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Abstract
Microenvironmental mechanics play an important role in determining the morphology, traction,
migration, proliferation, and differentiation of cells. A stochastic motor-clutch model has been
proposed to describe this stiffness sensitivity. In this work, we present a master equation-based
ordinary differential equation (ODE) description of the motor-clutch model, from which we derive
an analytical expression to for a cell’s optimum stiffness (i.e. the stiffness at which the traction
force is maximal). This analytical expression provides insight into the requirements for stiffness
sensing by establishing fundamental relationships between the key controlling cell-specific
parameters. We find that the fundamental controlling parameters are the numbers of motors and
clutches (constrained to be nearly equal), and the time scale of the on-off kinetics of the clutches
(constrained to favor clutch binding over clutch unbinding). Both the ODE solution and the
analytical expression show good agreement with Monte Carlo motor-clutch output, and reduce
computation time by several orders of magnitude, which potentially enables long time scale
behaviors (hours-days) to be studied computationally in an efficient manner. The ODE solution
and the analytical expression may be incorporated into larger scale models of cellular behavior to
bridge the gap from molecular time scales to cellular and tissue time scales.

Introduction
Many models of cell migration and force transmission implement stochastic simulation
methods because they deal with small numbers of molecules1,2 or treat single cells as black
box particles3. However, stochastic simulations are more computationally intensive than
deterministic ones because the stochastic simulations must be run many times to produce the
mean system behavior. If we desire to cross scales from molecular scale models to
molecularly detailed whole-cell models, we must find a way to bridge between the
molecular scale and the cellular scale. In addition, a mean-field treatment naturally lends
itself to dimensional analysis and identification of key parameter groupings that dictate
system behavior and regimes.

One stochastic model of cell force transmission based on the motor-clutch hypothesis4 was
presented by Chan and Odde5 (Fig. 1). Briefly, this model includes molecular motors which
transport F-actin retrogradely from the leading edge via a force-velocity relationship.
Molecular clutches bind the F-actin to the microenvironment outside the cell. These clutches
stochastically bind at a constant rate and unbind according to a force-dependent Bell model6.
Importantly, this implementation of the motor-clutch hypothesis shows tunable sensitivity to
the microenvironmental mechanics around the cell5,7, complementing experimental results
showing stiffness-sensitive cell morphology8,9, migration10,11,12,13, and traction10,14.

When modeling many cellular adhesions over an F-actin network or an entire migrating cell,
it may be unnecessary to model the dynamics of every individual molecular clutch. Instead,
the average dynamics of a motor-clutch module may be sufficient when describing larger-
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scale events like whole-cell migration. It may also be helpful to utilize an analytical
expression for cell optimum stiffness as it relates to molecular-level quantities. In this study,
we present a mean-field treatment of an ordinary differential equation (ODE) description of
the stochastic motor-clutch model, which may in turn be used to bridge the gap between
molecular time scales and cellular time scales. While not as accurate as the stochastic
output, this new model solution may possibly be incorporated into a multi-scale model to
describe F-actin networks or whole-cell migration, while reducing computational intensity.
From our master equation approach, we have now derived an explicit analytical expression
for the optimum stiffness (i.e. the substrate stiffness at which traction force is maximal) as a
function of the motor-clutch parameters and have also derived a dimensionless number that
defines the optimum.

Model Description
Single clutch equations

In the stochastic motor-clutch simulation, clutch binding and unbinding events are
calculated using a Gillespie Stochastic Simulation Algorithm15,7 also known as Kinetic
Monte Carlo. In the following master equation approach, calculation of individual binding
and unbinding events is discarded in favor of calculating the probability that a clutch is
bound or unbound at any given time. The change over time in the probability that the ith

clutch is bound (pb,i) is given by the master equation in Equation 1.

(1)

The clutch can exist in two states, bound or unbound, with respective probabilities pb,i and
1-pb,i. An unbound clutch transitions into the bound state at rate kon, and a bound clutch

transitions into the unbound state at rate . The value of  at any time depends on the
current force on the clutch, and is calculated from the following algebraic Equations 2,4–6.

Equation 2 is a Hooke’s Law relating the force on the ith clutch (Fc,i) to the extension of the
clutch through the clutch spring constant (κc).

