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Abstract

Objective: Mucositis is a serious disorder of the gastrointestinal tract that results from cancer chemotherapy. We
investigated the effects of increasing grape seed extract doses on the severity of chemotherapy in a rat model and its
coincident impact on chemotherapeutic effectiveness in colon cancer cells.

Design: Female Dark Agouti rats were gavaged with grape seed extract (400–1000 mg/kg) or water (day 3–11) and were
injected intraperitoneally with 5-Fluorouracil (150 mg/kg) or saline (control) on day 9 to induce mucositis. Daily metabolic
data were collected and rats were sacrificed on day 12. Intestinal tissues were collected for histological and
myeloperoxidase analyses. Caco-2 cell viability was examined in response to grape seed extract in combination with 5-
Fluorouracil by 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide) assay.

Results: Compared with 5-Fluorouracil controls, grape seed extract (400–1000 mg/kg) significantly decreased the
histological damage score (P,0.05) in the jejunum. Grape seed extract (1000 mg/kg) increased jejunal crypt depth by 25%
(P,0.05) in 5-Fluorouracil treated rats compared to 5-Fluorouracil controls, and attenuated the 5-Fluorouracil -induced
reduction of mucosal thickness (25%, P,0.05). Grape seed extract (600 mg/kg) decreased myeloperoxidase activity by 55%
(P,0.01) compared to 5-Fluorouracil controls. Grape seed extract was more effective at ameliorating 5-Fluorouracil induced
intestinal injury, with effects most pronounced in the proximal jejunum. Grape seed extract (10–25 ug/mL) significantly
enhanced the growth-inhibitory effects of 5-Fluorouracil by 26% (P,0.05) in Caco-2 cells and was more potent than 5-
Fluorouracil at 50–100 mg/mL.

Conclusion: Grape seed extract may represent a new therapeutic option to decrease the symptoms of intestinal mucositis
while concurrently impacting on the viability of colon cancer cells.
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Introduction

Mucositis is a serious, debilitating consequence of cancer

therapy, which significantly reduces quality of life in cancer

patients [1]. Mucositis is a painful condition associated with

inflammation and ulceration of the gastrointestinal tract; most

commonly affecting the mucosa of the mouth (oral mucositis) and

small intestine (intestinal mucositis). Intestinal mucositis is charac-

terized by reduced enterocyte proliferation and increased

apoptotic rate of crypt cells, resulting in malabsorption and

disrupted barrier function [2,3]. Symptoms of mucositis include

intense pain, diarrhoea, nausea, vomiting and anorexia. Often

there is an increased risk of bacterial infection with associated

mortality and morbidity [1]. Sometimes, gastrointestinal toxicity

may lead to a reduction, or even termination, of the chemotherapy

regimen [4]. Due to this, the chemotherapy dose administered to

cancer patients often be sub-optimal; hence new regimens that

reduce side-effects, maintaining efficacy are sought. Current

mucositis treatments are largely ineffective as they target only

the symptoms, but not the pathogenesis of the condition [5]. Thus,

it is important to seek new alternative treatments which not only

target mucositis but also enhance chemotherapeutic action

without compromising the well-being of the patient. At present,

the optimal combination of agents which could enhance both

chemotherapeutic cytotoxicity against cancer cells and have

minimal impact on normal cells, has not yet been determined.
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Grape seed extract (GSE) is widely consumed as a dietary

supplement on the basis of its potent anti-oxidant [6], anti-

inflammatory [7] and purported, anti-neoplastic [8] properties.

Procyanidins (PCs) are a class of polyphenolic compounds

composed of flavan-3-ol subunits (oligomers and polymers) [9].

PCs are widely found in other food sources such as tea, apples and

red wine and are believed to be the key bioactive constituents in

GSE [10,11]. Several studies have reported that the absorption

and bioavailability of PCs in the gut is dependent upon their

chemical structure and degree of polymerization [12]. PCs (degree

of polymerization = 7 or higher) are retained in the intestinal tract,

thereby increasing contact time with gut enterocytes to promote

intestinal health [10]. Studies examining GSE in combination with

5-Fluorouracil (5-FU) in normal animals are limited. In addition,

no studies have been published examining the combination of 5-

FU and GSE in colon cancer models.

