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Summary
In the context of a bioassay or an immunoassay, calibration means fitting a curve, usually
nonlinear, through the observations collected on a set of samples containing known concentrations
of a target substance, and then using the fitted curve and observations collected on samples of
interest to predict the concentrations of the target substance in these samples. Recent technological
advances have greatly improved our ability to quantify minute amounts of substance from a tiny
volume of biological sample. This has in turn led to a need to improve statistical methods for
calibration. In this paper, we focus on developing calibration methods robust to dependent
outliers. We introduce a novel normal mixture model with dependent error terms to model the
experimental noise. In addition, we propose a re-parameterization of the five parameter logistic
nonlinear regression model that allows us to better incorporate prior information. We examine the
performance of our methods with simulation studies and show that they lead to a substantial
increase in performance measured in terms of mean squared error of estimation and a measure of
the average prediction accuracy. A real data example from the HIV Vaccine Trials Network
Laboratory is used to illustrate the methods.
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1. Calibration Experiments and Statistical Analyses
Measuring the quantity of a substance in a sample is a fundamental task in many biomedical
fields. Due to the difficulty of directly measuring the amount of a biomolecule in a
biological/clinical sample, a calibration approach is commonly undertaken. The assay of
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choice is performed on a set of standard samples which contain known amount of the target
analyte at regular intervals. From these, a concentration-response curve is estimated and can
be used to predict the analyte concentration in samples of interest which are subjected to the
same assay. Most assays fall into two categories: bioassay or immunoassay. A bioassay is
based on the effect on living matter by the substance, while immunoassays are performed in
an artificial experimental environment such as a test tube and rely on the highly specific
binding of antibodies and antigens, hence the name. Two of the most well-known
immunoassays to date are the Nobel price-winning radioimmunoassay (RIA, Yalow and
Berson, 1960), which produces a radioactive signal in response to a specific binding, and
Enzyme-Linked Immunosorbent Assay (ELISA, Engvall and Perlmann, 1971), which
produces a safer response, typically a change in color of a chemical substrate. A new type of
immunoassay using multiplex bead arrays (MBA) is now gaining popularity. While RIA and
ELISA can only measure one analyte at a time, MBA can measure the concentrations of
many (up to 100 with the Luminex® 100 IS System) from one biological sample.

As the experimental techniques for calibration experiments evolve, the statistical methods
for their analysis have also matured. The shape of the concentration-response curve was a
focus from early on (see review by Finney, 1947). D.J. Finney introduced a four parameter
logistic (4PL) model in 1970 (according to Rodbard and Frazier, 1975), and it is still widely
used today. Generalization of the 4PL model to a five parameter logistic (5PL) model for
asymmetrical curves appeared in Prentice (1976), Rodbard et al. (1978) and Finney (1979),
while 5PL itself dates back to Richards (1959). More recently, model-robust approaches
have been an active research area (Bornkamp and Ickstadt, 2009; Faes et al., 2007; Morales
et al., 2006). In this study, we focus on 5PL models, which in many practical settings strike
a balance between bias and variance trade-off (Gottschalk and Dunn, 2005).

Statistical modeling of the experimental noise in a calibration experiment also received
ample attention (see e.g. Rodbard and Cooper, 1970; Belanger et al., 1996). In particular, the
need to model variance robustly was recognized by many. A robust statistical procedure
(Box, 1953; Huber and Ronchetti, 2009) is, roughly speaking, one that is less sensitive to the
presence of outliers. There are two basic approaches to robust inference: estimating
equation-based approach and likelihood-based (or model-based) approach. The former seeks
to reduce the influence of outlying observations, examples in calibration include Hamilton
(1979), Tiede and Pagano (1979), Miller and Halpern (1980), Normolle (1993), Fomenko et
al. (2006), and Wang et al. (2008). The likelihood-based approach aims to provide a better
model of the data by replacing normal distributions with more heavy-tailed distributions
(Lange et al., 1989; Taplin and Raftery, 1994), examples in assay analysis include Motulsky
and Brown (2006). In this study, we are concerned with outliers that appear in a cluster.
There have only been a few studies of the so-called dependent outliers or correlated outliers.
Grishin and Janczak (2008) presented an algorithm for robustifying tracking algorithms in
radars and radio-navigational systems in the presence of correlated outliers. Qiu and
Vaswani (2011) proposed an algorithm for solving principal components' analysis problem
in the presence of correlated outliers. We will take a likelihood-based approach since it can
be extended naturally to model dependent outliers.

