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Abstract

Identifying the complex activity relationships present in rich, modern neuroimaging data sets 

remains a key challenge for neuroscience. The problem is hard because (a) the underlying spatial 

and temporal networks may be nonlinear and multivariate and (b) the observed data may be driven 

by numerous latent factors. Further, modern experiments often produce data sets containing 

multiple stimulus contexts or tasks processed by the same subjects. Fusing such multi-session data 

sets may reveal additional structure, but raises further statistical challenges. We present a novel 

analysis method for extracting complex activity networks from such multifaceted imaging data 

sets. Compared to previous methods, we choose a new point in the trade-off space, sacrificing 

detailed generative probability models and explicit latent variable inference in order to achieve 

robust estimation of multivariate, nonlinear group factors (“network clusters”). We apply our 

method to identify relationships of task-specific intrinsic networks in schizophrenia patients and 

control subjects from a large fMRI study. After identifying network-clusters characterized by 

within- and between-task interactions, we find significant differences between patient and control 

groups in interaction strength among networks. Our results are consistent with known findings of 

brain regions exhibiting deviations in schizophrenic patients. However, we also find high-order, 

nonlinear interactions that discriminate groups but that are not detected by linear, pair-wise 
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methods. We additionally identify high-order relationships that provide new insights into 

schizophrenia but that have not been found by traditional univariate or second-order methods. 

Overall, our approach can identify key relationships that are missed by existing analysis methods, 

without losing the ability to find relationships that are known to be important.
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1. Introduction

Despite enormous strides made in our understanding of neural physiology, the manner in 

which cellular and subcellular functional variability leads to variations in human behavior is 

poorly understood. Accumulating evidence suggests that complex behavior arises from a 

rich mix of dynamic interactions among neurons, neural groups, and larger functional areas. 

These interactions arise due to feedback loops, recursive processes, multiple conditioning, 

and other properties. Mechanisms of neural interactions are evident in the brain at all levels 

of its hierarchical organization (Amari et al., 2003; Ganmor et al., 2011; Ince et al., 2009; 

Montani et al., 2009; Yu et al., 2011). Understanding neural interactions is crucial to 

understanding brain function. Dynamic interactions of the brain are difficult to measure 

directly1 and models insufficiently describe their properties. For example, algorithms that 

are capable of representing arbitrary relations, such as graphical models (GM) (Jordan, 

1998; Spirtes et al., 2001), often sacrifice the power to model high-order interactions and 

instead use pairwise criteria (Friedman et al., 1999). This almost becomes a requirement in 

the more difficult case where latent variables are involved (Elidan and Friedman, 2005).

It is rarely possible to measure every component of a complex system. Often, one only 

observes a subset of components for which relations amongst components and with 

unobserved components are unknown. In a typical neuroimaging study it is nearly 

impossible to identify and document all confounding factors (e.g. sensory input, mood 

states) that exert concurrent influence on multiple brain regions simultaneously. Failing to 

measure key components of a system further complicates resolving the interaction of 

components. It was shown by Macke et al. (Macke et al., 2011) that including common input 

into a model of neural populations can eliminate some, otherwise apparent (Amari et al., 

2003; Montani et al., 2009), high-order interactions. Thus, failure to include common causes 

in the model can increase interaction order among observed entities, such as neural 

populations. The situation is more difficult when one considers interaction of high-level 

brain features. Because we lack a complete understanding of the physiological basis of 

intrinsic networks that are revealed in analyses of data collected from different tasks and/or 

different imaging modalities some common sources go unspecified. As a result, we are 

unable to consider important confounding factors in imaging studies.

1Even intra-cranial recordings only measure activity while interactions still need to be inferred.
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Variants of possible interdependence between observed components (e.g. brain intrinsic 

networks, modality-specific spatial maps) and latent factors are unbounded making 

modeling of all confounding factors practically infeasible (Settimi and Smith, 1998). 

Examples of a limited subset of possible interactions in the complete system leading to 

interactions among observed random variables are shown in Figure 1.

The fully observed case is illustrated in Figure 1a, where random variables can be split into 

3 groups shown as columns of squares on the figure (further referred to as factors) with high 

intra-factor connectivity and weak inter-factor relations. Figure 1b shows a scenario where 

each factor is regulated by a single latent variable. Figure 1c shows the most general case, 

where interactions among variables within each factor are governed by a complex unknown 

network of latent variables. In all cases, variables in a single factor are commonly regulated 

(coregulated), either by direct interactions among each other or by a latent isolated variable/

network. Failure to either measure confounding factors or to model them as latent variables 

can lead to high-order interactions likely undetectable via a pairwise approach.

From the point of view of data fusion (Goodman et al., 1997; Horwitz and Poeppel, 2002), 

the difficulty of identifying interactions can be approached via a combined analysis of 

various data sources, such as imaging modalities. Data fusion combines multiple data 

sources to allow extraction of information that is richer than a direct sum of univariate data 

sources. Put differently, data fusion identifies otherwise undetected information about high-

order interactions among data sources. To date, there has been no method to analyze all 

available data sources at the same time in a single model. While in some instances of 

network modeling we can have latent variables with a clear interpretation (e.g. coherently 

activating spatial areas in independent component analysis (ICA) models of the brain 

(Calhoun et al., 2001; McKeown et al., 1998)), assigning meaning to latent variables that 

govern relations among data sources is difficult despite the relative ease of the mathematical 

operation to introduce a latent variable. Instead, current fusion methods are mostly focused 

on simultaneous pairwise analyses of modalities (Calhoun and Adali, 2009; Groves et al., 

2011; Michael et al., 2009), although three-way methods of analysis are already under 

development (Boutte et al., 2012; Sui et al., 2012). Hence, the field is moving towards 

methods that examine the relationships among interacting variables in an unsupervised 

fashion (Takane et al., 2008). For computational and statistical reasons it does not seem 

plausible to simultaneously analyze all available data sources simultaneously. Hence, 

contemporary methods will strongly benefit from a procedure for automatic and efficient 

selection of subsets of most informative data sources.

Here we present a novel and effective approach to the problem of identifying functional 

units exhibiting higher-order interactions. We capture complexity of interactions via an 

indirect measure: Shannon’s entropy (Mackay, 2002), nonparametrically estimated from the 

data (Faivishevsky and Goldberger, 2010). Then, we search for a partition of random 

variables in which factors exhibit more complex interactions according to our measure. Such 

an approach allows us to group components that are interacting without an explicit model of 

all possible interactions and confounding factors. Specifically, we define an objective 

function over partitions of random variables (multi-task intrinsic networks in our 

application) and optimize it directly within the partition space. To tackle the combinatorial 
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difficulty of searching for such interactions, we present a practical method that relies on a 

trade-off (i. e. sacrifice the fine-grained graphical structure of interactions for an ability to 

capture multiway interplay) different from those taken by GM (i. e. sacrifice multi-way 

interactions for the fine-grained structure), clustering (i. e. sacrifice interaction complexity 

altogether for speed of processing large scale datasets), and model-based multiple clustering 

(i. e. sacrifice complexity of interactions by modeling factors via a parametric model for the 

ability to optimize the model). Our method helps to highlight relevant groups of random 

variables (neuroimaging data sources in our application below) that express interesting 

interactions (according to the amount of complexity and surprise expressed by our objective 

function).