(2)

The position of the substrate (xs) defines one end of the clutch, while the position of the
clutch bond to actin (xc,i) defines the other end. Note that the model is formulated in one
spatial dimension for simplicity, although in principle it can be generalized to two and three
dimensions.

The substrate position is calculated through an elastic force balance between the clutch
ensemble force and the substrate spring force which sum to zero, given by Equation 3 where
κs is the substrate spring constant and nc is the number of clutches.

(3)

In the case of the Monte Carlo simulation, the summation in Equation 3 may equivalently
include only the bound clutches because the unbound clutches have zero extension and do
not contribute to the force sum. However, in the current mean-field treatment, no individual
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clutch is either bound or unbound. Each clutch merely has a probability of being bound or
unbound. Therefore, we maintain the summation over all clutches, because all clutches have
some probabilistic mean extension. Equation 3 may be solved for the substrate position to
give Equation 4.

(4)

The clutch off-rate ( ) is calculated through the Bell model6 in Equation 5 where koff is
the clutch unloaded off-rate and Fb is the characteristic bond rupture force.

(5)

Finally, the actin retrograde flow velocity (vf) is calculated through the linear force-velocity
relationship in Equation 6 where vu is the unloaded velocity, nm is the number of motors,
and Fm is the force per motor.

(6)

Unfortunately, this set of equations is insufficient to solve the system because there are six

unknowns (pb,i; ; Fc,i; xc,i; xs; and vf) and only five equations. In order to solve the
system, we define an equation for the velocity of the end of the ith clutch (Eqn. 7).

(7)

If the clutch is unbound, its end is moving at the velocity of the substrate because it has zero
extension. If the clutch is bound, its end moves at the actin retrograde flow rate. The total
velocity of the clutch is the sum of these two velocities weighted by the respective
probabilities that the clutch is either bound or unbound.

Equations 1,2,4–7 can be used to solve for the time course behavior of a single clutch, and
validation of these equations is given in the Supplementary Information. In these and all
following solutions, the base parameter set from Chan and Odde5 was used unless otherwise
specified (see Supplementary Table S1).

Clutch ensemble equations
To solve for the behavior of an ensemble of clutches, we can take the ensemble average of
Equations 1,2,4–7. All equations except Equation 5 involve only linear operations, and we
can therefore take the average by simply substituting average values for the individual clutch
values of bound probability, force, position, and off-rate. This gives Equations 8–12. We
also assume that the mean probability that a clutch is bound (〈pb,i〉) equals the mean
proportion of clutches bound in the ensemble (Pb), similar to the ergodic hypothesis16.

Bangasser and Odde Page 3

Cell Mol Bioeng. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(8)

(9)

(10)

(11)

(12)

The Bell model for the clutch off-rate (Eqn. 5) involves a non-linear exponential operation,
so the mean off-rate must be calculated using the definition of the mean, i.e. integrating the
product of the Bell model function and the probability density function of clutch forces
f(Fc,i) over all clutch forces as shown in Equation 13.

(13)

The probability density function was defined to have two components, one for the unbound
distribution and one for the bound distribution. Both components must be included because
each clutch has some probability of being bound and another probability of being unbound.
The distributions of the bound and unbound states are weighted by the respective probability
of each state. An unbound clutch has zero force, so the probability density function for the
unbound distribution is a delta function at force zero which appears as the first term in
Equation 14. A gamma distribution was chosen to represent the bound force distribution
because the shape can be made to approximate a variety of force distribution shapes by
changing the gamma shape parameter. Additionally, no clutch should ever have a negative
force, and the gamma distribution does not allow for negative values. This gamma
distribution is the second term in Equation 14, where r is the gamma distribution shape
parameter and θ is the scale parameter, both of which we estimate below.

(14)

We can substitute Equation 14 into Equation 13, to obtain Equation 15. Also, the limits of
integration have been changed to 0 and nmFm because those are the respective minimum and
maximum possible forces on a clutch.

(15)

Integrating Equation 15 gives Equation 16.

Bangasser and Odde Page 4

Cell Mol Bioeng. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(16)

In order to avoid the physically impossible case where , we must maintain that
1/θ > 1/Fb or θ < Fb. With this constraint and assuming that nmFm ≫ Fb, Equation 16
simplifies to Equation 17.