Most routine analyses of assay data use frequentist inference to the best of our knowledge. It
may be for practical reasons like speed of computation, but it is also because frequentist
inference does a reasonably good job in most cases. In several contexts, however, Bayesian
inference has been chosen to help improve inference. Racine-Poon (1988) proposed a model
to jointly model data from more than one type of bioassay. Gelman et al. (2004) proposed a
model for calibration when several different dilutions of an unknown sample were assayed.
In this study, a Bayesian approach is adopted to incorporate prior information, without
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which, the quality of the inference is greatly reduced due to the presence of dependent
outliers.

Our study is motivated by the adoption of MBA assay by the HIV Vaccine Trials Network
(HVTN) laboratory in the study of immune correlates in the RV144 HIV vaccine trial. The
recent RV144 phase III efficacy trial (Rerks-Ngarm et al., 2009) showed a modest 31%
efficacy in preventing HIV infection in vaccine compared to placebo recipients. Efforts are
now under way to study aspects of vaccine-induced immune responses that may correlate
with protection, with the hope of finding clues to feed back into vaccine design in future
trials. Because a limited volume of serum sample was collected from trial participants and
because we wished to study a wide range of immune responses for possible correlates, the
MBA became an important assay in the correlates study. A typical run of the MBA assay is
conducted on 96-well plates. Part of the plate, say 20 wells, are used to assay standard
samples. The rest of the plate is used to assay unknown samples. If the estimation of the
concentration-response curve for one analyte were unduly affected by outliers, the unknown
samples would have been wasted with regard to this particular analyte. Thus it is critical that
we have a very robust estimation procedure for estimating the concentration-response
curves.

In Section 2, we introduce a normal mixture model with a dependent error structure to
model the experimental noise robustly. In Section 3, we introduce a re-parameterization of
the 5PL model, which allows us to incorporate prior information from historical data. We
carry out a simulation study in Section 4 and use a real data example from the HVTN lab
RV144 study as an illustration in Section 5. We conclude with a discussion in Section 6.

2. A Robust Model for Dependent Experimental Noise
We first describe the structure of a typical set of standard samples from the MBA assay, and
establish a Bayesian random effects model for analyses. An experiment often involves
multiple plates, each of which has a set of standard samples. Let the plate be indexed by i =
1, ⋯ , I. Each set of standard samples usually comprises two replicates, indexed by j = 1, 2.
Each replicate contains one serial dilutions of the standard samples (Blei et al., 2006), in
which part of one standard sample is used to prepare the next standard sample in the dilution
series. We denote the log concentrations of the standard samples by tijk, for k = 1, ⋯ , Kij.
For simplicity, we assume that Kij = K for a certain K, and that tijk = tk, i.e. the
concentrations of the standard samples on each plate/replicate combination are identical.
Most datasets satisfy these two constraints, and relaxation is straightforward. The outcome
in a MBA experiment is median fluorescence intensity (MFI). When untransformed this
outcome tends to be more variable when it is higher, but we have found that a log
transformation stabilizes the variance to a satisfactory degree. We denote the transformed
outcome by Yijk and consider the following nonlinear mixed model (Baharith et al., 2006;
Davidian and Giltinan, 1995)

(1)

In the above, f5PL (·;θi) denotes the 5PL function with plate-specific parameters θi, εijk is the
experimental noise, and bi is the mean-centered plate random effect, which is assumed to
follow a normal distribution with precision matrix Ω. We assume conditional conjugate
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priors on θ0 and Ω. Specifically, θ0 is assumed to follow a normal distribution with mean μ
and covariance matrix Σ, and Ω is assumed to follow a Wishart distribution with r degrees of
freedom and mean rS.