To demonstrate the advantages of our method, we perform a rigorous examination of its 

accuracy and computational run-time on a range of synthetic but realistic datasets that 

provide controlled conditions while emulating complexity of real brain data. Next, we apply 

the method to data that comes from a large multi-task functional magnetic resonance 

imaging (fMRI) dataset of schizophrenia patients and controls consisting of task-specific 

intrinsic networks. This dataset was previously analyzed in a pairwise fashion (Kim et al., 

2010) and our study lays the ground for multi-way analyses by partitioning intrinsic 

networks into groups that are related across and within the tasks. Although, the resulting 

factors can also be used as an input to further analysis, the partitions already provide 

interesting and novel insights into the differences between patients with schizophrenia and 

matched healthy control subjects. To capture these differences, we use a metric of 

interaction strength and compare patients and controls. We further compare these two 

groups with respect to the stability of the identified factors.

2. Materials and Methods

2.1. Coregulation Analysis

We approach the task of finding interacting groups in the data via random variable 

modeling. Given a set of n random variables X = {X1, X2, … Xn} the task is to partition them 

into k factors {F1, F2, … Fk} containing non-overlapping subsets of X. The assignment of 

random variables to factors should satisfy the following conditions:

1. The assignment forms a partition of X.

2. Variables in a factor are maximally dependent.

3. Factors are maximally independent.

We formulate an objective function that, when minimized, satisfies the above requirements 

(see Appendix A). It is based on maximizing intra-factor and minimizing interfactor mutual 

information. We settle on using multi-information (Slonim, 2002) as a multi-dimensional 

mutual information criterion for continuous real-valued data and use a non-parametric 

approach to estimating its quantity (Kraskov et al., 2004). When all of the conditions for 

satisfactory partitioning are accounted for, multiinformation reduces to the entropy of 

individual factors and our objective takes the following form:
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(1)

where Fj denotes a group of random variables. Objective  provides a clear intuition of 

our goals: partition random variables (to be more concrete – multi-task intrinsic networks) 

into groups, such that their interactions are most structured (have lower randomness). After 

expanding expression (1) using the employed entropy estimator (Kraskov et al., 2004) and 

eliminating terms not affected by the way the data is partitioned (see Appendix B for details) 

we obtain:

(2)

where dF is the dimension (number of elements) of factor F, z is the total number of 

samples, xi is the ith sample of the dF-dimensional subset of X, and cdF is the volume of the 

dF-dimensional unit ball.

To capture multiway interactions, objective (2) is formulated directly in the space of factors 

F: interactions of all variables within a factor are considered simultaneously when 

computing multidimensional entropy in (1). This is in contrast to clustering methods where 

entropy measures are also used but predominantly in a pairwise fashion. The entropy in 

expression (1) and its estimator in (2) measure the group property. which is exponential in 

the number of elements2. We tame this complexity by taking advantage of the problem 

structure that allows us to smooth the objective function in a spline interpolation framework 

of Yackley et al. (2008). This further reduces complexity through interpolation of objective 

values at given partitions based on computing the actual values only on a small subset of the 

partitions. The details of the construction process and of a greedy optimization algorithm are 

described in Appendix C.

With this approach we are enabling the coregulation analysis via the spectrum of the 

hypercube (CASH). By “coregulation” we denote direct interactions as well as interactions 

due to common confounding factors. These can still be expressed in the data but tend to be 

multi-way and high-order (Macke et al., 2011). Hypercube spectrum approximation is at the 

core of metagraph analysis of Yackley et al. (2008) and plays an important role for the 

efficiency of CASH.

2.2. Synthetic datasets

When one is facing the problem of partitioning the data, clustering methods have the highest 

likelihood to be tried first. Among those are the widespread simple pairwise k-means 

clustering with the common L2 and cross-correlation (CC) metrics. Next to try are more 

2… and in our case, when the number of factors is upper-bounded by m, is represented by the sum of the Stirling numbers of the 

second kind .
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sophisticated methods that target nonlinear aspects of the data. The nonparametric 

information clustering (NIC) (Faivishevsky and Goldberger, 2010) can represent this class.

For the task we target, a better approach would be to use methods that pursue the goal of 

partitioning the attribute space. Such approaches are available in the field of multi-view 

clustering (Galimberti and Soffritti, 2007). They explicitly model marginal distributions of 

each factor via a universal function approximator: the partitioned Gaussian mixture model 

(PGMM) (Galimberti and Soffritti, 2007). Even further, these approaches explicitly model 

interactions between the factors: the pouch latent tree model (PLTM) (Poon et al., 2010).

Listed approaches (L2, CC, NIC, PGMM, and PLTM) are representative of the approaches 

that can compete with CASH and we use them for performance comparison on synthetic 

data. In experiments, we sample from the models described below and use co-occurring 

values of the observed variables as the input. Our comparison metrics are accuracy of 

assigning random variables to factors and the running time. We measure accuracy as an 

error fraction of the minimum number of variables mis-assigned relative to the true 

assignment across all label permutation normalized by the maximum possible number of 

mis-assignments. We measure the running time by the internal computer clock.

Dataset I comes from a model used by Smith et al. (2010) to generate physiologically 

relevant simulations of interacting brain regions as observed via fMRI. It involves a model 

of neural interactions, as well as a hemodynamic model of blood flow that describes ensuing 

blood oxygenation level dependent (BOLD) signals. The structure of the underlying model, 

two noninteracting groups each containing five observed nodes (rectangles, Figure 2a), 

makes these synthetic data particularly interesting for our purpose.

Dataset II is generated by the PLTM model used for comparisons in the original PLTM 

paper (Poon et al., 2010). The structure of the underlying graphical model is shown in 

Figure 2b, where latent rectangular nodes signify the two partitions that are present in the 

data. Note the link κ between these partitions. The strength of κ determines how closely 

related the factors are. In the simulation it is κ = 0.91. The correlation matrix in Figure 2e is 

not as informative as the one of Figure 2d: everything appears correlated.

