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Introduction
Osteoarthritis (OA) is a disease affecting a whole 
organ, the joint. This disease is characterized by 
marked alterations in the metabolism, structure 
and function of multiple joints and periarticular 
tissues like cartilage, meniscus, synovial mem-
brane (SM) and subchondral bone. OA symp-
toms are mainly mechanical pain, joint deformity 
and swelling, stiffness and cracks at motion. The 
natural evolution of OA may be interrupted by 
inflammatory flares which are generally associ-
ated with joint swelling, sudden increase of pain, 
pain at rest and a worsening stiffness.

The inflammation targets SM (synovitis) in the 
early and late stages of OA. In the early stage, its 
distribution is confined to areas adjacent to sites 
of chondropathy and associated with an accelera-
tion of cartilage degradation (chondrolysis) [Ayral 
et al. 2005]. This finding suggests that inflamma-
tion is brought about by cartilage breakdown. In 
advanced OA, synovitis has invaded across the 
SM, and progresses to fibrosis and villi hypertro-
phy [Shibakawa et al. 2003]. The pathophysiolog-
ical schema generally described is as follows: 
mechanical stress directly damages cartilage or 
activate chondrocytes to produce abnormal levels 
of matrix metalloproteinases (MMPs) and 

reactive oxygen species (ROS) responsible for 
cartilage breakdown and the release in the joint 
cavity of microcrystals, osteochondral fragments 
and products of extracellular matrix degradation. 
These fragments and products trigger the secre-
tion by cells of the inflamed synovium (synovio-
cytes, macrophages, lymphocytes) of cytokines, 
chemokines, lipidic mediators, ROS and MMP 
which can directly degrade the cartilage matrix 
components or dysregulate chondrocyte metabo-
lism leading to an imbalance between cartilage 
matrix degradation and synthesis. Cartilage 
breakdown products, but also pro-inflammatory 
mediators released by chondrocytes and other 
joint cells, in turn amplify the SM inflammation, 
creating a vicious circle (Figure 1). These media-
tors may also trigger a systemic inflammatory 
response with consequent elevation of inflamma-
tory serum biomarkers such as C-reactive protein 
(CRP). In OA, CRP is associated with clinical 
severity, the degree of inflammatory cell infiltra-
tion of the SM, disability, the number of involved 
joints and pain level [Stannus et al. 2013].

The relationship between cartilage degradation 
and synovitis was investigated in a study of solu-
ble biochemical markers Coll2-1NO2 and ultra-
sensible CRP. Coll2-1NO2 is the nitrated form of 
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an epitope specific of type II collagen molecule 
located in the triple helix. Coll2-1NO2 reflects the 
oxidative stress occurring in the inflammatory 
joint. Interestingly, Coll2-1 and Coll2-1NO2 were 
found to be elevated in the serum of patients with 
knee OA, but only Coll2-1NO2 was correlated 
with ultrasensible CRP, providing evidence of the 
relationship between inflammation and chondrol-
ysis [Deberg et al. 2005].

This review focuses on one particular aspect of OA 
synovitis, the SM vascularization. Other aspects of 
synovitis have been described in detail in previous 
systematic reviews [Sellam and Berenbaum, 2010; 
De Lange-Brokaar et al. 2012; Berenbaum, 2013]. 
Herein, we discuss the recent advances in the under-
standing of: (1) pro-angiogenic phenotype expressed 
by OA synovial cells; (2) pathways promoting SM 
angiogenesis in OA; (3) the effects of current drugs 
on these pathways; and 4) therapeutic perspectives.

Method
A PubMed/Medline search was performed for 
articles published between January 2008 and July 
2013 by combining the search terms related to 
OA [‘arthrosis’ OR ‘arthritis’ OR ‘osteoarthrosis’ 
OR ‘osteoarthritis’], to synovium [‘synovial mem-
brane’ OR ‘synovium’ OR ‘synovitis’] and angio-
genesis [‘angiogenesis’ OR ‘blood vessels’ OR 
‘vascularization’]. Only articles in English were 
taken into account.

Structure and function of normal SM
Under normal physiological conditions, the syno-
vial lining consists of a thin layer of cells with phe-
notypic characteristics of macrophages or 
fibroblasts. These cells are a major source of  
synovial fluid components which are directly 
involved in maintaining the cartilage integrity by 
lubricating the cartilage surface as well as by 

