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Introduction

The mammalian respiratory tract consists of the trachea and 
lung. It arises from ventral foregut endoderm.1 After progeni-
tor specification, the lung primordia bifurcate ventral-laterally 
to form two primary lung buds. These buds continue to invade 
the surrounding mesenchyme, elongate and branch to ultimately 
form a tree-like structure of epithelium tubules and alveoli. 
Along with lung bud formation, the trachea forms ventrally and 
separates from the primitive esophagus that is formed in the dor-
sal side of the foregut. Meanwhile, the mesenchyme forms from 
lateral plate mesoderm and gives rise to other cell types in the 
respiratory tract, such as airway smooth muscle (ASM), trachea 
cartilage, lymphatics, and blood vessels.1 In mice, the trachea 
and lung form around E9, and the respiratory tract continues to 
develop after birth before reaching maturity around 3–4 weeks 
postnatally.1-3

During respiratory tree development, a complex neuronal net-
work forms.4 This network includes axons from extrinsic neu-
rons, whose cell bodies are located outside of the respiratory tract, 
and intrinsic neurons whose cell bodies reside in the trachea and 
major bronchi and cluster to form ganglia (Fig. 1).5,6 Previous 
studies identified the location of extrinsic neuronal cell bodies 
by using a combination of retrograde/anterograde labeling tech-
niques, immunohistology, and microscopy.7-12 Extrinsic neurons 
within the dorsal and ventral respiratory nuclei in the medulla 
oblongata and within the jugular and nodose ganglia supply 
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During embryogenesis, the development of the respiratory 
tract is closely associated with the formation of an extensive 
neuronal network. While the topic of respiratory innervation is 
not new, and similar articles were published previously, recent 
studies using animal models and genetic tools are breathing 
new life into the field. In this review, we focus on signaling 
mechanisms that underlie innervation of the embryonic 
respiratory tract.
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parasympathetic efferents and most of the sensory afferents, 
respectively (Fig. 1C).6,13-15 These axons travel along the vagus 
nerve to innervate ASM and neuroendocrine bodies (NEBs) in 
the lung epithelium (Fig. 1C).14,16 Some efferents also connect to 
intrinsic neurons that provide post-ganglionic parasympathetic 
input to the trachea and bronchi (Fig. 1B).6 In addition, sen-
sory afferents from the dorsal root ganglia connects with thoracic 
ganglia to supply sympathetic innervation to the blood vessels 
and submucosal gland (Fig. 1A).6 This complex neural network 
functions to control breathing, smooth muscle tone, and mucous 
secretion, and to trigger reflexes such as cough.13-15

Although lung innervation has been described by previous 
studies in humans, primates, rodents, and several other animals, 
signals that regulate respiratory neurogenesis are not fully under-
stood.17-20 Here, we review current knowledge on mechanisms of 
respiratory neurogenesis during embryonic development. Most 
studies on neurogenic signals were performed in mice, where 
ASM and NEBs are the major targets of innervation. This review 
is designed to highlight key findings in the development of respi-
ratory tract innervation rather than a comprehensive overview of 
every study published in this field. We apologize to authors whose 
contribution is not acknowledged.

Intrinsic Neurogenesis Within the Respiratory Tract

Earlier observations in the airways of humans and other species 
show that intrinsic neurons express neural crest cell markers, 
suggesting their neural crest origin.21,22 Follow-up studies using 
engraftment of avian neural tissues and lineage labeling in mouse 
embryos definitively prove that intrinsic neurons in the respira-
tory tract are exclusively derived from vagal neural crest cells.23,24 
These neural crest cells generate both neurons and glial cells that 
cluster to form ganglia, mostly found in the dorsal trachea and 
upper respiratory tract (Fig. 1B).23,24 As the size of the airway 
tapers off along the proximal-distal axis of the respiratory tree, 
there are fewer intrinsic neurons.23,24 In mice, a small number of 
intrinsic neurons are located in the secondary and tertiary bron-
chi with little to none in the distal lung (Fig. 1B).

In addition to intrinsic neurons in the respiratory tract, vagal 
neural crest cells also give rise to enteric neurons in the gastro-
intestinal tract.25,26 These two groups of neural crest cells likely 
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located in the trachea and main bronchi.20,23,24 Only a small num-
ber of intrinsic neurons are found in the secondary and tertiary 
bronchi with little to none in the distal lung.23,24 Second, intrinsic 
neurons have short axons, suggesting that they function locally.35 
Third, although RET mutant embryos have a reduction in the 
size of resident ganglia at E18.5, they have no defects in lung 
innervation.23 Finally, vagotomy results in an almost complete 
loss of innervation of airway targets, such as NEBs.36 Collectively, 
these findings indicate that the lung is innervated predominantly 
by extrinsic neurons. However, the role of intrinsic lung innerva-
tion cannot be fully elucidated until functional data are obtained 
from animal models selectively deficient in intrinsic neurons.