Dataset III is designed to be harder still. Specifically, we construct a dataset such that the 

random variables are related via a nonlinear manifold. This is to represent a case of 

multiway interactions which are frequent in biological datasets, in particular those from 

neural populations (Amari et al., 2003; Ganmor et al., 2011; Ince et al., 2009; Montani et al., 

2009; Yu et al., 2011). For clarity of interpretation, we represent pure tri-way interactions 

not contaminated by pairwise interactions which are addressed above (see further details in 

Appendix E). A pairwise scatter plot matrix for a dataset containing three groups is shown in 

Figure E.7b. The scatter plot is helpful in showing how the correlation matrix in Figure E.7c 

turns out diagonal for this dataset, i.e. pairwise methods have only minimum information in 

the data to rely on.
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2.3. Multi-task Data Collection

A variety of neuroimaging studies have now used multiple tasks to probe potential 

biomarkers in schizophrenia patients and our analysis took advantage of this. Our goal is 

maximizing information content of subsequent meta-analysis by exploring correspondence 

between intrinsic networks extracted from various tasks using different approaches. For 

example, the same intrinsic networks activate across tasks with varying degree of variability 

and task relatedness, but is their spatial distribution really similar across the tasks? If some 

intrinsic networks are invariant to the task, CASH shall place them in the same factor. If 

these networks are more coherent with some other networks rather than their counterparts 

CASH factoring should provide that information. Moreover, for patients and controls 

factoring results may be different and the difference may be informative and provide class 

discriminative markers. As we are interested in inter-task relations of intrinsic networks un-

confounded by the differences in intrinsic network composition of each task we have 

selected the same networks in all of the tasks.

To meet these goals, we extracted features from three well-known paradigms: an auditory 

sensorimotor task (Mattay et al., 1997), a Sternberg working memory task (Manoach et al., 

1999) and a auditory oddball task (Kiehl et al., 2005a) using GLM from 68 patients with 

schizophrenia and 86 controls as part of the Mind Clinical Imaging Consortium (MCIC) 

study.

Participants—Schizophrenia patients along with their matched healthy controls provided 

written informed consent for the Mind Clinical Imaging Consortium. Healthy controls were 

free from any Axis 1 disorder, as assessed with the Structured Clinical Interview for DSM-

IV-TR (SCID) screening device. Patients met criteria for schizophrenia in the DSM-IV 

based on the SCID and a review of the case file by experienced raters located within each 

site. All patients were stabilized on medication prior to the fMRI scan session. Between 

patients and controls, significant differences were seen in the participant level of education, 

but no meaningful differences in the level of parental or maternal education. WRAT scores 

showed significant IQ differences between the two groups, which might be attributed to the 

debilitating cognitive effects of schizophrenia. Patients and controls were age matched, thus 

there were no significant differences between the two groups regarding this criteria. This 

information including handedness and gender can be found in (Table 1).

FMRI Tasks:

1. Auditory oddball task (Target and Novel) (AOD): The auditory oddball task 

stimulated the subject with three kinds of sounds: target (1200Hz with probability, 

p = 0.09), novel (computer generated complex tones, p = 0.09), and standard 

(1000Hz, p = 0.82) presented through a computer system via sound insulated, MR-

compatible earphones. Stimuli were presented sequentially in pseudorandom order 

for 200ms each with inter-stimulus interval (ISI) varying randomly from 500 to 

2050ms. A subject was asked to make a quick button-press response with their 

right index finger upon each presentation of the target stimulus and no response 

was required for the other two stimuli. There were 4 runs, each comprising of 90 

stimuli (3.2min) (Kiehl and Liddle, 2001; Kiehl et al., 2005b).
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2. Sternberg working memory task (Encode and Probe) (SIRP): The Sternberg 

working memory task (Manoach et al., 2001, 1999) requires subjects to memorize a 

list of digits (displayed simultaneously) and later to identify if a probe digit was in 

the list. Three working memory loads: high (5 digits), medium (3 digits) and low (1 

digit) were used in this paradigm. Each run contained two blocks of each of the 

three loads in a pseudorandom order. Half of the probe digits were targets (digits 

previously displayed) and half were foils. Subjects were asked to respond with their 

right thumb if the probe digit was a target and with their left thumb for a foil.

3. Sensorimotor Task (SM): The sensorimotor task (Haslinger et al., 2005; Mattay et 

al., 1997) consisted of an on/o block design, each with a duration of 16s. During the 

on-block cycles of 8 ascending-pitched and 8 descending-pitched, 200ms tones 

were presented. There were three runs each with duration of 4 minutes. The 

participant was instructed to press the right thumb of the input device after each 

tone was presented.

Imaging Parameters—Scanning was performed across four sites: the University of New 

Mexico (UNM), University of Iowa (IOWA), University of Minnesota (MINN), and 

Massachusetts General Hospital (MGH). All sites, except for UNM, utilized a Siemens 3 

Tesla Trio Scanner, while UNM utilized a Siemens 1.5 Tesla Sonata. The scanners were 

equipped with a 40 mT/m gradient and a standard quadrature head coil. The fMRI pulse 

sequence parameters were identical for all three tasks (AOD, SIRP, SM) and were the 

following: single-shot echo planar imaging (EPI); scan plane = oblique axial (AC-PC); time 

to repeat (TR) = 2 s; echo time (TE) = 30 ms; field of view (FOV) = 22 cm, matrix = 64 × 

64; flip angle = 90 degrees; voxel size = 3.4 × 3.4 × 4 mm3; slice thickness = 4 mm; slice-

gap = 1 mm; number of slices = 27; slice acquisition = ascending.

FMRI Preprocessing—Datasets were preprocessed using SPM5. Realignment of fMRI 

images were performed using INRIalign, a motion correction algorithm unbiased by local 

signal changes (Freire et al., 2002). Datasets were then spatially normalized into the 

standard Montreal Neurological Institute (MNI) space (Friston et al., 1995) using an echo 

planar imaging template found in SPM5 and slightly subsampled to 3 × 3 × 3 mm3, resulting 

in 53 × 63 × 46 voxels. Finally, spatial smoothing was performed with a 9 × 9 × 9 mm3 full 

width half maximum Gaussian kernel.

Feature Extraction: General Linear Model—For feature extraction in this study we 

have used the approach of Kim et al. (2010) described in details thereof. For each individual 

task (AOD, SIRP, SM), a GLM approach was used to find task-associated brain regions, 

labeled as contrast maps. A univariate regression of each voxel’s time-course with an 

experimental design matrix was generated by the convolution of the task onset times with a 

hemodynamic response function. This resulted in a set of beta-weight maps associated with 

each parametric regressor for each task. The subtraction of one beta-weight map with 

another is often referred to as a contrast map, which represents the effect of a task in relation 

to an experimental baseline. For our purposes, we were interested in the relative effect of 

target or novel stimuli versus standard stimuli in the AOD task, the average probe effect or 

the average encode effect for the SIRP task, and the SM tapping effect for the SM task.
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Feature Extraction: Independent Component Analysis—A group spatial ICA was 

performed3 using the infomax algorithm (Bell and Sejnowski, 1995) within the GIFT 

toolbox v1.3d (http://icatb.sourcefourge.net). We found the optimal number of components 

for ICA by using a modified minimum description length algorithm (Li et al., 2007), which 

was found to be 19 for the AOD task, 23 for the SIRP task, and 22 for the SM task. Since 

ICA with infomax is a stochastic process, the end results are not always identical. To 

remedy this, we applied ICASSO (Himberg et al., 2004) to our initial ICA analysis which 

allowed us to reiterate our ICA analysis for 20 iterations and to take the centroid of the 

resulting spatial maps. The spatial maps and their respective timecourses were calibrated 

using z-scores. The features selected for our CASH analysis comprised of 8 components that 

were highly similar across our three tasks, containing activation patterns seen from previous 

ICA studies of fMRI. A full listing of the features selected for both ICA and GLM, along 

with their respective descriptions can be found in (Table 2).