Figure 1.  Schematic representation of relationships between inflammation, angiogenesis and cartilage 
degradation in OA. Illustration courtesy of Alessandro Baliani. Copyright © 2014. Reproduced from Yves 
Henrotin’s personal slide. HIF, hypoxia-induced factor; IL, interleukin; MMP, matrix metalloprotease; NF-κB, 
nuclear factor-κB; NO, nitric oxide; PGE2, prostaglandin E2; ROS, reactive oxygen species; TSP, thrombospondin.
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modulating chondrocyte metabolism. Two impor-
tant molecules produced by synovial lining cells, 
lubricin and hyaluronic acid, contribute to pro-
tect articular cartilage surfaces in diarthrodial 
joints. In addition, lubricin reduces pathological 
deposition of protein at the cartilage surface and 
protects articular surface [Rhee et  al. 2005; 
Ludwig et al. 2012]. Moreover, the SM provides 
nutrients that are essential for maintaining chon-
drocyte activity and which participate in the 
removal of products of chondrocytes metabolism 
and articular matrix turnover. Normal SM also 
acts as a semipermeable membrane, controlling 
molecular traffic into and out of the joint space 
and maintaining the composition of synovial 
fluid. Beside ‘fibroblastic-like’ and ‘macrophage-
like’ cells, the SM also contains mesenchymal 
stem cells with multipotency which are able to 
differentiate into multiple mature cell lineages 
including cartilage, bone, muscle or adipose tis-
sue [Gullo and de Bari, 2013].

SM characteristics in OA

Cellular aspects of the SM
T cells, B cells and monocytes/macrophages are 
the main immune cells found in OA inflamma-
tory SM. T cells that infiltrate the synovium are 
mainly represented by CD4+ and CD8+ cells. 
The organization of T cells in the synovium 
becomes angiocentric, mainly in the perivascular 
areas forming nodes visible in SM intima 
[Lambert et al. 2012]. T cells appear to be acti-
vated in situ in the SM after exposure to antigen , 
which may be an autoantigen of cartilage. Possible 
auto-antigens released from cartilage are chi-
tinase-3-like protein 2 (also known as YKL-39) 
and type II collagen peptides [Kim et al. 1999]. 
Patients with OA also seem to express cellular 
immunity to proteoglycan link protein. Low num-
bers of mast cells, B cells, natural killer cells and 
dendritic cells have been also found by several 
authors; neutrophils were almost never found. All 
these cellular aspects have been recently reviewed 
[De Lange-Brokaar et al. 2012].

Soluble catabolic and inflammatory mediators
Recent data suggest that microcrystals, comple-
ment components, matrix fragments and prod-
ucts of cell death and matrix catabolism can 
activate the innate immune response via pattern-
recognition Toll-like receptors expressed by mac-
rophages and other synovial lining cells. The 

binding of this receptor leads to the activation of 
specific transcription factors, with nuclear factor 
κB (NF-κB) playing a key role. NF-κB activation 
leads to the production by SM cells of cytokines, 
chemokines, ROS and MMPs that can cause local 
tissue damage, recruitment and activation of 
immune cells (macrophages, lymphocytes, granu-
locytes) but also driving osteophytosis and angio-
genesis. These aspects were well documented in a 
recent review by Sokolove and Lepus [Sokolove 
and Lepus, 2013].

A broad spectrum of cytokines, chemokines, 
ROS, lipids, lipidic mediators, complement path-
way components and MMPs is secreted by acti-
vated SM cells and found to be increased in the 
synovial fluid of OA patients [Goldring et  al. 
2011; Kosinska et  al. 2013; Ritter et  al. 2013]. 
Cytokines such as interleukin 1β (IL-1β), tumour 
necrosis factor-α (TNFα) and IL-6 have been 
largely investigated and presented as prominent 
cytokines in the pathogenesis of OA [McNulty 
et  al. 2013]. However, this statement has been 
challenged since IL-1 and TNFα inhibitor trials 
failed to demonstrate significant efficacy 
[Chevalier et  al. 2005; Magnano et  al. 2007]. 
Particular attention was therefore paid to the 
expression and activity of cytokines involved in 
lymphocytes biology in OA synovium. IL-15 was 
consistently detectable and elevated in the serum 
of patients with early stage OA, compared with 
end-stage patients undergoing total knee replace-
ment [Scanzello et  al. 2009]. Serum IL-15 
detected by a proteomic approach was associated 
with the presence and progression of radiographic 
OA [Gonzalez-Alvaro et  al. 2011]. IL-15 may 
stimulate MMP production and recruitment or 
survival of CD8+ T cells within the OA joint. 
Another pro-inflammatory cytokine, IL-17, 
induces OA synovial fibroblasts and chondrocytes 
to produce pro-angiogenic factors including vas-
cular endothelium growth factor (VEGF) 
[Honorati et al. 2002] as well as chemokines such 
as IL-8 and growth-regulated α protein (GRO-α) 
[Honorati et  al. 2007]. Chemokines are also 
largely expressed in the joint tissues of patients 
with OA. The OA SM is also a source of adi-
pokines and neuropeptides which may also 
directly or indirectly be involved in cartilage deg-
radation and SM inflammation [De Boer et  al. 
2012]. Among the most investigated adipokines, 
adiponectin, visfatin and leptin seem to be the 
more active. Recently, positive significant correla-
tion between serum levels of resitin and the histo-
logical severity of synovial inflammation were 
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found, suggesting that this adipokine might mod-
ulate synovitis [De Boer et al. 2012]. Plasma lep-
tin correlated with the severity of knee OA 
according to Ahlback’s radiographic classification 
[Staikos et al. 2013]. Chronic synovitis is associ-
ated with a marked change in the sensory  
innervation, and the synthesis and release of neu-
rotransmitters and neuromodulators [Takeshita 
et al. 2012]. In addition to their role in pain, neu-
ropeptides are involved in vasodilation, inflamma-
tion (by activating inflammatory infiltrating cells 
and by producing proinflammatory cytokines), 
osteoclast formation, and synoviocyte prolifera-
tion and activation. Particular attention has been 
paid to substance P and nerve growth factor 
(NGF). Substance P stimulates synoviocytes pro-
liferation and the production by these cells of 
prostaglandin E2 (PGE2) and collagenase. NGF 
can stimulate proliferation of synoviocytes.