During embryogenesis, the outgrowth of axons into the distal 
lung is closely associated with the formation of ASM. Studies 
in the fetal porcine and human lung show that the developing 
tubules are covered in a layer of ASM and ensheathed in a newly 
formed neuronal network.19,20,37 Two large nerve trunks run 
the length of the bronchial tree. They give rise to a network of 
bundles, with fine fibers covering up to the growing tips of the 
airways.19,20 This close temporal and spatial relationship between 
ASM formation and axon outgrowth suggest an ASM-derived 
trophic mechanism for innervation.

The extrinsic neurons depend on the nerve growth factor 
(NGF) family for ASM innervation. The NGF family includes 
NGF, brain-derived neurotrophic factor (BDNF), neurotrophin 
3 (NT3), and NT4.38,39 They signal through high-affinity tyro-
sine kinase Trk receptors with relative selectivity: TrkA for NGF, 
TrkB for BDNF and NT4, and TrkC for NT3. Both BDNF and 
NT4 are expressed by embryonic ASM.40 The BDNF knockout 
embryos have reduced axon branches and shortened axons target-
ing the ASM without any change in lung morphogenesis or ASM 
differentiation.40 Thus, BDNF serves as a target-derived neuro-
trophic factor for ASM innervation by extrinsic neurons during 
embryogenesis.40 These findings also provide further evidence 
that intrinsic neurons and extrinsic neurons require distinct neu-
rogenic signals for innervation of the respiratory tract.

To ensure appropriate innervation, BDNF expression needs 
to be temporally coordinated with ASM differentiation. Notably, 
BDNF mRNA is expressed as early as E11.5 in the lung mesen-
chyme prior to its differentiation into ASM.40 To coordinate, a 
post-transcriptional regulation is at play to repress the transla-
tion of BDNF mRNA until ASM is formed. One of the mecha-
nisms of post-transcriptional regulation of BDNF expression is 
through a microRNA, miR-206. MiR-206 is expressed in lung 
mesenchyme, and its expression is downregulated upon ASM 
differentiation. In addition, miR-206 targets BDNF mRNA for 
degradation.40 Furthermore, the miR-206 knockout mice exhibit 
premature airway innervation.40 Collectively, these findings 
support miR-206 as a post-transcriptional regulator for coordi-
nated BDNF protein expression, ASM differentiation, and ASM 
innervation.

Additionally, NT4, which binds to the same TrkB recep-
tor as BDNF, may play a redundant role in ASM innervation. 
Consistent with this hypothesis, previous studies showed that 
mice deficient in both BDNF and NT4 have a diminished num-
ber of neurons in the nodose-petrosal ganglion complex, one of 

migrate together initially. Upon separation of the trachea from 
the esophagus at E10.5 in mouse embryos, neural crest cells that 
migrate into the space between the esophagus and the trachea 
begin to take different paths.23,24

Innervation of the gastrointestinal tract by enteric neural crest 
cells is well characterized compared with the respiratory inner-
vation by intrinsic neurons. Expressed in the enteric wall, glial 
cell derived neurotrophic factor (GDNF) is an essential chemo-
attractant for enteric neural crest cells.27-30 GDNF belongs to a 
family that also includes neurturin, artemin, and persephin. Each 
family member binds to unique GDNF family co-receptors 1, 
2, 3 and 4 (GFRα1–4), respectively.31,32 When the GDNF fam-
ily ligand binds to the GFRα co-receptor, the common tyrosine 
kinase receptor RET is recruited for downstream signaling.31,32 
Enteric neural crest cells predominantly express GFRα1.23,30 
Consistently, genetic disruption of GDNF or RET diminishes 
the migration of enteric neural crest cells and subsequent forma-
tion of the enteric nervous system.27-30,33

In contrast, GDNF is not expressed in the trachea, and 
GDNF deficiency has no effect on the respiratory intrinsic neu-
rons.23,24 This suggests that respiratory neural crest cells depend 
on different chemo-attractants for migration. Further character-
ization of other GDNF family member and receptor expression 
shows that neurturin is expressed in the respiratory tract, and the 
respiratory neural crest cells express both GFRα1 and GFRα2.23 
However, the neurturin knockout mouse embryos have normal 
airway intrinsic innervation.23 In addition, loss of RET func-
tion, which demolishes the signaling activity of all GDNF fam-
ily members, does not affect the number of respiratory intrinsic 
neurons at E14.5.24 These findings indicate that the respiratory 
neural crest cells are independent of the GDNF family for migra-
tion into the respiratory tract. However, Ret deficiency leads to a 
50% reduction in the size of the ganglia at E18.5.23 Thus, GDNF 
family signaling, through the Ret receptor, likely plays a role in 
the survival, proliferation and/or differentiation of these neural 
crest cells after they reach the respiratory tract. Signals for the 
migration of neural crest cells in the respiratory tract have yet to 
be identified.