Large Sample Size—Using a common mask for subjects within each group and stacking 

the masked data in the subjects dimension, we have obtained an n × z dataset matrix D with 

n = 29 denoting number of random variables representing the features and z = 3832684 

(4699126) – number of samples for patients (controls). To cope with the large sample size 

we use a heuristic down-sampling approach described in Appendix D.

3. Results

3.1. Synthetic Datasets

In this section we demonstrate on synthetic data that CASH performs well on the whole 

spectrum of problem difficulties, whereas competing methods are only good when their 

model conditions are met.

Dataset I Although accepted as a fairly realistic, the model turned out to be not challenging 

for a partitioning algorithm, as seen from the clear block structure of the correlation matrix 

of the data (Figure 2d). Notably, the model is also quite easy for the structure search since 

the edges stand out in the correlation matrix having a higher strength. It is not surprising that 

all competing models perform well and are statistically indistinguishable (not shown).

Dataset II When κ is low, all 6 methods perform well with a close to zero error (not 

shown). However, this pattern changes when factors become related (κ ≥ 0.9). Figure 3 

shows performance of the competing approaches on a dataset just like that (κ = 0.91). The 

most accurate models are CASH, L2, and CC k-mean. The PGMM model fails at all sample 

sizes. Interestingly, NIC and PLTM perform better with smaller as compared to larger 

sample sizes. In case of NIC it is most likely due to the “curse of dimensionality” (Mackay, 

2002) since for clustering algorithms the sample size is the dimensionality of the space 

containing data. PLTM and PGMM models behave surprisingly poor, which we attribute to 

their low robustness to correlated datasets. The good performance of k-means approaches is 

also interesting and worth noting. Another major difference is in the wall-clock time 

comparison shown in Figure 3b, where k-means algorithms are the fastest, with CASH 

3As noted above, see Kim et al. (2010) for detail.
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holding the third place, and model based methods being slowest (up to 3 orders of 

magnitude slower than CASH).

Dataset III Figure 4 shows error and wall-clock time comparison of all competing 

algorithms on a 2, 3 and 4 factor manifold datasets. All three clustering algorithms (L2, CC, 

NIC) perform quite poorly on this dataset. This is expected for k-means, since there is no 

pairwise information that can be used. NIC, however, is based on mutual information, and, 

in fact, estimates entropy like CASH using the mean nearest neighbor estimator 

(Faivishevsky and Goldberger, 2010). The mode of operation, however, imposes a strong 

“curse of dimensionality” condition on NIC (Mackay, 2002). Its failure on these data 

provides further support for the need for novel methods of attribute partitioning, like CASH. 

PLTM performs quite well and almost identical to CASH only requiring a larger samples 

size. PGMM has comparable performance too, only failing on the 2 factor dataset and 

needing even larger sample size than PLTM for comparable accuracy. The failures of 

PGMM are mostly due to its consistent overestimation of the number of factors, which can 

be expected since the method directly optimizes the BIC (Bayesian information criterion) 

score (Schwarz, 1978). As before, k-means is the fastest algorithm among all. However, it is 

not able to recover the structure underlying the data. Among the 3 most accurate algorithms 

CASH is the fastest and dramatically so: it is 2 (vs PGMM) to 3 (vs PLTM) orders of 

magnitude faster.

3.2. Factoring Multi-Task Data

Comparisons on synthetic data demonstrate competitive features of CASH and provides 

confidence in its preparedness for large scale applications. Now we apply CASH to our 

multi-task fMRI data. Our random variables are now data sources and instantiations of these 

variables are voxel values determined by data collection and processing methods. A chief 

purpose of multitask fMRI data fusion is to access the joint information provided by 

multiple tasks, which in turn can be useful for identifying dysfunctional regions implicated 

in brain disorders. Our goal is to partition data sources into functionally relevant and 

meaningful groups.

We use data of all subjects in both groups (patients and controls).4 We apply CASH with the 

upper bound on the number of factors set to 5 (see below). We run CASH 50 times with a 

random starting partition. The partition that has the lowest objective (2) value is used as our 

best solution. Note, we are not solving the problem of setting the model order optimally in 

this paper and it is a hyper-parameter in CASH as in many other related methods (k-means, 

ICA and others (Mackay, 2002)). Furthermore, since CASH uses the input number of factors 

as an upper bound, the exact value of this parameter is not very restrictive. Nevertheless, we 

have CASH run for various values of this hyper-parameter m and found denser groups with 

smaller m. The selected value of m = 5 is at the factor content level that is easier to interpret: 

factors are not overwhelmingly dense while including several classes of intrinsic networks. 

The rest of the findings are consistent across choices of m we have tried. The factoring of 

4Note that in this paper we do not mix the data of the groups but run all experiments on patients and controls separately.
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features corresponding to the best objective value is shown in Figure 5a for controls and in 

Figure 5b for patients.

Each of the 50 runs of CASH returned a solution after converging at a local minimum. The 

values of the objective at these minima are summarized in the box and whisker plot of 

Figure 6a. As the figure shows, solutions for patients and controls have significantly 

different distributions of the objectives at these local minima (p < 0.001). This difference 

means that the spatial variability of intrinsic networks that comprise a factor is significantly 

lower in patients than in controls. Regardless of the task the co-regulated groups of intrinsic 

networks consist of networks that are more related in patients than controls. Evidently, in 

patients intrinsic networks have statistical properties that are similar across tasks, networks 

and extraction methods (ICA and GLM) more than for controls.

The dataset sizes for patients and controls provide some confidence that the results are not 

due to a random chance of subject selection. However, to be sure that the differences in the 

groups and factoring results are not due to outliers we also performed a bootstrap analysis 

re-sampling the subjects with replacement and generating 50 new separate datasets. For each 

of these datasets we ran CASH using 2 starting points: one that gave the best (best initial 

partition (BIP)) and the other the worst solution (worst initial partition (WIP)) in the run 

using the complete dataset (Figure 6a). Figure 6b summarizes these runs in a box and 

whisker plot. Since the number of iterations is different for each dataset – the averages have 

fewer points at high iteration numbers (see Figure 6b iterations 21 through 24). The 

bootstrap experiment shows that the difference between the local minima objective values in 

patient and control groups is not due to outlier subjects. Another conclusion: CASH 

solutions are quite stable with respect to subject resampling. In majority of the cases for 

each group the BIP solution has better objective value than the WIP solution. This may be 

an evidence of the objective function landscape not experiencing drastic changes with 

resampling.