It is common to model the noise terms εijk as independent normal random variables, but this
leaves the fit of the curve sensitive to outliers. Sometimes it is possible to manually remove
outliers before carrying out statistical analyses, but that is not feasible when there are a
number of outliers, in a phenomenon often termed as ‘masking’, i.e. the outliers mask each
other from being easily detected. Masking is a complicated effect, but some of it is probably
due to the presence of dependent outliers. Figure 1 shows an example of this phenomenon.
In plate LMX010, the observations in the first few dilutions from the two replicates are
unusually far apart from each other. This pattern can be explained if the observations from
one of the replicates in those first few dilutions are outliers. Such clustered occurrences of
outliers may be due to certain sequential ordering in the assay protocol. Aside from the
structure imposed by serial dilution, in the handling of the standard samples each dilution
series is often treated as a unit, e.g. they may be plated in the same column of wells on a
plate. While it is possible to come up with experimental protocols to break up this structure,
the resulting experimental procedure will be harder to implement by human experimentalists
and may lead to decreased overall data quality.

Conceptually we may separate the experimental noise in Figure 1 into two categories. The
first category includes noise sources such as detection sensor noise and the stochastic nature
of the binding reaction. These sources typically produce small errors, and can be
approximately thought of as being independent from observation to observation. The second
kind of noise usually leads to larger errors, and may arise due to events that tend to affect
several neighboring standard samples in a dilution series. We propose to model both
categories with a process of mixture distributions by extending the contaminated normal
model (Taplin and Raftery, 1994; Little, 1988). We first describe the process in a generic

way. Consider a sequence of K error terms . We say that ε is distributed
according to a LAR(1) process if

(LAR(1))

In this model, conditional on π and α, the mixture component indicators  follow a
multivariate binary distribution with first order autoregressive (AR(1)) correlation (Qaqish,

2003). The marginal mean of  is π and the correlation between the kth and k′th
indicators is α|k−k′| for k ≠ k′ and |α| < 1. We thus name the above model a Latent first order

AutoRegressive (LAR(1)) process. It has four parameters: , , π, and α. It is easy to see
that this is a stationary process if |α| < 1. The marginal distribution of a LAR(1) process is a
mixture of two normal distributions with mixture coefficient π. A LAR(1) process is not an
AR(1) process: the correlation between εk and εk′ is 0 for k ≠ k′. This is because even though

 are correlated, the normal components of  are independent. A LAR(1)
process is not even a Markov chain of order 1. To see this, consider the special case of K =
3. We observe that C2|ε2 does not have the same distribution as C2|ε2, ε1. And because ε3
depends on C2, it also depends on ε1. This does not mean that LAR(1) is overly complicated,
however. The dependence between εk's is induced by the chain of mixture indicators
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, and often we can work with the augmented chain , which is an AR(1)
process. The proposed model is akin to a hidden Markov model (MacDonald and Zucchini,
1997), which have similar dependence structures in that the observations are not Markov
even though the underlying states are.

We now use the LAR(1) process to complete our model of the assay data. Denote

 from model (1). For i ∈ {1, ⋯ , I} and j ∈ {1, ⋯ , J}, we assume

The above model implies that the marginally less likely normal component, the
contaminating component, has a greater variance than the marginally more likely
component. For the hyperparameters, λ = 0.046 is chosen so that the 99% quantile of
Exponential (λ) is 100, and α1 = 2, β1 = 0.02 are chosen based on least square 5PL fits (Ritz
and Streibig, 2005) of historical data that are apparently free of outliers.