(17)

In the gamma distribution, the mean of the distribution equals the product of the shape and
scale parameters. In this case, the gamma distribution only applies to bound clutches. We
define 〈Fc,b〉 as the mean force on the bound clutches, so 〈Fc,b〉 = θr. We can also define the
mean force over all clutches as the sum of the mean force of the unbound clutches (which is
zero) and the mean force of the bound clutches, each scaled by their respective proportions,
so 〈Fc〉 = Pb〈Fc,b〉. With this information we can solve for the gamma distribution scale
parameter in terms of 〈Fc〉 to obtain Equation 18.

(18)

The constraint involving θ can also now be written as 〈Fc〉 < rPbFb. This constraint is
evaluated in the Supplementary Information. Substituting Equation 18 into Equation 17
gives Equation 19, the force sensitive mean off-rate, which can be solved along with the
ensemble of Equations 8–12.

(19)

The value of the shape parameter r can be varied according to the particular situation being
simulated. Equations 8–12,19 were solved simultaneously using the MATLAB ODE solver
ode15s for stiff systems because the characteristic time of unbinding changes by orders of
magnitude over the time evolution of the system.

Derivation of an analytical expression for optimum stiffness
As previously shown7, the optimum stiffness for cell traction occurs when the cycle time
equals the amount of time needed for all clutches to bind. Because the clutches bind as a
Poisson process, the expected amount of time for all nc clutches to bind is equal to the sum
of the time for the first clutch to bind plus the time for the second clutch to bind, etc. This
time (tbind) can be written as the summation shown in Equation 20.

(20)

The summation in Equation 20 is a general harmonic series which obeys the property given
in Equation 21 relating to Euler’s constant (γ ≈ 0.577).
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(21)

Therefore, for high nc, we can approximate this limit as an equality, solve for the summation
and substitute it into Equation 20 to obtain Equation 22.

(22)

Also for high nc, ln(nc) ≫ γ so we can make a final simplification by dropping γ to obtain
Equation 23.

(23)

In order to derive an equation for the cycle time (tcycle), we start by decomposing the actin
filament velocity (vf) into two components, one related to the ensemble clutch deformation
(xc), and the other related to the substrate deformation (xs). The result is shown in Equation
24.

(24)

As previously shown7, at the optimum substrate stiffness, the ensemble clutch stiffness is
larger than the substrate stiffness. Additionally, the substrate and the clutch ensemble bear
the same force, and that force is distributed over many clutches. Using these two facts, we
can expect the change in the ensemble clutch deformation to be much less than the change in
the substrate deformation. Applying this assumption and substituting the force-velocity
relationship for vf (Eqn. 6) gives Equation 25.

(25)

Integrating Equation 25 with the initial condition xs(0) = 0 gives Equation 26.

(26)

Equation 26 asymptotically approaches its maximum value of xs,max = Fmnm/κs as time
progresses. We may assume that the cycle ends when xs reaches some fraction of its
maximum value, defined as (1−ε)xs,max where 0 < ε < 1. We may then substitute the cycle
end condition of xs(tcycle) = (1−ε)Fmnm/κs into Equation 26 and simplify to obtain Equation
27.

(27)

Solving for tcycle gives Equation 28.
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(28)

Setting Equation 28 equal to Equation 23 to obtain the optimum stiffness gives Equation 29.

(29)

Finally, solving for κs,opt gives Equation 30, which is an analytical expression for the
optimum stiffness for cell traction.

(30)

The value of ε is somewhat arbitrary, but it is some small number less than one. In reality,
the value of ε is probably dependent on the other parameters in the model. For our case we
chose ε = 0.01. The application of Equation 30 requires that the motor-clutch system is in a
stiffness sensitive regime possessing an optimum stiffness. To ensure this, parameters must
be maintained within a certain range as previously shown7 and as discussed below.