Vascular aspects of SM
Angiogenesis is the formation of new capillaries 
from pre-existing blood vessels. It has been asso-
ciated with inflammation and inflammatory dis-
eases. Inflammatory cells produce pro-angiogenic 
factors and promote the formation and invasion 
of new blood vessels, which facilitate inflamma-
tory cell infiltration [Bonnet and Walsh, 2005]. In 
OA, angiogenesis contributes to the persistence 
rather than the initiation of inflammation.

Angiogenesis results from a sequence of events. 
Angiogenic factors produced by various cell types 
in the synovium activate local endothelial cells 
which, in turn, release proteolytic enzymes. These 
enzymes degrade the endothelial basement mem-
brane and the perivascular extracellular matrix. 
Endothelial cells then proliferate and migrate into 
the intertitial tissue forming a ‘primary sprout’. 
The lumen formation within these sprouts leads 
to the formation of ‘capillary loops’ followed by 

synthesis of a new basement membrane and ulti-
mately capillary formation.

Lessons from histology
In OA, the SM undergoes multiples structural, 
metabolic and functional changes that can be 
investigated by imaging, biochemical markers, 
macroscopically or microscopically. A standard-
ized macroscopic classification based in part on 
SM vascularization was established by Ayral and 
colleagues [Ayral et al. 1996] for the arthroscopic 
evaluation of the SM. This scoring system distin-
guishes three different grades: normal SM; reac-
tive SM; and inflammatory SM (Table 1). Figure 
2 shows representative photomicrographs depict-
ing SM histopathological changes observed in 
inflammatory (I) compared with the normal/reac-
tive (N/R) area of OA SM. The histological 
changes observed in the SM in OA generally 
include a range of abnormalities indicative of an 
inflammatory synovitis such as synovial lining 
hyperplasia, infiltration of inflammatory cells 
(mainly macrophages and T lymphocytes), and 
an increase in vascularity and fibrosis. Histological 
severity of synovitis in OA is low grade in com-
parison with the high grade synovitis of rheuma-
toid arthritis (RA), more focal than the widespread 
synovitis seen in RA, with synovitis abutting car-
tilage or meniscal lesions [Krenn et  al. 2006; 
Pessler et al. 2008; Slansky et al. 2010]. We have 
investigated the blood vessels density in N/R and 
I synovial biopsies using antibody against von 
Willebrand’s factor. The analysis showed that OA 
blood vessels were distributed throughout the 
depth of the SM without preferential distribution 
in lining cells. Vascular density and vessels size 
were higher in I than in N/R biopsies. A staining 
for VEGF was observed in perivascular and sub-
lining cells in both N/R and I biopsies. An acute 
positive staining was observed in the lining layer 
of I but not N/R biopsies, indicating that lining 

Table 1.  Arthroscopic scoring system established by Ayral et al.

Normal synovial membrane (grade 0)
    Few translucent, slender villi with a fine vascular network can be clearly seen.
    Proliferation of opaque villi.
Reactive synovial membrane (grade 0.5)
    Villi have normal morphology or somewhat thicker and squat appearance.
    Vascular network not seen due to loss translucence.
Inflammatory synovial membrane (grade 1)
   � Hypervascularization of synovial membrane and/or proliferation of hypertrophic and hyperemic villi 

are apparent.
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cells are key actors in the OA SM angiogenesis 
process.

Kennedy and colleagues investigated blood ves-
sels stability in synovial tissue obtained from RA, 
psoriatric arthritis and OA patients using α-
smooth muscle actin, a pericyte marker indicating 
vessel maturity [Kennedy et  al. 2010]. Sections 
from patients with inflammatory arthritis demon-
strated a mixture of immature vessels, vessels 
acquiring pericytes, and stable vessels, which 

showed close alignment of endothelial cells and 
pericytes. In OA tissue, all vessels had acquired 
pericytes and thus undergone full maturation and 
stabilization. This finding explains in part the per-
sistence of inflammation in OA synovium.