3. Reparameterization of Five Parameter Logistic Model
The intuitive idea behind robust statistics was that “a discordant small minority should never
be able to override the evidence of the majority of the observations” (Huber and Ronchetti,
2009). In the example shown in Figure 1, if we only have data from plate LMX010, there is
no hope for correcting the influence of outliers, because a good proportion of the
observations appear to be outliers. But because we have five other plates, by borrowing
information across plates it becomes possible to tease out which observations are more
likely to be the outliers in plate LMX010. In our model, the extent to which we can borrow
information across plates depends on the prior on the precision matrix of the plate effect
prior (1). The HVTN lab has accumulated a large amount of MBA data that we would like
to use to inform future inference. It is this need to better capture prior knowledge about the
plate random effect from historical data that has led us to propose a new parameterization of
the five parameter logistic (5PL) model.

A 5PL model is most commonly parameterized as follows

(2)

When f = 1, this model reduces to a four parameter logistic model (4PL). In a 4PL model,
three of the parameters have direct interpretation: c and d are the lower and upper
asymptotes respectively, and log (e) is the inflection point, i.e. the point at which the curve
changes from convex to concave or vice versa, depending on whether the curve is
monotonically increasing or decreasing. A 4PL curve is symmetric around the inflection
point. The slope at the inflection point, −b(d−c) /4, is proportional to the product of the
fourth parameter b and the difference between asymptotes. The 5PL model generalizes the
4PL model to allow fitting of asymmetric concentration-response curves by introducing a
fifth parameter f. In a 5PL model as parameterized in (2), c and d retain their interpretation
as the asymptotes, but log (e) is no longer the inflection point and the slope at the inflection
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point is no longer proportional to b (d − c). Without loss of generality, we consider only
monotonically increasing curves, thus requiring b < 0 and f > 0. We choose to work with
transformed parameters log (−b) and log (f), so that they span the whole real line. We refer
to this parameterization as the original parameterization.

One of our historical datasets came from our efforts to validate the MBA assay against the
FDA guideline for bioanalytical method. We conducted an experiment that consisted of six
plates, and 31 analytes were simultaneously assayed. We use the least square method
implemented in the R package drc (Ritz and Streibig, 2005) to fit the 5PL model to each
plate/analyte standard curve, in order to obtain parameter estimates. Next, we average the
six plates' parameter estimates for each analyte and subtract the averages from the individual
parameter estimates to obtain 6×31 = 186 samples of plate random effect. We then carried
out Brown-Forsythe tests (Brown and Forsythe, 1974) to test the null hypotheses that the
plate effect marginal variances are equal among the analytes. The P values for the five tests
on {c, d, log (e) , log(−b) , log(f)} are 0.000, 0.000, 0.000, 0.042, and 0.004.

That the variances of c and d may be different among analytes is not surprising, because we
expect to see some mean-variance relationship in these two asymptote parameters. Indeed,
as Web Figure 4 shows, as the analyte mean of the lower asymptote c increases from 1 to 4,
its plate effect variance tends to decrease. This makes sense because when the MFI is as low
as being near exp (1), the background noise is relatively high, which means higher variance
on the log(MFI) scale. Similarly, as the analyte mean of the higher asymptote d increases
from 9.5 to 11.5, its plate effect variance tends to increase. This is likely because the
maximum MFI output is around exp (10), a value of 11 for d has to be extrapolated from the
data, hence likely to be subjected to high variability. It is harder to make sense of the test
results for b, e and f because they are not easily interpretable.