Results
Clutch ensemble ODE solution matches multiple clutch Monte Carlo simulation output

The ensemble clutch equations show good agreement with the Monte Carlo simulations for
many clutches5(cite BJ). In the Monte Carlo simulation of multiple clutches, more clutches
become bound as the cycle progresses until they reach a cascading failure (Fig. 2A). Figures
2B–F depict both Monte Carlo outputs and ODE solutions for the mean cycle behavior. As
the bound clutches (Fig. 2B) transmit the motor force displacing the substrate (Fig. 2C), the
tension builds on these clutches (Fig. 2D). Since the resisting force on the motors increases,
the actin velocity slows according to the force-velocity relationship (Fig. 2E). The
increasing force on the clutches also causes a sharp rise in the clutch off-rate (Fig 2F). This
spike in the off-rate causes system failure, and all quantities return to their initial values
(Figs. 2B–F).

The Monte Carlo results were averaged over 1000 simulated cycles, and r = 2 was used for
the ODE force distribution shape parameter. The ODE results vary slightly from the Monte
Carlo results, mainly due to the abrupt failure in the ODE solution and the gradual failure
obtained from averaging over many Monte Carlo simulations. To be clear, the failure in any
one Monte Carlo simulation is abrupt (Fig. 2A), but the average failure over many
simulations is gradual. The abrupt failure in the ODE solution is due to a spike in the mean
clutch off-rate (Fig. 2F). This spike causes a fast transition of clutches into the unbound
state. The average off-rate for the Monte Carlo simulation possesses a broader peak, again
because of averaging over many abrupt failure events occurring at different times.

ODE force distribution resembles Monte Carlo force distribution
We have chosen a gamma distribution to represent the distribution of forces among bound
clutches at any time. Figure 3 presents the evolution of this distribution over time along with
the bound clutch force distribution from the Monte Carlo output. This data was obtained on
substrate stiffness κs = 0.1 pN/nm and r = 2 was used for the ODE force distribution shape
parameter. At short times in both the Monte Carlo and ODE cases, few clutches are bound,
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and those that are have low forces. As time progresses, more clutches bind, the force on the
clutches increases, and the distribution of forces becomes wider. These trends hold for both
the Monte Carlo distribution of forces and the assumed gamma distribution of forces.
However, the gamma distribution remains tighter than the Monte Carlo output, indicating
there is a larger variance in clutch forces than predicted by the gamma distribution. The
variance in the gamma distribution of forces equals rθ2, so the distribution may be
broadened by increasing the shape parameter, r. However, increasing r also increases the
cycle time (see Supplemental Information), which may lead to less accurate results. Overall,
the gamma distribution provides a reasonable first approximation to the force distribution.

Clutch ensemble equations show shift in stiffness optimum
Tunability of the optimum stiffness was a key finding of the Monte Carlo simulated motor-
clutch model7. As shown in Figure 4, the ODE solution captures this behavior of the Monte
Carlo output. When coordinately increasing the numbers of motors and clutches, optimum
stiffness shifts to higher values7. The ODE solution maintains this prediction. However, the
optimum is not as pronounced for the ODE solution as it is for the Monte Carlo output, and
the ODE solution optimum is shifted slightly higher. This is likely due to the complexity of
the force distribution of clutches. The Monte Carlo output of frictional slippage due to
rebinding on soft substrates may account for a change in the distribution that is not captured
in the ODE solution. Overall, the ODE model provides a reasonable approximation of the
qualitative response of the motor-clutch system to varying substrate stiffness, and in
particular reproduces the biphasic response to substrate stiffness.

Analytical expression predicts optimum stiffness
As previously shown7, parameters within the motor-clutch model must remain within a
constrained parameter range in order for the system to maintain stiffness sensitivity, a
requirement for possessing an optimum stiffness. Most importantly, motor parameters must
be approximately balanced against clutch parameters, e.g. nm ≈ nc, Fm ≈ Fb, and kon ≈
10koff. If the motors are too strong, the retrograde flow is nearly the unloaded motor velocity
at all substrate stiffnesses, and the system lacks sensitivity to the substrate stiffness.
Conversely, if the clutches are too strong, the retrograde flow is nearly zero at all substrate
stiffnesses, and again the system loses stiffness sensitivity. By combining these constraints
with Equation 30, a complete description of the motor-clutch optimum stiffness relating to
all of the parameters can be given. Figure 5A shows optimum stiffness output from the
Monte Carlo simulations while varying the numbers of motor-clutch molecules and the
kinetic constants subject to the constraints that nm = nc and kon = 10koff. The analytical
results obtained from Equation 30 show very good agreement with the Monte Carlo output
for the same situation (Fig. 5B). Equation 30 may be used to quickly determine the optimum
stiffness for a given parameter set and can quickly predict the effect of altering motor-clutch
parameters on the optimum stiffness. Interestingly, only four of the motor-clutch parameters
are involved in setting the optimum stiffness (Fm, nm, kon, and vu), while three of the
remaining parameters (nc, Fb, and koff) must be balanced against those four in order to
maintain stiffness sensitivity (see discussion for further analysis). The final parameter, κc,
does not appear in the analytical expression for optimum stiffness, consistent with Monte
Carlo simulations that show that clutch stiffness has little effect on the optimum stiffness7.