Despite its relative stability (worst and best initial points lead to solutions of corresponding 

quality), CASH returns different solutions for each of the datasets. To estimate the effect of 

factoring stability we have selected the best solution and computed the partition distance 

with every other solution in the 50 runs for each of the groups. To estimate whether the so 

computed distribution of mismatches for patients and controls are different, we have applied 

the nonparametric Mann-Whitney U-test. The test showed that the distributions are 

significantly different with p = 0.003.

To obtain further detail on this difference we have looked at 10 features that have changed 

their factor assignment the least in the 50 runs with respect to the partition obtained using 

the complete dataset (Figure 5). These are the most stable features for each group. Since 

they do not change their factor assignment as frequently as other features, we consider them 

group discriminative. Table 3 lists these top 10 stable features for patients and controls along 

with their distance coefficient (k): number of times out of the 50 runs a feature was assigned 

to a factor different from the one in the best partition of the complete dataset.
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As our synthetic experiments show, CASH is rarely less accurate than the other methods. 

However, if our multi-task data only contain linear pairwise relations (the kind of Dataset I 

and II) then k-means methods may be a better choice. In this case, they are as accurate as 

CASH but work faster. We ran L2 and CC k-means on these data with k = 5 and the same 50 

starting locations used in CASH runs. L2 k-means resulted in uneven clusters placing 19 out 

of 29 networks in a single cluster and we do not consider it further. CC k-means resulted in a 

reasonable four six-network clusters and a single five-network cluster (see Appendix F). 

However, they were very similar for patients and controls and even the objective values 

were close to each other (11.67 and 11.28 respectively). This is in contrast to CASH which 

has, as was shown, identified considerable group differences in the extracted networks.

4. Discussion

CASH can be related to clustering methods (less so) and to the multi-view clustering 

approaches (Galimberti and Soffritti, 2007; Poon et al., 2010). The latter could be direct 

alternatives to CASH were they not orders of magnitude slower when applied to proper 

neuroimaging datasets.

We have shown that CASH can capture a wide range of possible interactions with 

comparable speed and accuracy, whereas other algorithms fail in some of the settings. Note, 

high order interactions can also be captured by graphical model structure search algorithms 

such as PC (see Spirtes et al., 2001, §5.4.2, pp. 84-88). We did not compare to these, as their 

output is not a partition but a graph which complicates direct comparison. We conclude that 

CASH is safe to use when the latent structure of the data is unknown a priori – it will not fail 

on an “easy” dataset while providing meaningful factors in the hard cases. CASH is also 

robust to the change in co-regulation structure among random variables as well as to the 

connection strength between the factors contained in the data.

Factoring Multitask Data

When using datasets comprised of complete subject sets for patients as well as for controls, 

we obtained a factoring of features displayed in Figure 5. A notable feature is that in the 

patient group the temporal lobe is grouped with motor areas (factor 1 in Figure 5b), whereas 

in controls it is grouped with higher cognitive areas (factor 3 in Figure 5a). We found that 

similar intrinsic networks grouped together irrespective of the task data from which they 

were derived, arguing for consistency of neural systems across tasks.

A notable difference between the groups (see Figure 5) is the placement of all of the SPM 

features in a single factor for patients, while splitting them between two factors in the 

control group. This observation supports previous findings of “more similar” activations in 

schizophrenia patient than controls (Calhoun et al., 2006; Michael et al., 2009). 

Furthermore, our objective function (2) provides a quantitative measure of similarity that 

extends beyond second order interactions. This allows us to judge similarities between 

patients and controls. Figure 6a shows a quantitative measure of how patients are “more 

similar” than controls and amounts to a statistically significant difference: p < 0.001.
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In Table 3 for patients the distance from the complete dataset partition (k) is lower than for 

controls: group discriminative features are more stable for patients whereas the variability is 

higher in controls. The features that are different between the groups are shown in color. For 

controls notable discriminative features include pre/post central gyrus (Central) in all of the 

tasks as well as the primary visual cortex (V1) in all tasks. For patients, right dorsal lateral 

prefrontal cortex (RDLPFC) for all tasks is group discriminative, although the most stable 

are default mode network anterior (DMN2) and bilateral frontal pole (FPOLE) features.

Our analysis does not specifically aim at identifying intrinsic networks most discriminative 

between patients and controls. The most stable networks can be thought of as rather the most 

characteristic for each group. However, prior work on identification of discriminative 

features has shown results consistent with ours (Sui et al., 2009, 2011). For example, 

schizophrenia is associated with altered temporal frequency and spatial location of the 

default mode network (the most characteristic component for the patients group) (Bluhm et 

al., 2007; Garrity et al., 2007; Sui et al., 2009). RDLPFC is among the most stable networks 

for all 3 tasks in patients and it is known to play an important role in sensory integration, 

cognitive control and regulation of cognitive function. Dysfunction and lack of functional 

connectivity of this region is frequently reported in patients with schizophrenia (Badcock et 

al., 2005; Hamilton et al., 2009; Sui et al., 2011). A prior study using pairwise similarity 

criteria has shown default mode network anterior in a sensory-motor task and frontal pole in 

an AOD task as well as V1 in a SIRP task to be one of the most discriminative for patients 

and controls (Kim et al., 2010). It is important to note that nearly all patients were taking 

psychotropic medications for their mental disorder while such medications were essentially 

absent in the control participants. Patients were generally stable in their prescribed dosages 

of medications prior to the fMRI scan session. A detailed medical history was not available 

for all subjects and thus the examination of medication effect was omitted.

In the absence of the ground truth, it is hard to prefer one factoring of the multitask dataset 

over another without additional information. Based on synthetic data, when comparing k-

means with CASH we expect either both of the methods to provide similar partitions or k-

means be incorrect. Although, there may still be a chance that k-means resulted in a better 

factorization – it is unlikely in our case. We have prior information that patients and controls 

groups are different. The fact that CC k-means returns very close clusters for these groups 

(in composition as well as in the objective value) raises a question of cluster’s validity. 

Furthermore, uniform cluster sizes serve as an evidence that CC k-means sees the space of 

intrinsic networks as flat so the best Voronoi tesselation is a grid. Previous work has 

suggested the prevalence of nonlinear over linear effects in discriminating patients from 

controls in unimodal imaging data (Burge et al., 2009; Kim et al., 2008) but these effects 

have not been directly investigated and contrasted with linear effects nor have they been 

studied in the context of multi-task data.

5. Conclusions

We have described the coregulation analysis framework for capturing arbitrarily complex, 

multi-way interactions among random variables based on information theory: CASH. 