Lessons from synovial cell cultures
In OA synovium, angiogenic factors are primarily 
released by macrophages, endothelial cells and 
synoviocytes. These factors include mainly growth 

Figure 2.  Macroscopic appearance of N/R (A) and I (B) synovial biopsies. Immunohistochemical detection 
of von Willebrand’s factor in N/R (C) and I (D) synovial biopsies. N/R and I synovial biopsies were stained 
with anti-von Willebrand factor antibody. The presented images are representative of the obtained results. 
Immunohistochemical detection of VEGF in N/R (E) and I (F) synovial biopsies. N/R and I synovial biopsies 
were stained with anti-VEGF antibody. The presented images are representative of the obtained results. 
Magnification ×20.
I, inflammatory; N/R, normal/reactive; VEGF, vascular endothelial growth factor; (⇒), blood vessels; (→), intima lining.
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factors, pro-inflammatory cytokines, chemokines, 
extracellular matrix protein, low oxygen tension, 
matrix-degrading proteolytic enzymes and cellu-
lar adhesion molecules [Szekanecz et al. 2010].

Recently, our group has developed an original 
methodology which compares inflammation and 
angiogenesis in the SM with different grades of 
synovitis. We used the Ayral’s macroscopic synovi-
tis score to select, in the same OA SM, biopsies 
coming from N/R synovial or I areas [Lambert 
et al. 2012]. Synovial cells were isolated and cul-
tured separately and the production of pro-
inflammatory factors by synovial cells from N/R 
and I areas compared. Interestingly, cells from the 
I area produced more IL-6, IL-8 and VEGF, but 
less thrombospondin (TSP)-1 (an anti-angio-
genic factor) than cells coming from the N/R area. 
In addition, VEGF levels were strongly correlated 
with IL-6 and IL-8 levels, confirming the rela-
tionship between inflammation and angiogenesis 
in OA. A significant negative correlation was 
obtained between TSP-1 and the pro-inflamma-
tory factors IL-6 and IL-8. These results sug-
gested a shift in the balance of angiogenic factors 
in favour of the development of new blood vessels. 
We also examined the effects of IL-1β (1 ng/ml) 
on the gene expression of five pro-angiogenic fac-
tors – VEGF, basic fibroblast growth factor 
(bFGF), NGF, angiopoietin-1 (Ang1) and 
MMP-2 – and three anti-angiogenic factors – vas-
cular endothelium growth inhibitor (VEGI), 
TSP-1 and TSP-2. After 24 h treatment, IL-1β 
stimulated pro-angiogenic gene expression and 
strongly depressed anti-angiogenic gene expres-
sion. With regards to angiogenesis, VEGF is of 
outstanding importance. VEGF is probably the 
key regulator of neovascularization in inflamma-
tion. VEGF induces endothelial cell proliferation 
and migration, and also stimulates angiogenesis 
[Gao et al. 2013].

Local hypoxia is a major feature of the inflamma-
tory tissue that also triggers angiogenesis in SM. 
Hypoxia stimulates the expression of hypoxia 
inducible factor (HIF)-1α and HIF-2α which act 
predominantly via upregulation of VEGF. The 
direct link between accumulation of HIF-αs and 
overexpression of VEGF, and the important role 
of the VEGF angiogenic pathway in arthritis, sug-
gests the central role of HIF-αs in the pathogen-
esis of OA [Giatromanolaki et  al. 2003]. A 
significant cytoplasmic and nuclear overexpres-
sion of HIF-1α and HIF-2α was noted in the 
synovial lining and stromal cells of OA synovium 

relative to normal. Overexpression of HIF-α was 
related to high microvessel density, high platelet-
derived endothelial cell growth factor (PD-ECGF) 
expression and high VEGF/kinase insert domain 
protein receptor (KDR) receptor activation, sug-
gesting HIF-α dependent synovial angiogenesis 
in OA [Giatromanolaki et al. 2003].

As well as observed with hypoxia and HIFs, other 
angiogenic mediators including hepatocyte 
growth factor (HGF), prostaglandins and nitric 
oxide (NO) also act through stimulation of  
VEGF production during neovascularization [Lin 
et al. 2012]. Interaction between VEGF and angi-
opoietin-1 (Ang1/Tie2) is critical for the stabiliza-
tion of newly formed vessels [Szekanecz and 
Koch, 2008a, 2008b].

Some chemokines and chemokine receptors have 
also been implicated in synovial inflammation 
and angiogenesis [Szekanecz and Koch, 2008a]. 
Most CXC chemokines containing the glutamyl–
leucyl–arginyl (ELR) amino acid sequence stimu-
late neovascularization while chemokines lacking 
this motif suppress neovascularization. Among 
ELR+ chemokines, we can mention IL-8/CXCL8 
or connective tissue activating protein-III (CTAP-
III/CXCL6) [Szekanecz and Koch, 2001]. The 
most important endothelial receptor for ELR+ 
angiogenic CXC chemokines is represented by 
CXCR2.

Pro-inflammatory cytokines may also either 
directly induce neovascularisation or may act by 
stimulating VEGF production. Among these 
cytokines, TNF-α, IL-1, IL-6, IL-15, IL-17, 
IL-18, oncostatin M, macrophage migration 
inhibitory factor (MIF), granulocyte (G-CSF) 
and granulocyte-macrophage colony stimulating 
factors (GM-CSF) are involved in angiogenesis, 
as well as OA synovitis [Vergunst et al. 2005; De 
Lange-Brokaar et al. 2012].