We propose to re-parameterize 5PL by replacing b and e with the inflection point (denoted
by g) and the hill slope at the inflection point (denoted by h). We call this parameterization
the g-h parameterization. The reparameterized 5PL function is

(3)

Although this is a new parameterization in the calibration literature, it is actually how 5PL
was parameterized when it first appeared in Richards (1959) (see also Seber and Wild, 1988,
pp. 332-335). We will work with transformed parameter log (h), so that the parameter spans
the whole real line. It is worth pointing out that from (3), it is easy to see that the response at
the inflection point is only a function of c, d, and f. Using the relationship

(4)

we computed estimates of g and log (h) from the historical dataset mentioned before and
conducted Brown-Forsythe tests. The P values are 0.266 and 0.184 for g and log (h),
respectively. This allows us to pool the plate effect estimates of different analytes to specify
the hyperparameters in the priors for these two parameters.

Because of the mean-variance relationship of the random effects, it is difficult to reliably
extract information about the non-diagonal elements of S from the historical dataset. Thus
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we assume S to be diagonal. Note this does not imply Ω is diagonal. We specify the diagonal
elements of S following the procedure in Fong et al. (2010). Let Sm be the hyperparameter
corresponding to an arbitrary parameter m. Integrating out the precision parameter Ω, the
plate effect bi is distributed as a multivariate Student's t distribution. Assuming that all
marginal distributions of the plate effect have four degrees of freedom, we find r = 8. Then

, where  is the 97.5th quantile of Student's t-distribution
with 4 degrees of freedom. For g and log (h), we let (−Rm, Rm) be the range of 95% quantile
of the estimated random effects from the historical dataset. For other parameters, since we
cannot pool information from different analytes, we resort to letting Rm be the maximum
absolute plate effect in the whole historical dataset. Under the original parameterization the
hyperparameter is S{c,d,log(e),log(−b),log(f)} = diag (0.46, 2.34, 0.07, 2.69, 0.5); under the g-h
parameterization the hyperparameter is S{c,d,g,log(h),log(f)} = diag (0.46, 2.34, 23,172, 0.5).
For comparison, we also work with a default hyperparameter: r = 5 and S = diag (1, 1, 1, 1,
1). To visualize the different plate effect variance component priors, we simulate random
plate effects, add them to a common θ0, and plot the curves in Figure 2. Under either
parameterization, the default prior results in a bigger spread than the substantive prior
derived from the historical data. In addition, the substantive prior under the g-h
parameterization appears to be a stronger prior than the substantive prior under the original
parameterization.

We also use the historical dataset to specify the hyperparameters μ and Σ in (1). For each
analyte, we average the parameter estimates from the six plates, and call this θ̄. We take the
average of θ̄ to be μ. We assume Σ to be a diagonal matrix, and let the diagonal be the
empirical variance of θ̄ (across analytes) multiplied by 4. For a default prior, we use μ = 0, Σ
= diag (10−4, 10−4, 10−4, 10−4, 10−4).

4. Simulation Study
To investigate the operating characteristic of the proposed methods, we carry out a
simulation study. Nine different estimating procedures are compared, three of them sensitive
and six of them robust to outliers. The outlier-sensitive methods include ‘drc’ (Ritz and
Streibig, 2005), which produces nonlinear least square estimates for each plate, and two
Bayesian random effects models, both labeled ‘original, norm’ but differing in the priors
used. These two models both use the original parameterization and a variant of the Bayesian
random effects model laid out in Section 2 with π set to be 0, i.e. the error terms of a dilution

series are assumed to be independent and normally distributed errors conditional on . The
difference between the two is that one uses default hyperparameters and the other uses
substantive hyperparameters. For robust estimating procedures, we examine four models:
‘original norm mix’ uses the original parameterization and a variant of the error model from
Section 2 with α set to be 0, i.e. each error term is assumed to be independently distributed
as a normal mixture of two components; ‘original LAR(1)’ uses the original
parameterization and assumes the error model from Section 2; ‘original t-AR(1)’ uses the

original parameterization and assumes that the error terms  follow a Student's t4
AR(1) process (Heracleous and Spanos, 2006); ‘g-h LAR(1)’ uses the g-h parameterization
and assumes the error model from Section 2. These four models are paired with both default
hyperparameters and substantive hyperparameters. Furthermore, we investigate a reference
model under the g-h parameterization that allows a replicate-level random effect to be nested
within plate-level random effect. It differs from (1) in that Yijk = f5PL(tk;θij) + εijk and θij =
θ0+bi+sij. For estimating concentrations of the unknown samples, we need to have one curve
per plate, and we use (θi1 + θi2) /2 for that. We assume sij |W ∼iid N (0, precision=W) and W
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∼ Wishart5 {5, diag (1, 1, 1, 1, 1)}. Inference for the Bayesian models are carried out using
JAGS (Plummer, 2003).