Previously, we demonstrated in a preliminary study that GSE

(400 mg/kg) was able to reduce intestinal damage both in rat

models of intestinal mucositis [13] and ulcerative colitis [14].

However, the dose required to achieve maximal therapeutic

benefit, dose-responsiveness and safety of GSE remained unde-

fined. Accordingly, we investigated GSE across a range of doses

for its potential to optimally and safely reduce the severity of

intestinal mucositis in a rat model. Increasing doses of GSE further

prevented 5-FU-induced mucositis damage, and these treatments

were well tolerated by the animals as no metabolic changes were

observed compared to the healthy controls. In addition, we also

investigated the effects of the combination of GSE with 5-FU

chemotherapy on colonic neoplasia in an in vitro model compared

to the effectiveness of 5-FU alone. The combination of GSE and 5-

FU further enhanced toxicity in colon cancer cells.

Materials and Methods

Chemicals
Catechin, epicatechin, methanol, phloroglucinols, ascorbic acid

hexadecyltrimethylammonium bromide (HTAB), sodium bicar-

bonate and o-dianisidine were purchased from Sigma Chemical

Co. Ltd, St Louis, MO. Folin-ciocalteau reagent and 13C sucrose

were purchased from AnalaR, BDH, MERCK, Pty. Ltd.,

Australia. Tissue culture solutions include Dulbecco’s Modified

Eagle’s Minimum Essential Medium (DMEM), fetal calf serum

(FCS), antibiotics (penicillin, gentamicin and streptomycin),

Dulbecco’s Phosphate Buffered Saline, dimethyl sulfoxide

(DMSO) and 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium

bromide) (MTT) were purchased from Gibco BRL, Life

Tehnologies Pty Ltd, Australia. The chemotherapy drugs, 5-

Fluorouracil (5-FU) were purchased from MaynePharma Pty.

Ltd., Australia).

Grape seed extract (GSE) preparation
Grape seed extract was kindly donated by Tarac Techologies

(North Adelaide, South Australia, batch no: 02VIN03) and stored

in an air-tight, light-resistant pack until being dissolved in distilled

water prior to use. The GSE was derived from condensed tannin

made from Australian white wine marc (residual skins and seeds

from winemaking). The nutrition profile of GSE is listed in

Table 1. The GSE utilized in the current study was obtained from

the same source with the same batch number to that described by

Cheah et al [13]. The polyphenolic content was measured

previously by Folin-ciocalteau assay [13], and the chemical profile

was quantified by phloroglucinolysis described below.

Folin-ciocalteau assay
The total phenolic content of GSE was previously quantified by

Folin-ciocalteau assay [13]. Briefly, GSE samples were added in

triplicate to non-sterile 96 well plates and incubated with Folin-

ciocalteu reagent for 5 min. Sodium bicarbonate solution (7.5%

w/v) was added and further incubated for 4 h in the dark. The

plate was read at 740 nm by a spectrometer (MultiskanH
Spectrum, Therma Electron Corporation, Vantaa, Finland) using

Skanit software 2.2. Catechin standards were prepared from

1 mg/mL stock (1/2 serial dilutions) and used to generate a

calibration curve. Data were analysed using GraphPad Prism

version 4.0 for windowsH (GraphPad Software, San Diego, CA,

USA) and expressed in mg/mL catechin equivalents.

Quantification of procyanidins (PCs) in GSE by
phloroglucinolysis

The procyanidin profile of GSE was characterized by phlor-

oglucinolysis which determines the subunit composition, mean

degree of polymerization (mDP) and galloylation of PCs.

Phloroglucinolysis was performed according to a previously

described method [15]. GSE was dissolved in methanol (10 mg/

mL, v/v) and 25 mL of GSE was added to an equal volume of

phloroglucinol solution (0.2 N HCL in methanol, 100 g/L of

phloroglucinol and 20 g/L of ascorbic acid). The phloroglucino-

lysis reaction was carried out at 50uC for 25 min and analyzed by

reverse phase-high pressure liquid chromatography (RP-HPLC)

using (2)-epicatechin as quantitative standard [15].