Claims about performance of CASH in detecting multi-way interactions were carefully 
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evaluated in a comparison using synthetic data. We conclude that CASH, in contrast to 

competing methods, performs well in all tested contexts while providing competitive 

computational running time. As running time is proportional to the dataset size, the results 

of evaluation tests position CASH as a practical tool for neuroimaging data analysis when 

multi-way interactions can be present. We apply CASH to a large multi-task fMRI dataset of 

schizophrenia patients and controls consisting of task-specific intrinsic networks. In addition 

to finding meaningful groups of intrinsic networks we observed statistically significant 

differences in inta-group relations according to our entropy criterion: intrinsic networks of 

patient are more interrelated than those of controls. This finding holds after bootstrapping of 

subjects. In addition, CC k-means results provide evidence that nonlinear high-order 

interactions can provide group discriminative information for schizophrenia patients and 

controls that is not visible otherwise. Our results are consistent with and extend known 

findings from univariate and second order-based methods, thus arguing for approaches such 

as CASH that can capture true higher-order dependencies in datasets from complex domains 

such as neuroscience.
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Appendix A. Partitioning Objective

Given a set of n random variables X = {X1, X2, … Xn} the task is to partition their joint 

probability density into k ≤ m factors {F1, F2, … Fk}. The assignment of random variables 

to factors should satisfy the following conditions:

1. The assignment forms a partition of X.

2. Variables in a factor are maximally dependent.

3. Factors are maximally independent.

Unlike factor analysis and related methods we do not aim at reducing the dimensionality of 

the data by discovering a smaller set of latents expressed as a linear combination of the 

observed variables. Rather, we aim at factoring the joint distribution to enable more detailed 

analyses on the subsets.

A solution algorithm needs to estimate the number of factors k while the upper bound m is 

an input parameter. In practice, m can be estimated with penalized search (Duda et al., 2000) 

or Chinese Restaurant Process-based Bayesian estimates (Xing et al., 2004).

Let us denote by  the ith random variable assigned to factor F, and by  the criterion 

used to evaluate statistical dependence ( , for example, can be mutual information or 

multiinformation). Now we express condition 2 as:
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(A.1)

and condition 3 as:

(A.2)

The cumulative objective function for the proposed factoring of the joint distribution of the 

random variables is then

(A.3)

where α ∈ [0, 1] controls relative importance of intra-cluster dependence over inter-cluster 

independence. Condition 1 is enforced by limiting the space of possible solutions while 

minimizing .

Appendix B. Estimating Dependence

A number of options for the dependence criterion, , are available, including 

multiinformation (MI) (Studený and Vejnarová, 1998), Kullback-Leibler (KL) divergence 

(Kullback and Leibler, 1951), α-divergence and the Hilbert Schmidt Information Criterion 

(HSIC) (Gretton et al., 2006); a full evaluation of their relative merits is beyond the scope of 

this paper.

If we use definition of multiinformation  presented in (Slonim, 2002, eq. 

1.12) for discrete variables, and extended to continuous random variables as:

(B.1)

then we can compute it as KL divergence .

However, in the case when mutual information is used as a dependence criterion we can 

rewrite the objective (A.3) using the following identity I(X, Y) = H(X)+H(Y)−H(X, Y), where 

H denotes the Shannon’s entropy, as

(B.2)

Since Fjs partition the space of X, the first sum in the denominator (after removing brackets) 

runs over all random variables and we end up with
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(B.3)

Note that neither sum of the entropies of the individual variables (the first term in the 

denominator) nor the entropy of all of the random variables (the second term in the 

numerator) depend on the way we factor the joint. Thus objective (A.3) with MI criterion 

can be minimized by minimizing a single quantity , which simultaneously 

maximizes the numerator and minimizes the denominator of (B.3)5. And our objective 

becomes:

(B.4)

Information theoretic criteria are difficult to estimate and require complicated bias 

correction terms in higher dimensions (Nemenman et al., 2001). Fortunately, for our 

purpose, we are more interested in the discrepancy among random variables (their clusters) 

than in the exact MI value. A paper by Pérez-Cruz (2008) demonstrates suitability of the k-

nearest neighbor mutual information (MI) estimator (Kraskov et al., 2004) to measuring 

discrepancy in random variables, together with proving almost sure convergence for k-nn 

type estimators of MI, KL divergence and differential entropy.

Nearest neighbor search in the k-nn estimators is an expensive operation, which can be, 

fortunately, avoided by averaging over all possible values of k, as it has been shown by 

Faivishevsky and Goldberger (2009, 2010). The estimator of H(Fl), for some 0 < l < m, is 

expressed as

(B.5)

where xi and xj are vectors of values of all random variables at instances i and j respectively, 

ψ(·) is the digamma function, n is the number of data instances, d is the number of random 

variables in the current factor Fl and cd = πd/2/Γ(1 + d/2) is the volume of the unit ball in 

. Importantly, the accuracy of an entropy estimator is irrelevant for our optimization 

problem as long as relative values of the objective  provide correct ordering of partitions 

with respect to their optimality. This property indeed holds as Pérez-Cruz (2008) previously 

observed and our simulations and applications provide empirical support.

Dropping the terms that are not affected by a change in partition (those that include (ψ(·)), 

we arrive at the final form of our objective employed in the rest of the paper:

5The form was derived setting α = 1/2
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(B.6)

Although the estimator in (B.6) is polynomial in number of instances (O(dn2)), it is still 

expensive to compute at each iteration of a search procedure even for datasets of moderate 

sizes. However, among its advantages is a smoother6 resulting estimate, a property we will 

need in Section Appendix C and demonstrate its use in 3.1.

Appendix C. Approximating the Objective

Estimation of the objective, , is computationally expensive due to the complexity 

dependent on the number of variables, number of factors and the sample size. In this section 

we show a way to overcome this problem by (pre)computing only a small number of values 

yi of the objective and approximating the rest.

We start with describing a framework for approximating Bayesian network score using a 

meta-graph kernel introduced by Yackley et al. (2008). Following the original exposition, 

we present the framework from the point of view of a structure-search score approximation. 

However, the approach allows approximation of arbitrary smooth functions on a hypercube 

by representing them in the basis of eigenvectors of its Laplacian and we adapt it to our 

factoring problem in the next section.

Yackley et al. has shown how to efficiently compute any specific elements of desired 

eigenvectors of the Hamming cube graph Laplacian and we give an intuition of how it is 

done. First note that for n nodes there are n2 possible edges in a directed graph. In a given 

graph each of these edges can be either present or absent giving the total number of possible 

graphs 2n2
. Representing adjacency matrix with a bit string and connecting by an edge those 

bit-strings that differ only in a single bit state, we define a meta-graph over all possible 

directed7 graphs on n nodes. This graph is the Hamming cube.

Laplacian of an n-node graph G is defined as LG = DG − AG, where DG is an n × n diagonal 

matrix with node degrees as the diagonal elements, and AG is the n × n adjacency matrix of 

the graph.