We simulate 1000 datasets. Each simulation dataset is generated from Yijk = f5PL (tk; θ0,i)

+εijk, where i = 1, ⋯ , 6, j = 1, 2, k = 1, ⋯ , 10,  are equally spaced between log

(0.51) and log (103), and  are the estimated parameters for an arbitrarily chosen
analyte from our historical dataset described in Section 3. The 5PL curves corresponding to

 are plotted in Web Figure 2.

Two sets of criteria are used to compare the nine estimating procedures. The first set is the
mean squared errors for parameters c, d, g, h, f and is denoted by AVE(θ̄ − θ0)2. For each of
the parameters, AVE(θ̄ − θ0)2 is defined to be the average of the squared difference between
the posterior median of the parameter and the truth over six plates and 1000 simulation
datasets. The reason we have chosen the posterior median as a summary of the posterior
distribution over the posterior mean is that the posterior distributions tend to be highly
skewed.

The second criterion measures the average absolute prediction error. Denoted by S̄ (θ̄, θ0), it
is defined as the area between two 5PL curves parameterized by the truth θ0,i and the
posterior median θ̄i (shaded area between curves in Web Figure 1), averaged over plates and
1000 simulation datasets. To see that it measures the average prediction accuracy, suppose
the black and gray lines in Web Figure 1 correspond to θ0,i and θ̄i, separately. The area
between the two curves is then approximately the Riemann sum of the absolute difference
between the true concentration of an unknown sample and the concentration predicted based
on a perfectly measured outcome. The approximation becomes exact if the predicted
concentration is defined to be the lowest/highest concentration of the standard samples when
the outcome is below/above the estimated asymptote.

We first assess the performance of using robust estimating procedures when the data do not

have outliers. For this purpose,  are simulated independently from a mean 0 normal
distribution with standard deviation 0.3. Results are summarized in Table 1. We first focus
on comparing area between curves. Using either default or substantive hyperparameters, the
robust Bayesian random effect models show slightly higher area between curves than the
non-robust models. For example, S̄ increases from 0.377 for ‘original norm’ to 0.378 for
‘original LAR(1)’ under default priors, and increases from 0.362 to 0.365 under substantive
priors. So the price we pay for guarding against outliers is almost negligible. It is also worth
noting that the robust Bayesian random effects models perform worse than ‘drc’ when using
default priors, and better than ‘drc’ when using substantive priors, suggesting that the gain
from using substantive priors can outweigh the loss from using long tailed error
distributions. The ‘g-h, nested r.e.’ model also shows a slightly higher area between curves
than the non-robust models. Comparing the mean squared errors of the parameters, we see
mostly the same trend as for the area between curves.

We now assess the performance of these estimation procedures in the presence of outliers.
We use the same simulation setup as in the previous study, except now εijk are simulated

according to a modified , where  forms
an AR(1) process with correlation coefficient 0.9. Table 2 shows the results. Comparing area
between curves, we see that with either the default or the substantive hyperparameters,
successive refinement of the noise model from normal to normal mixture to LAR(1) process
leads to better and better performance. In addition, switching to the g-h parameterization
from the original parameterization offers additional improvement. The t-AR(1) models,
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although somewhat robust, do not perform well. The ‘g-h, nested r.e.’ model does not
perform better than the non-robust models. We conjecture that this might be due to the
symmetry between the replicate-level random effects si1 and si2. Comparing the mean
squared errors of the parameters, we see mostly the same trend.