Lessons from animal models
Intra-articular gene transfer of TSP-1 in Wistar 
rats with OA induced by anterior cruciate liga-
ment transection reduces microvessel density and 
macrophage infiltration in the synovium, and 
decreases macroscopic and histologic cartilage 
lesions [Hsieh et al. 2010]. In parallel, IL-1β lev-
els in synovium tissue extracts decrease while 
transforming growth factor-β (TGF-β) is 
increased suggesting the involvement of these fac-
tors in the TSP-1 effects. Collectively, these data 
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indicate that the local overexpression of an anti-
angiogenic factor suppresses synovium inflamma-
tion, osteophytes formation and cartilage 
degradation. This highlights the key role played 
by angiogenesis in the OA pathogenesis and that 
targeting angiogenesis could be a useful strategy 
to control disease progression.

PPI-2458, an anti-angiogenic fumagillin analogue, 
reduces synovitis, bone and cartilage damage in 
animal models of arthritis [Bainbridge et al. 2007; 
Lazarus et al. 2008]. It exerts its effects by inhibit-
ing methionine aminopeptidase type 2 (MetAp-
2), triggering growth arrest of endothelial cells in 
the late G1 phase of the cell cycle, inhibiting 
endothelial cell proliferation and angiogenesis 
without affecting inflammatory cytokines release 
[Griffith et al. 1997]. In OA induced in male Lewis 
rats by meniscal transection, PPI-2458 reduced 
synovial and osteochondral angiogenesis, synovial 
inflammation, cartilage damage, osteophyte size 
and pain behaviour as evaluated by weight bearing 
asymmetry [Ashraf et al. 2011]. This also suggests 
that the effects of angiogenesis in inflammation 
are independent of inflammatory cytokines. Again, 
this demonstrates the key role played by angiogen-
esis in OA synovitis, structural damages and pain. 
Inhibition of angiogenesis therefore offers a poten-
tial novel therapeutic strategy for OA.

Lessons from Doppler ultrasonography
Recently, Gok and colleagues investigated the 
relationship between ultrasonographic findings 
and synovial angiogenesis modulators in 13 
Behcet’s disease, 15 spondylarthropathy, 21 RA 
and 15 OA patients [Gok et al. 2013]. Synovial 
fluid angiostatin and bFGF levels were signifi-
cantly higher in patients with inflammatory 
arthritis than with OA, while no significant differ-
ence was found for angiopoietin, endostatin and 
TSP-1. It was also noted that angiogenesis mark-
ers seemed not to be useful in discriminating 
between different forms of inflammatory arthritis. 
Synovial hypertrophy scores were positively cor-
related with angiostatin and bFGF and negatively 
correlated with TSP-1. No correlation was found 
between power Doppler ultrasonography scores 
and modulators. This is probably due to the small 
sample used in this study. Indeed, in knee arthri-
tis, a power Doppler signal is difficult to detect, 
and it has been reported that an intra-articular 
power Doppler signal can be found in approxi-
mately 20% of all knee arthritis [Riente et  al. 
2010].

Are the current treatments of OA anti-
angiogenic?
It is clear that angiogenesis is a key process in OA 
synovium inflammation and that SM inflamma-
tion is related to disease activity. Therefore, tar-
geting SM inflammation is the goal of the current 
pharmacological and nonpharmacological treat-
ments. The most frequently recommended and 
used oral pharmacological agents are acetami-
nophen, nonsteroidal anti-inflammatory drug 
(NSAIDs), glucosamine and chondroitin sulfate/
HCl, avocado/soybean unsaponifiables and 
diacerein [Zhang et al. 2005, 2007, 2008, 2010; 
Hochberg et al. 2012]. Hyaluronic acid and glu-
cocorticoids are recommended as intra-articular 
treatment. With the exception of acetominophen, 
all these agents have been demonstrated to reduce 
the production of pro-inflammatory and catabolic 
mediators (cytokines, prostanoids, MMPs or 
ROS) by joint cells. These aspects have been well 
documented in some recent reviews [Henrotin 
et al. 2010, 2011, 2012]. Herein, we overview the 
potential anti-angiogenic properties of these 
compounds.