Yackley et al. observed that the eigenvectors of LG form the Hadamard matrix, and the 

eigenvectors of the hypercube Laplacian are columns of the Hadamard matrix, for which the 

entries can be computed in closed form (see their paper for details). This leads to an efficient 

solution of the following minimization problem (expressed in terms of our task):

6Compared to a fixed k nearest neighbor estimator.
7For the meta-graph of all possible Bayesian networks, which are acyclic by definition, Yackley et al. assume a fixed ordering and 

vertex set size of the meta-graph becomes 
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(C.1)

where ρi denotes a partition for which we have pre-computed the data using , c and l are 

regularization parameters, N is the number of pre-computed values, and L is the Laplacian of 

the graph describing the domain on which  is defined. The goal is to find a smooth f that 

approximates values of  at partitions where it has not been computed.

The problem is formulated and solved within the Reproducing Kernel Hilbert Space 

(RKHS) framework (Wahba, 1990; Yackley et al., 2008). The authors show that one needs 

to compute values of the kernel matrix only for those columns where the pre-computed 

 is available and only for those rows where we need to approximate its value.

Appendix C.1. Hypercube Representation

Although the framework of Yackley et al. (2008) is formulated for Bayesian network 

structure scoring, it is more general and applies to any problem of approximating smooth 

functions over a hypercube. We represent the problem of factoring random variables defined 

in Section Appendix A as a hypercube graph and use their approximation framework.

First we show that the factoring problem of Section Appendix A represents a subset of 

vertices on a hypercube. This will allow us to define smooth functions approximating our 

objective  (B.6) on the vertices of the hypercube but use the approximation only on the 

subset that represents valid partitions.

At the risk of being pedantic, we prove the following simple lemma. It serves the purpose 

making our further development clearer.

Lemma 1. In the case when m is the upper bound on the number of factors, and overlapping 

factors as well as empty ones (including all empty simultaneously) are allowed 8, the space 

of possible assignments forms the Hamming cube.

Proof. Let us represent a single assignment of a variable to a cluster by a single bit in a 

binary vector of length n representing that cluster. Thus for k ≤ m clusters and n variables all 

possible assignments can be represented by a binary number of mn bits, for which there are 

2mn possible assignments. These assignments form the vertex set of a hypercube in . 

Two vertices from this set are connected by an edge if their binary representations differ by 

a single bit. This results in a Hamming cube.

Let b ∈ {0, 1}m×n be a binary vector of length mn, where bij = 1 indicates that variable Xj is 

assigned to cluster i. According to Lemma 1, together with the Hamming metric, the set of 

such vectors forms the mn-dimensional Hamming hypercube, . Note that this is an 

overcomplete representation of a clustering because it relaxes the partition condition 1 (see 

Section Appendix A).

8A relaxation of the partition condition of Section Appendix A
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The set of all vertices of  is substantially larger than the set of vertices denoting 

partitions. If we attempt to minimize  over the entire Hamming cube, then we will hit 

many vertices before reaching one that is a valid partition. However, constraining the space 

of the considered vertices to partitions turns out to be easy.

First, we reshape b into an m × n binary matrix representation:

(C.2)

where there is a column of length m per random variable. In order for b to be a valid 

partition, all but one bits of each column are set to 0 (denoted by a □) and exactly one bit is 

set to 1 (denoted by a ■).

The matrix representation provides an easy check if a length mn binary vector b is a partition 

(all column sums must be equal to 1). Switching from a valid partition to a valid neighboring 

partition is also easy. It is done by swapping the active bit in a column with another bit in 

the same column. However, the mn-element set of such partition representations contains m! 

equivalent partitions due to the reordering of rows of (C.2). All equivalent partitions have 

the same objective value (B.6) complicating optimization.

We adopt a canonical form of partition representations of the kind shown in (C.2) in order to 

consider a partition only once and instead of mn of them work with only 

unique partitions, where  denotes the Stirling number of the second kind. We call a 

representation canonical if the row-sum m-element vector is sorted in the descending order 

(i.e. each higher row in (C.2) have more bits set than any of the lower rows). This 

representation is similar up to a transposition to the one used by Griffiths and Ghahramani 

(2005). The set of canonical representations contains only unique partitions which form a 

graph  by connecting partitions that can be obtain one from another via a single swap of 

the active and an inactive bit in any of the columns of (C.2).

In this section we have constructed a hypercube graph , and the graph of canonical 

partitions , whose nodes are formed by a subset of vertices of . When we minimize 

later in the paper, we perform searches with respect to , while approximating the values of 

 on the nodes of  using .

Appendix C.2. A Greedy Algorithm

We have established an objective to measure our success, a topology  to approximate this 

objective, a fast way to perform this approximation, and a topology  to search over. Since 

now we are enabling the coregulation analysis via the spectra of the hypercube 

Plis et al. Page 19

Neuroimage. Author manuscript; available in PMC 2015 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



approximation, we further call it CASH9. The only missing part before we can formulate a 

greedy search algorithm is a strategy for choosing partitions to precompute values of 

needed for approximation to work.

Since the interpolation framework of Yackley et al. (2008) is by nature local, we only 

consider immediate neighbors of the current best partition. We (pre)compute the objective at 

a subset of these neighbors, and then approximate the objective values at the rest of the 

neighbors. Note that the precomputed subset used for approximation does not grow in size. 

We pick the neighboring partition with the smallest objective, or finish the search at a local 

minimum, as detailed in Algorithm 1.

Algorithm 1 greedy search

Require: The data matrix, percentage of neighboring partitions to pre-compute the objec-
  tive for (ρ), an upper bound on clusters m

1: Randomly select initial best node bc on G

2: repeat

3: Select all neighbors of bc in G

4: Pre-compute J≀ at the subset of ρ neighbors.

5: Approximate on the rest (Section Appendix C).

6: Select the partition with the minimal J≀ : bc = arg min({J(bi)}i=0
N , J(bc))

7: until convergence

Different pre-computation strategies may be devised depending on user needs. For instance, 

there might be a need to precompute  only at factorizations with few random variables per 

factor. This can be beneficial in the cases of sparse data, when the values of the estimate of 

 can not be computed reliably for factors of large sizes. Then it is better to precompute 

only the reliable parts (i.e. small factors) and fallback to the smoothing approximation on the 

rest.

Appendix D. Entropy Computation Heuristic

As noted earlier, complexity of computing our objective function (B.6) is O(dz2) and we can 

further improve the running time by pre-computing the distances between all samples for 

each random variable. This pre-computation is based on the following observation:

(D.1)

where the left hand side distance is the key component of expression (B.6) and the 

superscript k denotes the kth element10 of vector x. All of the differences between samples j 

9Coregulation Analysis via Spectra of the Hypercube
10corresponds to one of m features
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and i on the right hand side can be pre-computed for each k eliminating the need to do so at 

each computation of (B.6). When computing the objective function at pivot points in 

Algorithm 1 only these elements which correspond to a given factor are summed together. 

This summation can be efficiently computed on modern multi-core machines by framing it 

as a matrix multiplication and taking advantages of highly optimized and parallelized linear 

algebra packages.