Ethic Statements
This study followed the Australian Code of Practice for the Care

and Use of Animals for Scientific Purposes and was approved by

both the Animal Care and Ethics Committees of the Children,

Youth and Women’s Health Service and the University of

Adelaide (AE:777-3-2011).

Animal studies
Female Dark Agouti rats (100–140 g, n = 64) were housed in

individual metabolic cages (Tecniplast, Exton, PA, USA) in a

temperature-controlled room (22uC) with a light-dark cycle of

12 h. Rats were given ad libitum access to water and food (18%

casein-based diet) [16] in the Animal Care Facility of the Children,

Youth and Women’s Health Service, North Adelaide, South

Australia.

Table 1. Nutritional and phenolic content of grape seed
extract (GSE).

Nutrition profile1 Qty per 100 g

Energy (KJ) 1480

Protein (g) 4.5

Fat (g) 0.2

Carbohydrate (g)

total 79.1

sugars 0.2

Sodium (g) 0.3

Phenolic profile2

Polyphenol6 (%) 43

1The nutrition profile of GSE is represented as quantity/100 g.
2The phenolic content was obtained from Folin-ciocalteau (FC) assays.
doi:10.1371/journal.pone.0085184.t001
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Rats were randomly allocated to 8 groups (n = 8): Water+Saline

injection; GSE 400 mg/kg+Saline injection; GSE 600 mg/kg+Sa-

line injection; GSE 1000 mg/kg+Saline injection; Water+5-FU

injection (5-Fluorouracil: 150 mg/kg); GSE 400 mg/kg+5-FU

injection; GSE 600 mg/kg+5-FU injection; and GSE 1000 mg/

kg+5-FU injection. Rats were acclimatized in metabolism cages

from day 0–2 and then gavaged with 1 mL GSE dissolved in water

(400 mg/kg, 600 mg/kg or 1000 mg/kg) or water from day 3–11.

At day 9, all rats were intraperitoneally injected with either 5-FU

or saline (controls). Daily measurements of body weight, food and

water intake, and urine and faecal output were recorded. Rats

were sacrificed by CO2 asphyxiation followed by cervical

dislocation on day 12. All visceral organs were weighed and

discarded. The lengths and weights of the gastrointestinal organs

(duodenum, small intestine and colon) were recorded. Represen-

tative samples (2 cm) of gastrointestinal organs were collected and

fixed in 10% buffered formalin for histological analyses, while four

cm samples were snap frozen in liquid nitrogen and stored at

280uC for biochemical analysis.

13C-sucrose breath test (SBT)
The SBT is an indirect measure of intestinal sucrase activity and

was performed according to the method described by Tooley et al.

[17] In brief, rats were oro-gastrically gavaged with 1 mL of

sucrose solution containing 13C (250 mg/kg) and breath samples

were collected at 15 min intervals for 120 min. Breath samples

were analyzed for 13CO2 content by isotope ratio mass spectrom-

etry (IRMS) equipped with a V410 data collection system (Europa

Scientific, ABCA 20/20, Crewe, United Kingdom). The data were

expressed as percentage cumulative dose at 90 min (%CD90) by

calculating the change in breath 13CO2 levels from baseline for

each time point of breath collection throughout the period of

interval sampling. SBT determinations were performed at day 3

(before GSE treatment), day 9 (before 5-FU injection) and day 12

(before kill).

Myeloperoxidase (MPO) assay
Small intestinal tissue samples (4 cm) of jejunum, junction of

jejunum and ileum (JI) and ileum were thawed on ice and

homogenized with 1.5 mL of phosphate buffer (10 mM, pH 6.1)

for 60 seconds until the solution was homogenous. The homog-

enates were kept frozen at 280uC until required.

MPO is an enzyme present in the intracellular granules of

neutrophils, acting as an acute inflammation marker. The level of

MPO in the small intestine was determined by a slight

modification of the assay described by Krawisz et al. [18] Tissue

homogenates were thawed on ice and centrifuged at 13000 g for

13 min. The supernatant was discarded and cell pellets were re-

suspended in hexadecyltrimethyl ammonium bromide (0.5%,

pH 6.0). The samples were vortexed for 2 min and further

centrifuged at 13000 g for 3 min. Supernatants were reacted with

o-dianisidine and absorbance measured at 450 nm at 1 min

intervals for a period of 15 min using a microplate reader (Sunrise

Microplate Reader, Tecan Austria GmbH, Grodig, Austria).