NSAIDs
NSAIDs are among the most widely drugs for the 
suppression of inflammation and pain. However, 
their use is limited because they induce significant 
negative side effects, most notably in the gastroin-
testinal tract. Recently, it was suggested that the 
gastrointestinal adverse effects could be induced, 
at least partially, by the inhibitory effect of 
NSAIDs on the production of pleiotrophin by 
intestinal epithelial cells [Silver et  al. 2012]. 
Pleiotrophin is a heparin-binding growth factor 
known to participate to angiogenesis. Pleiotrophin 
is expressed in embryonic but not mature carti-
lage, suggesting a role in cartilage development. 
Recently, pleiotrophin has been identified in OA 
cartilage and subchondral bone, suggesting its re-
expression in pathological condition. This finding 
also designated pleiotrophin as a promising thera-
peutic target to control angiogenesis in OA 
[Kaspiris et al. 2013]. In vitro, NSAIDs are potent 
inhibitor of endothelial cells growth [Kjaer et al. 
2010]. NSAIDs are also considered as inhibitors 
of tumour or retinal angiogenesis, notably through 
the inhibition of cyclooxygenase isoenzyme activ-
ity [Pakneshan et al. 2008; Yanni et al. 2010]. In 
male Lewis rats with knee OA induced by menis-
cal transection, indomethacin reduced synovial 
angiogenesis 35 days after meniscal transection 
[Ashraf et al. 2011].
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Avocado/soybean unsaponifiables
Avocado/soybean unsaponifiables (ASU) are 
derived from unsaponifiable residues of avocado 
and soybean oils, and commonly mixed at a ratio 
one-third to two-thirds, respectively. ASU con-
tains many compounds including fat-soluble vita-
mins, sterols, triterpene alcohols and possible 
furan fatty acids. The major components of ASU 
by weight are the phytosterols β-sisterol, campes-
terol and stigmasterol. ASUs have been studied 
for more than 20 years and show anti-OA proper-
ties [Christensen et  al. 2008; Henrotin et  al. 
2011]. ASUs have been well investigated on chon-
drocytes and showed beneficial effects on carti-
lage degradation by stimulating aggrecan synthesis 
and by reducing catabolic and pro-inflammatory 
mediators. Some of these effects have been sug-
gested to be secondary to an increase of TGF-β 
production by chondrocytes [Boumediene et  al. 
1999; Altinel et al. 2007]. In contrast, the effects 
of ASUs on synovial cells have been poorly inves-
tigated, with some findings even suggesting that 
ASUs could have anti-inflammatory effects. ASUs 
reduced IL-1β and TNF-α gene expression by 
lipopolysaccharide-stimulated monocytes/mac-
rophage-like (THP-1) cell line [Au et al. 2007]. 
This is important since it was demonstrated that 
ASUs decreased cell infiltration in the SM of dog 
with OA induced by anterior cruciate ligament 
transection [Boileau et al. 2009]. We lack evidence 
to support a potential effect of ASUs on SM angi-
ogenesis. However, this hypothesis should be 
explored since a study showed that ASUs strongly 
inhibited the production of MMP-2 by IL-1β 
stimulated gingival fibroblasts [Kut-Lasserre 
et al. 2001].

Diacerein
Diacerein, and its active metabolite rhein, is an 
anthraquinone derivate that refrains the expres-
sion of IL-1 in lipopolysaccharide-activated 
human OA chondrocytes and synoviocytes [Yaron 
et  al. 1999]. Surprisingly, diacerein inhibited 
IL-1β-stimulated NF-κB activation in synovio-
cytes and chondrocytes, but increased cyclooxy-
genase-2 (COX-2) protein expression and PGE2 
synthesis [Pelletier et  al. 1998; Sanchez et  al. 
2003; Alvarez-Soria et  al. 2008]. The impact of 
this PGE2 overexpression induced by diacerein 
needs to be clarified, particularly on joint tissue 
neovascularization. The release of PGE2 at high 
concentrations to the inflammatory site would 
contribute to inflammatory-related angiogenesis. 
However, rhein has been demonstrated to inhibit 

VEGF-stimulated human umbilical vein endothe-
lial cell (HUVEC) tube formation, proliferation 
and migration under normoxic and hypoxic con-
ditions [Fernand et al. 2011].

Chondroitin sulfate
Chrondroitin sulfate (CS) is recommended by 
the European League Against Rheumatism 
(EULAR) and the Osteoarthritis Research 
Society International (OARSI) as a symptomatic 
slow-acting drug for the treatment of knee and 
hip OA. In chondrocytes culture, CS acts by 
blocking NF-κB nuclear translocation, and as a 
consequence, the production of pro-inflamma-
tory and procatabolic mediators like inducible 
nitric oxide synthetase (iNOS). The anti-inflam-
matory properties of CS have been observed in 
different animal models. In these models, CS 
administrated under a pretreatment regimen was 
able to reduce synovitis significantly, particularly 
cell infiltration, and the production of pro-inflam-
matory cytokines by joint cells [Omata et al. 2000; 
Cho et  al. 2004]. However, no information is 
given about the vascular aspect of the SM after 
treatment with CS.