All experiments up until this section have been optimized using this procedure. However, 

dimensionality of the feature matrix D creates problems for storing the pre-computed cache 

in RAM. To cope with this problem while taking advantage of pre-caching and parallel 

computation we use the following heuristic:

1. Subsample the original dataset D into c matrices of reduced size (c = 10 in this 

work).

2. Precompute the cache matrix for each of the subsampled matrices.

3. Compute the objective (B.6) using each of the cache matrices independently 

subsequently averaging the result.

This is a heuristic and we can foresee situations where the procedure will fail (for example 

when rare samples in the dataset produce a large effect on the value of the objective). 

However, our tests (not shown) on comparing the values of the objective produced using the 

complete datasets for both groups and using this heuristic produced consistent results. Our 

application results also show that this heuristic performs well on the data we are using.

Appendix E. Synthetic Dataset III

Details of the data generation process are schematically shown in Figure E.7.

Figure E.7. 
Description of the manifold data generation process. Figure E.7a shows how each triplet is 

constructed in a manner to provide an interaction that simultaneously involves 3 variables 

and does not decompose into their pairwise interactions. A scatter plot of a 3 triplet dataset 

can reveal some structure, but correlation matrix (Figure E.7c) remains completely 

insensitive.

Appendix F. CC k-means on Multi-Task Data

The CC k-means clusters are shown in Figure F.8. They are uniform in size and closely 

similar across patients and controls groups. This failure of k-means to discriminate the 
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groups can be interpreted as an evidence of high-order nature of the group differences in the 

data.

Figure F.8. 
CC k-means factoring of the multi-task data.
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Highlights

– New approach to identify high order links among multiple imaging 

modalities

– Evidence of important relationships not detected by existing analysis 

methods

– Multimodal relationships highlight important changes in schizophrenia
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Figure 1. 
Some of the possible scenarios of interdependence among random variables, which can be 

brain intrinsic networks, data of various modalities etc. A directed graphical model is shown 

as an example only and it may as well be an undirected or a mixed type relationship. Solid 

and dashed arrows denote strong and weak statistical interactions respectively. Squares are 

the observed random variables and circles are the latent variables.
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Figure 2. 
The three synthetic datasets: Realistic simulations by Smith et al. (2010): a two factor 

dataset (Figure 2a: rectangles are the observed nodes and circles are the latents), with groups 

clearly visible in the block structure of the correlation matrix of Figure 2d (diagonal of 1 is 

not shown). A two factor pouch model of Poon et al. (2010). Two latent variables defining 

the factors are tightly linked (Figure 2b) resulting in an almost uniformly high correlation 

values across the correlation matrix (Figure 2e). A scatter plot of a 3 triplet dataset can 

reveal some structure, but correlation matrix (Figure E.7c) remains completely insensitive.
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Figure 3. 
Dataset II: accuracy and run time comparison on the data simulated from the two factor 

PLTM of Figure 2b. CASH and k-means demonstrate good performance whereas the other 

algorithms fail. Each point on the plots is the average of 50 runs on 50 randomly generated 

datasets. The most accurate methods are also the fastest.
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Figure 4. 
Dataset III: accuracy and run time comparison on data with 2, 3, and 4 factors. CASH 

performs well in all cases and generally needs fewer samples to achieve low error rate. Each 

point on the plots is the average of 50 runs on 50 randomly generated datasets.
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Figure 5. 
Multitask brain intrinsic networks partitioned by CASH into 5 factors for patients and 

controls. Color denotes one of the three tasks, checkerboard background denotes statistical 

parametric map, solid background is for ICA. CASH was run separately on these datasets 

and resulted in a group specific partition of brain intrinsic networks.
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Figure 6. 
Distribution of the CASH objective values (lower is better) on the multi-task feature dataset 

- box and whisker (1.5IQR) plots. Figure 6a shows distributions of objectives at 50 local 

minima found by running the algorithm with 50 random starting points using complete 

datasets. Figure 6b summarizes results of the bootstrap analysis of the same dataset re-

sampling subjects with replacement 50 times. Trajectories for only two starting points are 

shown for each group: one that converged to the best solution in the experiment of Figure 

6a, and one that converged to the worst (the highest objective value).
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Table 1

Participants

Demographics

Age in Years
(n=154)

Gender
(n=154)

Handedness
(n=152)

C (μ/σ) 30.70/11.30 54M/32F 78R/3L/4B

P (μ/σ) 31.85/11.35 55M/13F 60R/4L/2B

T (t/p) 0.6289/0.5304 Male/Female Right/Left/Both

Education & Intelligence

Education
(n=152)

Paternal
edu (n=142)

Maternal
edu (n=142)

WRAT
(n=149)

C (μ/σ) 15.24/2.06 14.87/3.36 13.98/2.60 51.19/3.73

P (μ/σ) 13.72/2.44 14.46/3.86 13.83/3.73 48.13/5.51

T (t/p) 4.1521/ < 10−4 0.6738/0.5015 0.2886/0.7733 4.0397/ < 10−4
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Table 2

Features selected for ICA and GLM

Description Label Type Tasks

Left dorsal lateral prefrontal cortex LDLPFC ICA AOD,SIRP,SM

Right dorsal lateral prefrontal cortex RDLPFC ICA AOD,SIRP,SM

Primary Visual V1 ICA AOD,SIRP,SM

Bilateral Temporal Temporal ICA AOD,SIRP,SM

Default Mode Network Posterior DMN1 ICA AOD,SIRP,SM

Default Mode Network Anterior DNM2 ICA AOD,SIRP,SM

Bilateral Frontal Pole FPOLE ICA AOD,SIRP,SM

Pre/Post Central Gyrus Central ICA AOD,SIRP,SM

Targets vs Standards Targets SPM AOD

Novels vs. Standards Novels SPM AOD

Encode Block Average Encode SPM SIRP

Probe Block Average Probe SPM SIRP

Motor Tapping Block Average Motor SPM SM
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Table 3

Labels of 10 most stable features (sorted by the distance coefficient k). Features unique to each group are 

highlighted. k denotes the number of times out of the 50 runs a given feature was in a cluster different from the 

cluster it was assigned to in the best solution obtained using the complete dataset.

# k Controls k Patients

1 0 Central SIRP ICA 0 DMN2 SM ICA

2 0 Central SM ICA 0 FPOLE AOD ICA

3 1 Targets AOD SPM 1 V1 SIRP ICA

4 1 Central AOD ICA 3 Central AOD ICA

5 1 DMN2 AOD ICA 3 RDLPFC AOD ICA

6 10 V1 SIRP ICA 4 RDLPFC SM ICA

7 13 V1 SM ICA 4 Encode SIRP SPM

8 13 V1 AOD ICA 4 Targets AOD SPM

9 14 Novels AOD SPM 4 RDLPFC SIRP ICA

10 14 Motor SM SPM 4 DMN2 AOD ICA
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