MPO activity was expressed as units MPO activity per gram of

tissue.

Histological analyses
Gut tissue samples (2 cm) were embedded in paraffin wax and

4 mm sections were stained with haemotoxylin and eosin. The

overall histological disease severity score (ODS) of intestinal

sections was rated semi-quantitatively (0–3) based on 11 indepen-

dent histological criteria according to a protocol described by

Howarth et al. [19] Villus heights and crypt depths (40 villi and 40

crypts per section) were determined in the small intestinal sections

including jejunum, junction of jejunum and ileum (JI) and ileum as

described in Howarth et al. [19] The combined measurement of

villus heights and crypt depths provided an approximation of total

mucosal thickness in each small intestinal specimen. All micro-

scope-based analyses were performed in a blinded fashion using a

light microscope (Nikon, ProgResHCS, Tokyo, Japan) and image

ProPlus software version 5.1 (Media Cybernetics, Silver Spring

MD, USA).

Cell Culture
The human colon cancer cell line, Caco-2 was obtained from

the American Type Culture Collection (ATCC, Manassas, USA).

Caco-2 cells were maintained at 37uC in a humidified incubator

with 5% CO2 – 95% air, and 90% relative humidity in Dulbecco’s

Table 2. The chemical profiles of grape seed extract characterized by phloroglucinolysis.

MC1
mDP2 galloylation MM3 Terminal subunits4 Extension subunits4

(%) (%) (subunit) C E ECG C-P E-P ECG-P

GSE 23.8 5.9 19 1871 20.1 14.0 65.9 8.9 53.0 38.1

1Mass conversion based on % recovery of procyanidin by phloroglucinolysis based on the gravimetric mass.
2Mean degree of polymerization.
3Estimated molecular mass based on subunit composition from phloroglucinolysis.
4Percent composition of terminal and extension subunits (in moles) with the following subunit abbreviations: (-P), phloroglucinol adduct of extension subunit; C, (+)-
catechin; EC, (2)-epicatechin; ECG, (2)-epicatechin-3-O-gallate.
doi:10.1371/journal.pone.0085184.t002

Table 3. Effects of increasing doses of grape seed extract
(GSE; mg/kg) on cumulative body weight change, food and
water intake, urine and faecal output in saline-injected rats
over day 3–9.

Day 3–9

Water GSE 400 GSE 600 GSE 1000

(n = 16) (n = 16) (n = 16) (n = 16)

Body Weight Change
(g)

12.060.9 11.760.7 10.561.3 11.160.8

Water Intake (mL) 174.267.9 175.566.8 171.667.9 185.1610.1

Food Intake (g) 66.260.8 63.861.1 62.461.6 62.260.9

Urine Output (mL) 117.866.7 115.264.9 112.765.9 127.868.4

Faecal Output (g) 8.260.1 8.560.3 8.860.3 9.160.3

Data are expressed as means 6 SEM.
doi:10.1371/journal.pone.0085184.t003
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Modified Eagle’s Minimum Essential Medium (DMEM) supple-

mented with 10% (v/v) fetal calf serum (FCS) and 1% antibiotics

(penicillin, gentamicin and streptomycin) (v/v). The cells were

grown in 75 cm2 vented tissue culture flasks, culture medium was

changed twice a week and cells were passaged when they were 80–

90% confluent.

Cell viability
The inhibition of Caco-2 cells viability was determined by 3-

(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide)

(MTT) assay according to a previously described method by

Huynh-Delerme et al. [20] Cells (56103 cells/well) were seeded on

96-well tissue culture plates for 48 hrs to allow attachment. GSE

was prepared in dimethyl sulfoxide (DMSO) and diluted with

DMEM and further filter-sterilized through a 0.22 mM filter

(Millipore, South Australia, Australia). In all experiments, the

concentration of DMSO in control and treated samples was less

than 0.025%. After 48 h, culture medium was replaced with

serum free media containing GSE at different concentrations (mg/

mL) and 5-FU (mM) and further incubated for either 24 or 48 h.