Using a microarray technique we have investi-
gated the effects of CS on the expression of gene 
coding for pro- and anti-angiogenic factors. In a 
first set of experiments, we compared gene expres-
sion pattern of primary synoviocytes coming from 
the inflammation (I) area of OA SM cultured for 
7 days with or without highly purified bovine CS 
(200 µg/ml, Bioiberica SA, Barcelona, Spain) and 
in low glucose. A total of 219 genes were identi-
fied as differentially expressed between I and 
I-CS conditions. Among them, we identified a 
number of genes implicated in angiogenesis  
and cell migration pathway. Endothelial cell- 
specific molecule-1 (ESM-1), transmembrene- 
4-L-six-family-1 (TMESF1), 5′-ectonucleotidase 
(NTS5E) and growth arrest-specific gene 6 
(GAS6) were downregulated by CS. In a second 
set of experiments, we compared the effect of CS 
on IL-1β treated human synoviocytes coming 
from OA SM. A total of 3308 genes were identi-
fied as differentially expressed genes between 
control and IL-1 conditions. The most pro-angio-
genic upregulated gene was stanniocalcin-1 
(STC1). Interestingly, CS tended to decrease this 
factor (personal communication with Y Henrotin). 
Using real-time polymerase chain reaction 
(RT-PCR), a more sensitive and gene targeted 
method, we investigated the effect of CS (200 mg/
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ml) on the expression of selected pro- and anti-
angiogenic genes by IL-1β treated synoviocytes. 
The stimulating effect IL-1β on VEGF, bFGF, 
NGF, Ang-1 and MMP-2 was unaffected by CS. 
After 24 h treatment, CS counteracted the inhibi-
tory effect of IL-1 on VEGI and TSP-1. This 
effect was confirmed at the protein level by immu-
noassays [Lambert et al. 2012]. As an inhibitor of 
angiogenesis, TSP-1 overexpression decreases 
inflammation and blood vessel density in the SM. 
It also reduces cartilage lesion in rats where OA is 
induced by anterior cruciate ligament transection 
[Hsieh et al. 2010].

Recently, Calamia and colleagues studied the 
secretome of IL-1 treated human articular chon-
drocytes cultured with or without CS, employing 
a quantitative proteomic approach. They identi-
fied 75 different proteins in the secretome of 
human articular chondrocytes. Of these, 18 were 
modulated by bovine CS (200 µg/ml, Bioiberica 
SA, Barcelona, Spain) with statistical significance 
(6 increased and 12 decreased). Among these 
proteins, TSP-1, an angiogenic inhibitor, was 
strongly increased by CS [Calamia et  al. 2012]. 
The anti-angiogenic action of CS was confirmed 
by the reduction in lactadherin, a protein that 
promotes VEGF-dependent vascularization and 
MMP-2, a MMP promoting tissue invasion by 
newly formed blood vessels.

Hyaluronic acid
Several studies underline hyaluronic acid (HA) 
involvement in endothelial cell proliferation, migra-
tion and new vessel formation [Cui et  al. 2009; 
Matou-Nasri et  al. 2009]. The mechanism of 
HA-induced angiogenesis involves the receptor for 
HA-mediated motility (RHAMM) and TGF-β 
receptor I (TGFBRI) [Park et al. 2012]. It has been 
demonstrated that the plasmatic HA level is associ-
ated with a significant enhancement in coronary 
collateralization, suggesting that circulating HA 
could also promote angiogenesis [Xi et al. 2010]. 
This should be considered along with the recent 
discovery that HA degradation generates small oli-
gosaccharides that are able to increase pro-inflam-
matory (IL-1, TNFα) and pro-angiogenic cytokines 
(IL-18) production by synovial fibroblasts (RASF) 
obtained from mice subjected to collagen induced 
arthritis (CIA) [Campo et al. 2012a, 2012b]. This 
effect is mediated by activating both CD44 and the 
toll-like receptor 4 (TLR-4). CD44 and TLR-4 
stimulation in turn activate the NF-βB that induces 
the production of these cytokines. Inversely, high 

molecular weight HA decreases toll-like receptor 2 
and 4 cartilage expression in the same experimental 
arthritis model [Campo et al. 2011].

New perspectives
Accumulated evidence links COX-2, an enzyme 
involved in inflammation and arthritis, with 
angiogenesis, suggesting that drugs inhibiting 
COX-2 and prostanoid-related signalling cas-
cades might be effective anti-angiogenic agents. 
Severe adverse effects associated with NSAIDs 
and selective inhibitors of COX-2 (COXIBs) 
have limited their long-term use in chronic dis-
eases like OA. The current focus is therefore on 
the development of a new generation of NSAIDs 
targeting effectors downstream of COX such as 
prostanoid receptors (EP, TP, IP) and possibly 
several prostanoid activated peroxisome prolifer-
ator-activated receptors (PPARs) [Salvado et al. 
2012]. PPARs can bind and be activated by a 
variety of prostanoids. PPARα has well-charac-
terized roles in endothelial cells, demonstrating 
antiproliferative and anti-angiogenic properties 
in a variety of in vitro and in vivo models. Recent 
reviews confirm that the PPARγ pathway is a 
potential therapeutic target for cancer and sev-
eral other disorders in which excessive angiogen-
esis is implicated [Menendez-Gutierrez et  al. 
2012; Ammazzalorso et al. 2013].