ODE calculation reduces motor-clutch computation time
In order to determine mean behavior in the Monte Carlo simulations, they must be run many
times and averaged together to smooth out fluctuations. The ODE equations must be solved
only once to obtain mean behavior, potentially saving on computation time. Figure 6A
compares the ODE solution and computation time to the cases of simulating 1, 10, and 100
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Monte Carlo runs of a motor-clutch cycle. The time for one Monte Carlo run is similar to the
time for the ODE solution, but the Monte Carlo accuracy increases with the number of runs
as does the computation time.

It is possible that in large scale applications of the motor-clutch model, stochastic events
unassociated with the motor-clutch model may be highly variable and require more
significant averaging than the motor-clutch model to obtain mean behavior. In this case,
averaging over motor-clutch behavior may be unnecessary, and a single Monte Carlo
simulation run would be sufficient. Since a single run of the Monte Carlo simulation takes a
comparable time to solving the ODEs, little is gained by abandoning the Monte Carlo
method. However, if we alter the parameter sets, ODE solution again becomes faster than
Monte Carlo simulation. Figure 6B shows the computation time for 1 and 100 runs of the
Monte Carlo simulation and the ODE solution as we increase the number of motors and
clutches. At low motor and clutch numbers, a single run of the Monte Carlo simulation is
faster than the ODE solution, but the Monte Carlo run time increases as the parameters do
because it must simulate every individual clutch. The ODE time remains constant because
the number of clutches is simply a value input into the equations. At higher clutch numbers,
the ODE solution is orders of magnitude more computationally efficient than the Monte
Carlo simulation.

Discussion
This study has presented an ODE-based articulation of the motor-clutch model, as well as
the derivation of an analytical expression for the optimum stiffness for cell traction mediated
by a motor-clutch mechanism. The ODE solution qualitatively and approximately
quantitatively captures the motor-clutch behavior observed in Monte Carlo simulations.
These ODEs may be helpful in larger scale simulations (e.g. for a whole cell or an ensemble
of cells) because their solution is less computationally intensive than the Monte Carlo
simulation. As mentioned previously7, individual motor-clutch modules may be linked
together to form larger actin networks or to simulate whole-cell migration. Since these
simulations would encompass phenomena on larger spatial and temporal scales than motor-
clutch dynamics, the individual clutch events are less important. These ODEs capture the
average behavior of a motor-clutch module and may be sufficient to bridge the scales of
molecular level clutch dynamics to larger scale actin networks and whole-cell adhesion and
migration.

Insight into the clutch kinetic parameters can be gained through an order of magnitude
examination of Equation 30, which may be rearranged as shown in Equation 31 for easier
analysis where the number of motors and the number of clutches are both represented by n
because nm ≈ nc to avoid situations where either the motors or the clutches dominate (see
above).

(31)

The first quantity, Fm/vu, pertains to the motors, and is constrained to a relatively narrow
range of values based on experimental observations of myosin molecular motors.
Specifically, Fm has been found to be on the order of 1 pN17 and is constrained by the
energy from ATP hydrolysis expended over nanometers-scale step sizes18, while vu is on the
order of 0.1 μm/s5,19,20,21, so Fm/vu ≈ 10 pN-s/μm. Similar values are obtained for the
force-velocity relationship of F-actin self-assembly, which may drive retrograde flow in
some cases22,23. To achieve traction force on the order of 1000 pN24,25, the number of
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motors must be of order 1000 if each one has Fm ≈ 1 pN. In this case the second quantity, n/
ln(n), is of order 100, and in any case scales approximately linearly in n due to the relatively
weak log dependence of the denominator. Assuming ε = 0.01, the quantity ln(1/ε) = 4.6
which is of order 1, and has a weak log dependence (i.e. changing ε by 10-fold changes this
quantity by ~2-fold). Substituting these estimates leaves us with

. Therefore, to obtain an optimum
substrate stiffness in the range of 1–1000 kPa11,26,27 (κs ≈ 1–1000 pN/nm)5, kon must range
from 1–1000 s−1. Since koff must be about an order of magnitude less than kon

7, it would
range from 0.1–100 s−1.