MTT solution was prepared in Dulbecco’s Phosphate Buffered

Saline (1 mg/mL) and sterile-filtered to remove any biological

contaminants. Next, 50 mL of MTT solution was added to each

well and further incubated at 37uC for 4 h. Medium was replaced

with 100 mL of DMSO to extract the formazan product. Plates

were placed on a shaking incubator for 15 min and read by

spectrometer at 570 nm. Data were expressed as number of viable

cells as a percentage of control cells treated with serum free

medium only.

Statistical analyses
Statistical analyses were conducted using PASW 18 (SPSS, Inc.,

Chicago, IL, USA) and XLSTAT version 2011.4.02 (Addinsoft

SARL, France). All parametric data including bodyweight, daily

metabolic data, SBT, MPO, villus height and crypt depth and cell

viability were compared using one-way analysis of variance

(ANOVA) with a Tukey’s post-hoc test. The overall disease severity

score (ODS) was compared by a Kruskal-Wallis test with a Mann

Table 4. Effects of increasing doses of grape seed extract (GSE; mg/kg) on cumulative body weight change, food and water intake,
urine and faecal output in saline-injected rats and in 5-Fluorouracil (5-FU) injected rats from day 10–12.

Day 10–12

Water+Saline Water+5-FU GSE 400+5-FU GSE 600+5-FU GSE 1000+5-FU

(n = 8) (n = 8) (n = 8) (n = 8) (n = 8)

Body Weight Change (g) 24.361.1 28.960.8* 29.860.5** 29.460.9** 29.860.1**

Water Intake (mL) 73.362.0 109.4610.8* 100.065.3 89.8612.2 113.4610.7*

Food Intake (g) 28.760.8 13.860.9*** 13.860.8*** 12.761.4*** 13.361.0***

Urine Output (mL) 56.362.6 85.866.4* 87.364.5* 80.067.0* 89.8611.0*

Faecal Output (g) 3.660.2 2.360.3** 2.860.2 3.560.3## 3.360.1#

Data are expressed as means 6 SEM. Statistical significance compared to water+saline, where
*indicates P,0.05,
**P,0.01 and
***P,0.001,
#P,0.05 and
##P,0.01 compared to Water+5-FU.
doi:10.1371/journal.pone.0085184.t004

Table 5. Effect of increasing doses of grape seed extract (GSE; mg/kg) on organ weights of female Dark Agouti rats 72 h after 5-
Fluorouracil (5-FU) or saline injection.

Water+Saline GSE 400+saline GSE 600+Saline GSE 1000+Saline Water+5-FU
GSE 400+5-
FU GSE 600+5-FU

GSE 1000+5-
FU

(n = 8) (n = 8) (n = 8) (n = 8) (n = 8) (n = 8) (n = 8) (n = 8)

Heart 39766 39366 40668 40268 40567 414616 40866 40366

Lung 61168 593610 625618 657638 721649 711640 663647 580658

Liver 3111657 3008643 3072663 3114645 33706144 3334685 3353673 3311641

Kidneys 832626 816615 815618 857613 874620 896621 880613 891619

Thymus 181618 148617 178613 183614 88618*** 8667*** 91615*** 6968***

Spleen 19865 20565 19368 20564 15966** 15565** 150613*** 15363***

Stomach 600610 630610 640610 680610* 590630 650610 650620 680620*

Caecum 370610 360610 410640 400610 470640 490650 440630 440630

Organ weights are expressed as (wt g/kg bwt) %. Data are expressed as means 6 SEM. Statistical significance compared to Water+Saline,
*indicates P,0.05,
**P,0.01 and
***P,0.001.
doi:10.1371/journal.pone.0085184.t005
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Whitney U-test to identify significance between groups. Data were

considered significant at P,0.05.

Results

Characterization of procyanidins by phloroglucinolysis
GSE had low mass conversion (23.8% w/w), mDP (5.9) and

molecular mass (1871 g/mol), as measured by phloroglucinolysis

(Table 2). The PC terminal subunits in GSE were mostly

dominated by (2)-epicatechin-3-O-gallate.