To get a better picture of the efficiency gain, we divide the simulated data into overlapping
strata with strata defined by the number of the Ck indicators that are consecutively equal to
1. For each stratum, we measure the relative efficiency versus the non-robust model
‘original, norm’ as measured by the percent reduction in area between curves: 100 × (1 − S̄/
S̄original norms). The results are shown in Table 3. We first look at substantive priors. With
the noise modeled as normal mixture random variables, the efficiency gain increases from
8% to 13% when the minimum run length increases from 0 to 2, stays at 13% until the run
length reaches 4, and then drops to 9% when the run length is 5. With the noise modeled as
LAR(1) process, the trend is different. For both parameterizations, the efficiency gain keeps
increasing until the minimum run length reaches 4 and stays there when the minimum run
length is 5. Looking across different robust estimating procedures for a minimum run length
of 4, we see that under the original parameterization, assuming the normal mixture noise
model leads to a 12% reduction; assuming LAR(1) noise model brings an additional 8%
reduction; switching to the g-h parameterization leads to a further 8% reduction, bringing
the total reduction to twice that of the normal mixture model with original parameterization.
Under default priors, we see similar trends, except that the difference between ‘original
LAR(1)’ and ‘g-h LAR(1)’ is much less. This makes sense because the main advantage of
the g-h parameterization is in choosing substantive hyperparameters.

5. Examples
We now apply the proposed methods to the dataset shown in Figure 1 to illustrate the impact
that different noise models and different parameterizations have on the estimation of the
concentration-response curves. As mentioned before, the dataset was collected as part of the
RV144 immune correlates study, where we were interested in measuring the cytokine
production profile of peripheral blood mononuclear cells taken from the study participants
after incubation with HIV-specific peptides. The particular cytokine assayed in this example
was interleukin 3, which is a protein that is part of the signaling pathways in an immune
response. We fit the four Bayesian models using the substantive hyperparameters described
in Section 4.

Web Figure 3 shows estimated concentration response curves for the six plates by three of
the models: ‘original, norm’, ‘g-h, nested r.e.’ and ‘g-h, LAR(1)’. The plate LMX010
exhibits the most difference between these models (S̄ (θ̄, θ0) = 0:866 between ‘original,
norm’ and ‘g-h, LAR(1)’) and is examined in more detail in Figure 3. Here, in each panel,
we show 20 concentration-response curves using parameters from the posterior distribution.
Under ‘original, norm’, the curves tend to go through the middle of the two replicates in the
first four concentrations. Under ‘original, norm mix’, we start to see two modes in the
posterior distribution, one close to each replicate. Under ‘original, LAR(1)’, we see a clearer
split of the posterior samples, and a ‘vacuum’ of posterior density is visible where the
posterior samples from the ‘original, norm’ model mostly reside. This transition from
normal errors to normal mixture errors to LAR(1) errors is exactly what we hope to see
under such circumstances. Because one of the replicates seems to be an outlier in each of the
first four concentrations, the ‘true’ concentration-response curve should be near one of the
replicates, and not in between. In light of the fitted curves from the other plates (Web Figure
3), if the ‘true’ curve were close to the replicate plotted in empty circles, it would be a lot
flatter than other curves. The result of the ‘g-h, LAR(1)’ fit shows that given our belief
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about the plate random effect variance the ‘true’ curve is much more likely to be close to the
replicate plotted in solid circles.