This analysis shows that the strongest determinants of the optimum stiffness are the numbers
of motors/clutches and the kinetics of the clutch binding/unbinding. By changing these
parameters together, as depicted in Figure 5B, the system remains out of the stalled and free-
flowing regimes, and maintains sensitivity to the stiffness of the environment. We should
note that the molecular clutch is likely composed of many different molecules in an
adhesion complex28, and the clutch parameters in this study represent the limiting quantities
of these complexes. The on-rate refers to the limiting rate of bond formation along the
adhesion, and the off-rate refers to the off-rate of the weakest bond along the adhesion,
whether inside or outside of the cell. Finally, the clutch stiffness also refers to the stiffness
of the weakest part of the adhesion.

Equation 31 also lends itself to a new dimensionless number (Ncr) by dividing the substrate
stiffness, κs, by the optimum stiffness, i.e. Ncr = κs/κs,opt. The resulting dimensionless
quantity is given in Equation 32 where k = kon = 10koff, and ln(1/ε) is assumed to be order 1.

(32)

When Ncr = 1, the motor-clutch system is on its optimum substrate stiffness. If Ncr > 1, the
substrate stiffness is above the optimum, but the system is still stiffness sensitive until Ncr
≫ 1, at which point the system is in the high stiffness frictional slippage regime. If Ncr < 1,
the system is in the low stiffness frictional slippage regime7. The dimensionless number Ncr
describes the motor-clutch behavior on a given substrate stiffness, and may be used to
quickly define the motor-clutch regime of a system.

It is suspected that the deviations of the ODE solution from the Monte Carlo output are due
to the imposed clutch force distribution, in particular the choice of the shape parameter r. A
constant value of r is used for all ODE solutions, regardless of other parameters, substrate
stiffness, or time. In reality, the value of r may be dependent on the parameter set used and
on the substrate stiffness. Moreover, the value of r may be changing in time as a cycle
progresses. Future work on this model may determine the dependence of r on the model
parameters and its evolution in time.

This motor-clutch model is advantageous because it is stiffness sensitive, allows load and
fail dynamics, and employs a force velocity relationship for actin flow. Another model of
adhesion allows load and fail dynamics, but imposes an empirical stiffness sensitivity29. A
whole cell actomyosin and adhesion model has also been presented, but does not include
stiffness sensitivity, load and fail dynamics, or the force-velocity relationship30. Aspects of
these and other models such as actin dynamics30,31, membrane tension32,33, and adhesion
formation and maturation2,34,35 could be incorporated to provide further insight into
actomyosin, adhesion complex, and membrane behavior. For example, the individual clutch
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molecules could be included, each with its own kinetic rates and spring constant to better
describe adhesion formation and maturation. Actin polymerization against an additional
membrane force could be added to the actin velocity calculation. Finally, individual motor-
clutch modules described by the presented ODEs could be coupled together to describe
larger actin network behavior36. These actin, adhesion, and membrane properties could be
important if the ODEs are to be integrated into larger-scale cell migration simulations.
Inclusion of these properties could also be important in the analytical Equation 30 because
they likely affect the motor-clutch cycle time. However, the added complexity would slow
the computation and may be unnecessary to capture average cellular scale behavior.

