonomic failure, has only
recently been unequivocally defined by consensus and simple testing devised. Postural
vasovagal faint and POTS are two well-described common forms of OI. The ability of
simple nonpharmaceutical measures of physical countermaneuvers and rapid water ingestion
to aid in improving OI must be emphasized.

Five-year view
The mechanisms of chronic and acute OI are incompletely understood. This even includes
simple postural faint that had been treated for years by practitioners with drugs with placebo
effects only. Placebo therapy might be helpful if unorthodox. Treatments are therefore often
nonspecific. However, several investigations hold promise for specific therapy targeting
specific mechanisms of OI.
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Key issues

• Orthostasis means standing up.

• Orthostatic intolerance (OI) is defined by signs and symptoms that make
remaining upright impossible and improve when lying down.

• Initial OI is a normal, common, short-lived form of OI in the young. It is the
most common form of OI in the young.

• Physical countermeasures and rapid water ingestion can improve most forms of
OI.

• With the exception of neurogenic orthostatic hypotension, OI can even be
‘normal’ (in the sense that anyone can be made to faint with sufficient
provocation, and fainting occurs in 40% of people). Normalcy is not the issue.
Rather OI becomes a problem when it interferes with the quality of life.
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Figure 1. Arterial pressure (upper panels) and cerebral blood flow velocity measured by
transcranial Doppler ultrasound (lower panels)
The left panels show data from a vasovagal syncope patient, while the right panels show
data from a POTS patient. Arterial pressure and CBFv are initially stable, then decrease
gradually and finally abruptly decrease by >50% with loss of consciousness in the syncope
patient. The POTS patient has no decrease in arterial pressure, but has a >20% reduction in
CBF throughout tilt.
CBFv: Cerebral blood flow velocity; POTS: Postural tachycardia syndrome.
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Figure 2. Image showing initial orthostatic hypotension
Arterial blood pressure is shown during a standing test. The blood pressure begins to
decrease immediately upon standing, reaching its nadir in about 15 s and recovers
spontaneously. The interbeat interval is quite decreased when hypotensive, corresponding to
an increased heart rate.
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Figure 3. Hemodynamic and neurovascular changes during upright tilt in a representative
healthy volunteer
The left panel shows from top to bottom: arterial pressure, MSNA from the peroneal nerve,
HR and cardiac output. The right panel shows from top to bottom: TPR, CBFv by
transcranial Doppler ultrasound, stroke volume and a vagal index calculated from the
respiratory sinus arrhythmia component of the frequency spectrum of HR variability. The
subject is a representative healthy volunteer. During upright tilt, systolic, diastolic and
MAPs increase slightly, while pulse pressure is decreased with a decrease in stroke volume
by approximately 40%. HR increases so that cardiac output is only decreased by 20%
because of the increase in HR. Cerebral blood flow decreases by 5–10%. Both total
peripheral vascular resistance and muscle sympathetic nerve activity increase, while the
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vagal index decreases, reflecting, respectively, sympathetic activation and parasympathetic
withdrawal.
CBFv: Cerebral blood flow velocity; HR: Heart rate; MAP: Mean arterial pressure; MSNA:
Muscle sympathetic nerve activity; TPR: Total peripheral vascular resistance.
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Figure 4. Neurogenic orthostatic hypotension
Arterial blood pressure in the upper panel declines steadily during upright stance, while
heart rate is only slightly increased.
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Figure 5. Diagram showing representative heart rate in the upper panel and mean arterial
pressure in the lower panel during upright tilt in a postural tachycardia syndrome patient
Heart rate increases, while MAP is stable throughout tilt in postural tachycardia syndrome.
MAP: Mean arterial pressure.
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Figure 6. Representative heart rate in the upper panel and mean arterial pressure in the lower
panel during upright tilt for a postural syncope patient
Changes during tilt occur over three stages: during the first stage, following initial
hypotension, MAP stabilizes at a slightly higher than resting pressure while heart rate
increases. During the second stage, MAP begins to fall gradually, while heart rate continues
to increase. Note that the increment in heart rate from supine to upright fulfills tachycardia
criteria for postural tachycardia syndrome. During the third stage, MAP and then heart rate
fall abruptly and rapidly as loss of consciousness supervenes.
BP: Blood pressure; MAP: Mean arterial pressure.
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Figure 7. An asystolic faint
This is episodic, relatively infrequent and unrelated to intrinsic sinus node disease. Asystolic
faints are associated with opisthotonic posturing and have been sometimes referred to as
‘convulsive syncope’.
BP: Blood pressure.
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Table 1

Treatment methodologies.

Orthostatic syndrome Defect/pathophysiology Treatment

Initial orthostatic hypotension None /rapid redistribution of blood to
dependent body

Physical countermaneuvers: sitting, isometric
exercise (exercise pressor reflex)
Medication is rarely used

Neurogenic orthostatic hypotension Systemically defective or absent adrenergic
vasoconstriction

Physical countermaneuvers: lie down, sit down,
squat, clench buttocks, leg crossing, support garment

Autonomic failure may be present and often
includes parasympathetic dysfunction

Droxidopa, salt and water loading, fludrocortisone,
midodrine, atomoxetine + yohimbine. If secondary
(e.g., diabetes) treat underlying disorder
Rapid water ingestion palliation

Non-neurogenic orthostatic hypotension Loss of blood volume, vasodilator drugs Correct problem

Neuropathic POTS Loss of regional vasoconstrictive ability Physical countermaneuvers Droxidopa, midodrine,
mestinon Exercise
Rapid water ingestion palliation

Hyperadrenergic POTS Adrenergic potentiation Physical countermaneuvers
β-blockers, fludrocortisone, exercise

Postural vasovagal syncope ? Loss of regional vasoconstrictive ability
? Acute reversible baroreflex dysfunction

Physical countermaneuvers
Salt and water
Acute water ingestion
Selective serotonin re-uptake inhibitors, midodrine
Rapid water ingestion palliation
Pacemaker for asystolic vasovagal faint

POTS: Postural tachycardia syndrome.
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