In addition to the difference in essential migratory signals 
between the respiratory and gastrointestinal neural crest cells, 
cells that migrate into these two organs also differ in their pro-
genitor status. Recently, using avian embryos, the Burns lab has 
shown that after graft into the vagal neural tube, neural crest cells 
that have already reached the gut can still migrate into the lung 
and the gut.34 However, neural crest cells collected from the lung 
fail to migrate after graft.34 These findings suggest that respira-
tory neural crest cells are committed once they reach their desti-
nation whereas gastrointestinal neural crest cells maintain their 
migratory potentials even after they migrate into the gut.

ASM Innervation by Extrinsic Neurons

While intrinsic neurons likely provide parasympathetic innerva-
tion to the trachea and main bronchi, a large body of evidence 
indicates that intrinsic neurons do not contribute significantly 
to lung innervation (Fig. 1C). First, most intrinsic neurons are 
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innervation is involved in the pathogenesis of respiratory dis-
eases.50-52 Identification of the signals required for disease-related 
neural plasticity will likely provide groundwork for identifica-
tion of new therapeutic targets.
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the locations where extrinsic neurons reside (Fig. 1).41 In addi-
tion, airway innervation was more reduced in the TrkB−/− mice 
than in the NT4−/− mice.42

NEB Innervation

NEBs are specialized clusters of pulmonary neuroendocrine 
cells that originate from the airway epithelium in the mamma-
lian lung. Whereas solitary pulmonary neuroendocrine cells are 
found in the trachea, bronchioles, and terminal airways, NEBs 
are localized only in the intrapulmonary airways.43 The cyto-
plasm of NEB contains secretory granules that are loaded with 
bioactive molecules, such as neuropeptide, monoamines, and 
purine transmitters.16,36,43 NEBs are usually found at or near the 
bifurcation sites of the airway36 and juxtapose invariant Clara 
cells, a cell population with stem-cell like properties.44,45 Due 
to these unique structural, chemical, and positional properties, 
NEBs have been speculated to function as mechanoreceptors 
and play a role in O2 sensing and regeneration of the distal pul-
monary epithelium.46-48 However, precise roles of NEBs remain 
elusive.

NEBs in the lung epithelium are innervated by a mixture of 
sensory and cholinergic nerves.36 These sensory afferents origi-
nate from the nodose ganglia and dorsal root ganglia, and the 
cholinergic efferents come from the brain stem and intrinsic gan-
glia.16,36 NEB innervation by P2X

2
+ and P2X

3
+ axons is reduced 

in NT4−/− mice, indicating that NT4 is required for NEB puri-
nergic innervation.49 Whether NEB innervation regulates the 
role of NEBs during homeostasis and regeneration of the lung 
epithelium is unknown.

Concluding Remarks

Despite recent progress on the mechanisms of respiratory inner-
vation, future studies are required to fully understand these 
processes. For example, additional signals that control NEB 
innervation remain to be identified. In addition, mechanisms 
underlying ASM innervation in postnatal life need to be fur-
ther investigated. Mounting evidence indicates that altered 

Figure 1. Schematic diagram showing extrinsic nerves and intrinsic 
innervation of the respiratory tract. (A) Extrinsic neurons have their cell 
bodies in the jugular, nodose, and petrosal ganglia within the brain-
stem. These extrinsic neurons extend their axons via the vagus nerve 
(in red and blue) and provide sensory and parasympathetic respira-
tory innervation respectively. In addition, sensory neurons located in 
the dorsal root ganglion also provide extrinsic innervation (in green) 
to the respiratory tract. (B) Neural crest-derived intrinsic neurons (in 
blue) cluster within the trachea and main bronchi. Intrinsic neurons 
express the Ret receptor. The survival, proliferation, and/or differentia-
tion of intrinsic neurons within the respiratory tract is dependent on 
the GDNF family ligands that include GDNF and neurturin. (C) ASM in 
the embryonic lung expresses BDNF. BDNF serves as a target-derived 
neurotrophic signal for extrinsic innervation by TrkB+ extrinsic nerves. 
The lung is largely devoid of intrinsic neurons.
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