The ODEs presented in this paper, which are based on a master equation approach, may be
used to bridge scales from molecular level adhesion dynamics to larger-scale actin network
behavior and whole-cell migration simulations. These simulations could become
computationally intensive as multiple motor-clutch modules would be involved and
averaging of many simulations would be required. The ODEs bypass this computational
hurdle and may be integrated into these complex models to provide quick, accurate results
relating to cell adhesion, morphology, and migration.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Motor-clutch model
The motor-clutch model describes the transmission of force from myosin motors through F-
actin and molecular clutches to a compliant substrate. The myosin motors retract F-actin
retrogradely while the molecular clutches and compliant substrate, each modeled as springs,
resist this motion. Clutches bind at a constant rate and unbind at a rate increasing with
tension. The F-actin bundle/network is treated as inextensible, so that the spatial positions of
clutches along the F-actin do not affect the model force balance. Note that although clutch
failure is shown as occurring intracellularly, the model does not specifically require this to
be the case and applies equally to failure on the extracellular interface between clutches and
the substrate.
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Figure 2. ODE and Monte Carlo behavior of a motor-clutch load-and-fail cycle
A) During a Monte Carlo cycle, clutches initially bind, and the fraction of clutches bound
fluctuates over time. Once a sufficiently high load builds, the clutch bonds successively
break resulting in failure of the system which happens near 25 s in this example. B–F)
Motor-clutch model outputs are presented for both the clutch ensemble ODEs and the mean
Monte Carlo simulation output. The Monte Carlo output is shown as red dashed lines while
the ODE solution is shown as solid blue lines. Monte Carlo output was averaged over 1000
simulations of motor-clutch cycles. All data presented is for the base parameter values on
κsub = 0.1 pN/nm.
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Figure 3. Force distribution on molecular clutches
A) and B) each present two-dimensional histograms of clutch forces over time for both
Monte Carlo and ODE motor-clutch cycles. The color coding indicates the frequency of
observation. At short times, low clutch forces are frequent, but this distribution broadens
over time. The mode also shifts to higher forces as time progresses. The gamma distribution
used for the ODE solution maintains a tighter distribution than the output of the Monte Carlo
simulations. Monte Carlo simulations were run for 10,000 cycles to obtain the distribution,
and the ODE solution is for r = 2. C) Cross-sections of both force distributions at t = 4 s
show good qualitative agreement, but again the ODE solution distribution is tighter than the
Monte Carlo output.
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Figure 4. Shifting the optimum stiffness
A) The Monte Carlo simulations produce a tunable optimum (cite BJ) which should be
reproduced by the ODE solution. Increasing the numbers of motors and clutches from 25 to
3600 shifts the optimum stiffness (characterized by the minimum actin flow rate) from 0.4
pN/nm to 50 pN/nm. Monte Carlo actin flow was averaged over 106 events on each
stiffness. B) The ODE solutions also produce an optimum stiffness, but the actin flow curves
are shaped slightly differently than for the Monte Carlo output. Over the same change in
motors and clutches, the optimum shifts from 1 pN/nm to 200 pN/nm, meaning that the use
of the ODE solution may slightly over-predict the optimum stiffness. ODE solutions were
obtained using r = 3.
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Figure 5. Analytical optimum stiffness
A) Maintaining the balance of nm = nc and kon = 10koff, the parameters were altered to
change the optimum stiffness of the Monte Carlo output (as defined by the stiffness at which
traction force is maximum). The presented changes in these parameters result in nearly a
four order of magnitude shift in the optimum stiffness. B) Again maintaining the parameter
relationships of nm = nc and kon = 10koff, the analytical solution for optimum stiffness (Eqn.
30) behaves very similarly to the Monte Carlo output.
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Figure 6. Computation time for ODE and Monte Carlo simulations
A) A single motor-clutch cycle may take vastly different times to simulate depending on the
method used and accuracy desired. The ODE solution for one average cycle using the base
parameters on κsub = 0.1 pN/nm takes 0.11s, while the Monte Carlo (MC) simulation time
for one average cycle increases from 0.15 s to 15 s as desired accuracy increases. B) Run
times for 1 and 100 Monte Carlo runs are compared to ODE solution times over varying
motor and clutch parameters (maintaining the balance of nm = nc). At low motor and clutch
numbers, the single-run Monte Carlo time is shorter (but may be inaccurate due to lack of
averaging), and increases as motors and clutches increase. The ODE solution time remains
constant regardless of the parameters used and was faster than the single-run Monte Carlo
simulation time at approximately 70 clutches (balanced by 70 motors). When averaging over
100 Monte Carlo run, the ODE solution becomes faster at only 2 clutches. ODE solutions
were calculated using r = 2.

Bangasser and Odde Page 19

Cell Mol Bioeng. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