Daily metabolic parameters and bodyweight
Oral administration of GSE (400, 600 or 1000 mg/kg) between

days 3 and 9 did not significantly affect body weight, food or water

intake and urine or faecal output compared to rats receiving water

(Table 3). 5-FU injection significantly increased water intake and

urine output and reduced body weight, food intake and faecal

output compared to rats receiving saline injection between days 10

and 12 (Table 4). GSE 600 and 1000 mg/kg in 5-FU treated rats

significantly returned faecal output (P,0.01), back towards the

values for normal saline-injected control rats.

Visceral organs
5-FU injection significantly reduced thymus weight by 51%

(P,0.001) and spleen weight by 20% (P,0.01) compared to

saline-injected rats. Whilst GSE did not prevent any of the 5-FU-

induced changes in thymus and spleen weight, none of the GSE

doses tested impacted negatively on visceral organ weights

(Table 5) nor gastrointestinal organ weights and lengths (Table 6)

in healthy animals. However, GSE 1000 mg/kg significantly

increased stomach weight by 13% (P,0.05) compared to normal

controls.

Sucrose breath test (SBT)
5-FU injection significantly (P,0.001) decreased the SBT

(%CD90) by 70% compared to values in water+saline treated

rats, indirectly indicating 5-FU injection had disrupted brush

border sucrase activity (Figure 1). There were no significant

differences in %CD90 among any of the 5-FU treated rats

receiving GSE compared to 5-FU treated-control rats. In addition,

no significant differences in %CD90 were observed between GSE

and water treatment, implying none of the GSE doses had

demonstrably impacted on brush border sucrase activity in healthy

rats (Figure 1).

Myeloperoxidase activity (MPO)
Following 5-FU injection, there was a significant (P,0.001)

increase in MPO activity in the proximal jejunum, junction of

jejunum and ileum (JI) and ileum of water+5-FU treated rats

(1092%, 357% and 297% respectively) compared to water+saline

treatment (Figure 2). GSE 600 mg/kg significantly (P,0.01)

reduced MPO activity by 55% in the JI compared to water+5-

FU treated rats (Figure 2B). There was no significant difference in

MPO activity between GSE and water treatment in healthy rats

(Figure 2), indicating that GSE administration did not affect MPO

activity in healthy animals.

Overall disease severity scores
Administration of 5-FU significantly increased disease severity

score in the proximal jejunum when assessed by the semi-

quantitative histological severity score analysis (Figure 3 and 4). 5-

FU controls attained the highest damage score (median score = 30)

and were significantly greater than water+saline treated rats

(median score = 1, P,0.01). GSE treatment significantly reduced

Figure 1. Effects of GSE (mg/kg) on small intestinal sucrase
activity assessed by the sucrose breath test on day 12 (72 h
after 5-FU or Saline injection). Data expressed as mean (%CD90) 6

SEM. *** indicates P,0.001 compared to Water+Saline.
doi:10.1371/journal.pone.0085184.g001

Table 6. Effects of increasing grape seed extract (GSE; mg/kg) doses on gastrointestinal organ weights and lengths of female Dark
Agouti rats 72 h after 5-Fluorouracil (5-FU) or saline injection.

Water+Saline
GSE
400+saline

GSE
600+Saline

GSE
1000+Saline

Water
+5-FU

GSE
400+5-FU

GSE
600+5-FU

GSE
1000+5-FU

(n = 8) (n = 8) (n = 8) (n = 8) (n = 8) (n = 8) (n = 8) (n = 8)

Duodenum

Weight (g/kg) 2061 1861 2061 2261 2161 2161 2061 2462

Length (cm) 506628 540630 520620 560610 530610 520620 520620 530630

Jejunum+Ileum

Weight (g/kg) 19965 21365 20465 22865 19363 19365 19867 208064

Length (cm) 71006140 72506110 70406160 73806190 68506110 6840690 70906120 6860660

Colon

Weight (g/kg) 5362 5362 5262 5662 6463 5562 6366 6064

Length (cm) 1180640 1130640 1090650 1210650 1020640 1050640 1140640 1150620

Gastrointestinal organ weights are expressed in (wt g/kg bwt)6100% and lengths are expressed in (cm). Data are expressed as means 6 SEM.
doi:10.1371/journal.pone.0085184.t006
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disease severity score in 5-FU treated rats in a dose-responsive

manner (GSE 400 = 21 (15.5–25.5), P,0.01; GSE 600 = 15.75 (9–

24), P,0.01; and GSE 1000 = 11.75 (7–19), P,0.01) compared to

5-FU controls. No significant difference in disease severity score

was observed between GSE and water treated rats receiving saline

injection (Figure 3), indicating that GSE had not disrupted

intestinal integrity in healthy animals.