In this example, the ‘g-h, LAR(1)’ model fit differs markedly from the ‘original, LAR(1)’
model fit (area between curves 1.017). Since this is mainly due to the amount of prior
information encoded in the respective substantial priors (see Figure 2), we hereby examine
the sensitivity of the ‘g-h, LAR(1)’ fit to the strength of the prior. We do this by reducing
each diagonal element of S by 4 or 16 fold, which corresponds to doubling or quadrupling
the 95% quantiles of the corresponding random effects used in the specification of the
hyperparameters. The left-hand panel of Web Figure 5 shows the results from reducing Sg
and Slog(h) by 4 or 16 fold. The posterior medians move towards the default prior fit
noticeably, but gradually. This confirms the importance of using information from the
historical dataset in a proper way, and it also shows the posterior inference is reasonably
robust to the quantile information extracted from the historical dataset. The right-hand panel
of Web Figure 5 shows the results from reducing Sc, Sd and Slog(f) by 4 or 16 fold. Results,
presented in the right panel of Web Figure 5, show that the lower asymptote of the posterior
median curve moves up a little bit at 4 fold, and stabilizes at 16 fold. It does not change,
however, the feature that distinguishes the ‘g-h, LAR(1)’ fit from the ‘original, LAR(1)’ fit,
namely the fitted curve is much closer to the solid circle data points than the empty circle
data points. These results also suggest that under the g-h parameterization the posterior fit is
more sensitive to the priors on g and log (h) than to the priors on c, d, and log (f),
presumably because there is more information in the data with regard to the latter group of
parameters.

6. Discussion
In this paper we introduce a novel normal mixture model with a dependent error structure
which we call the latent first order autoregressive process (LAR(1)). We use LAR(1) to
model the experimental noise in a calibration experiment where dependent outliers may
arise due to an intrinsic order in the data generating process. In addition, we propose a
reparameterization of the five parameter logistic model, the g-h parameterization. The
reparameterization appears to reduce the mean-variance dependence in the prior distribution
of the plate effect variance component parameters, thus allowing us to elicit priors from the
historical data we have. The g-h parameterization also offers better mixing properties in
MCMC (data not shown) under both the default and the substantive priors. We show
through simulation experiments and a real example that the proposed method leads to
substantial gain in prediction performance in the presence of dependent gross outliers. We
implement our methods in an R package, which is available at http://labs.fhcrc.org/fong/
Ruminex/index.html.

D.J. Finney once wrote that “many features of bioassay are outstandingly good for
concentrating the mind on important parts of biometric practice and statistical inference …
because some requirements are more sharply defined” (Finney, 1979). These words still ring
true today. Our encounter with dependent outliers in the bioassay data has motivated the
LAR(1) process. This process differs from previous work on correlated residuals in non-
linear regression (e.g. Glasbey, 1980) in that it allows the distribution of each residual to be
heavy-tailed. On the other hand, it is set apart from other dependent heavy-tailed
distributions such as AR(1) process with Student's t distribution in that the latent mixture
indicators are modeled as an AR(1) process. This allows the flexibility that one or both
components of the normal mixture at different time points be independent. The posteriors on
the latent mixture indicators can also indicate which points are outliers. It would be
interesting to see whether LAR(1) process can be used to model other dependent heavy-
tailed data, such as financial time series data, for which AR(1) process with heavy-tailed
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distributions have been used in the modeling (Heracleous and Spanos, 2006). We speculate
that our LAR(1) model could also be useful in pharmacokinetic and pharmacodynamic
modeling (when the latter involves a continuous response), see Davidian and Giltinan (1995)
for examples.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Motivating dataset. Each panel represents the standard curve data from one plate. The x axis
is the log transformed concentration, the y axis is the observed outcome. Two different
plotting symbols are used to distinguish the two replicates within a plate. Each replicate
comes from one dilution series.
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Figure 2.
Comparison of plate random effect priors. 100 samples are simulated from each prior. All
random effects are added to a common θ0 = {c = 4.45, d = 10.3, log (e) = 3.30, log (−b) =
−0.178, log (f) = 0.758, g = 4.26, log (h) = 0.358}.
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Figure 3.
Posterior distributions of the concentration-response curve for plate LMX010. All use
substantive priors. Two replicates in the data are distinguished by two different plotting
symbols.
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