Some new natural compounds investigated for 
their anti-tumour effects could be effective in lim-
iting tissue neovascularization in arthritic joints. 
Among these, curcumin and resveratrol are par-
ticularly interesting because they have been dem-
onstrated to be active on SM cells and 
chondrocytes [Shakibaei et  al. 2007; Lee et  al. 
2009; Henrotin et al. 2013]. Curcumin and res-
veratrol inhibit NF-κB activation and transloca-
tion induced by IL-1β and the consequent 
expression of NF-κB induced pro-inflammatory 
and pro-angiogenic genes like COX-2, IL-8 and 
VEGF [Csaki et al. 2009].

Other natural steroids with demonstrated anti-
angiogenic effects on cancer cell lines could also 
be explored. From these, two warrant special 
mention: deltonin, a steroidal saponin isolated 
from Dioscorea Zingiberensis Wright (DZW) and 
α-chanonine, a naturally occurring steroidal gly-
coalkaloid in potato sprouts [Lu et al. 2010; Tong 
et al. 2011]. These agents are particularly active in 
blocking blood vessel formation. Shikonin, an 
naphthoquinone derivative isolated from plants, 
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showed anti-angiogenic activities by inhibiting 
endothelial cells migration and proliferation 
through the inhibition of VEGF production [Lee 
et al. 2008].

Treatment with infliximab, a monoclonal anti-
body against TNF-α, in combination with metho-
trexate reduced synovial VEGF expression and 
vascularity [Lainer-Carr and Brahn, 2007]. The 
anti-IL-6 receptor antibody tocilizumab was 
shown to decrease serum levels of VEGF in RA 
[Nakahara et al. 2003]. Thalidomide is a potent 
TNF-α antagonist and angiogenesis inhibitor 
which shows anti-angiogenic VEGF-independent 
effect in arthritic rats [Lainer-Carr and Brahn, 
2007]. Regarding human arthritis, thalidomide 
showed little efficacy in RA [Lainer-Carr and 
Brahn, 2007].

Biotherapy targeting VEGF have also been tested 
in cancers and in arthritis. There have been sev-
eral attempts to target VEGF by using synthetic 
VEGF and VEGF receptor inhibitors, anti-VEGF 
antibodies and inhibitors of VEGF and VEGFR 
signalling, primarily in colorectal, lung, renal and 
liver cancers [Szekanecz et al. 2010]. Some have 
also been tested in arthritis. A soluble VEGFR1 
chimeric protein dose-dependently inhibited the 
proliferation of synovial endothelial cells [Manley 
et al. 2002]. A VEGFR protein kinase inhibitor, 
vatalanib, also inhibited knee arthritis in rabbits 
[Grosios et  al. 2004]. Soluble FAS ligand 
(CD178) inhibited production of the 165 amino 
acid form of VEGF (VEGF165) by RA synovial 
fibroblasts, as well as neovascularization [Lainer-
Carr and Brahn, 2007]. Hypoxia-HIF-mediated 
neovascularization may also be targeted. 
Palictaxel, an anticancer agent which diminishes 
HIF-1α expression and activity, was effective and 
safe in a phase I clinical trial including RA patients 
[Lainer-Carr and Brahn, 2007]. Vitaxian, a 
humanized antibody to αVB3 integrin, inhibited 
synovial angiogenesis in an animal model of 
arthritis but showed very little efficacy in a phase 
II RA trial [Lainer-Carr and Brahn, 2007; 
Szekanecz and Koch, 2008b].

Finally some angiogenic inhibitors have demon-
strated interesting effects in arthritic animal 
models. Among these compounds, angiostatin 
and endostatin block αVβ3 integrin dependent 
angiogenesis. Endostatin interferes with VEGF 
receptor signalling. The administration of either 
these compounds suppressed arthritis in various 
rodent models [Szekanecz et al. 2010]. A peptide 

derived from TSP-1 supressed synovial  
inflammation and angiogenesis in peptidoglycan-
polysaccharide-induced rat arthritis [Park et  al. 
2004].

Conclusion
Angiogenesis plays a key role in synovium 
inflammation and cartilage damage accompany-
ing OA and seems to be a critical mechanism in 
the persistence of OA. Angiogenesis facilitates 
the invasion of inflammatory cells and increases 
pain receptors locally. In OA, the SM vasculari-
zation process differs in some aspects from that 
observed in RA. The blood vessel density and 
stability and the levels of synovial angiogenesis 
modulators are higher in RA than in OA. 
Additional studies are required to identify the 
specific pathways involved in angiogenesis of OA 
synovium. Therefore, the inhibition of angiogen-
esis represents a promising avenue to control 
inflammation and pain in OA. Among the cur-
rently used pharmacological agents in OA, chon-
droitin sulphate shows in vitro anti-angiogenic 
properties mainly by controlling the balance 
between pro- and anti-angiogenic factors. 
However, this potential anti-angiogenic effect 
needs to be confirmed in vitro in a functional 
model of endothelial cell proliferation and 
migration and in vivo in OA animal models. 
Some new molecules are under investigation for 
their anti-inflammatory and anti-angiogenic 
properties and they may offer a new opportunity 
to block chronic pain and inflammation in OA.
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