Villus height, crypt depth and mucosal thickness
5-FU injection resulted in shortening of the villi in the jejunum

(38%, P,0.001), JI (39%, P,0.001) and ileum (26%, P,0.01)

compared to water controls (Figure 5). 5-FU injection also reduced

crypt depth in the jejunum (38%, P,0.001), JI (23%, P,0.05) and

ileum (15%, P,0.05). In the jejunum, GSE treatments tended to

dose-responsively improve villus height and crypt depth, although

only GSE at a dose of 1000 mg/kg significantly (P,0.05)

increased crypt depth compared to 5-FU controls (Figure 5A).

Importantly, none of the GSE treatments impacted negatively on

villus height and crypt depth in healthy animals. 5-FU injection

significantly reduced mucosal thickness in the jejunum (38%,

P,0.001), JI (45%, P,0.001) and ileum (29%, P,0.01) compared

to water controls (Figure 6). GSE treatments tended to dose-

responsively increase mucosal thickness in the jejunum, although

only GSE 1000 mg/kg significantly increased mucosal thickness

(25%, P,0.05) compared to 5-FU controls (Figure 6A).

Effects of 5-FU on viability of Caco-2 cells
The dose responses of 5-FU (0–100,000 mM) on Caco-2 cells for

24 h and 48 h are illustrated in Figure 7. 5-FU doses were also

tested at 72 h (Data not shown). The cell viability of Caco-2 cells

was inhibited by 5-FU in a time- and dose-dependent manner. At

24 h, 5-FU at 100 mM significantly reduced viability in Caco-2

cells to 88% (P,0.05) of control values and a further reduction of

cell viability was observed to 70% (P,0.05) of control values at

48 h. A 100 mM concentration of 5-FU was selected for the next

experiment because this dose was able to reduce Caco-2 cell

viability (70–85%) reflecting gastrointestinal toxicity commonly

observed in cancer patients following chemotherapy.

Effects of GSE and 5-FU on Caco-2 cell viability
In order to establish the cytotoxicity of GSE on Caco-2 cells,

GSE (10–100 mg/mL) was applied to cells for either 24 or 48 h

(Figure 8). GSE treatment inhibited cell viability in a dose- and

time-dependent manner. GSE treatments significantly (P,0.05)

reduced cell viability (IC50 = 50.24 mg/mL) at 24 h and became

more toxic to the Caco-2 cells at 48 h (IC50 = 37.84 mg/mL).

When the cells were exposed to the combination of GSE (10–

100 mg/mL) and 5-FU (100 mM), greater numbers of dead cells

were evident compared to cells exposed to 5-FU alone (Figure 8).

At 24 h, 5-FU significantly reduced cell viability to 84% (P,0.05)

of control values. Interestingly, when Caco-2 cells were exposed to

the combination of GSE and 5-FU, the growth inhibitory effects of

Figure 3. Effects of GSE (mg/kg) on histological severity scores
in the jejunum 72 h after either saline or 5-FU injection. The
severity scores were rated based on 11 parameters on different layers of
intestinal tissues based on previously described protocol Howarth et al.
[19] The box plots represent the range of disease severity score and the
horizontal lines represent the median disease severity score. ** indicates
P,0.01 compared to Water+Saline. ## indicates P,0.01 compared to
Water+5-FU.
doi:10.1371/journal.pone.0085184.g003

Figure 2. Effects of GSE (mg/kg) on Myeloperoxidase (MPO)
activity in the jejunum (A), JI (B) and ileum (C) 72 h after either
saline or 5-FU injection. Data are expressed as mean (MPO units/g
tissue) 6 SEM. * indicates P,0.05, ** indicates P,0.01 and *** indicates
P,0.001 compared to rats receiving water and saline injection. ##
indicates P,0.01 compared to rats receiving water and 5-FU injection.
doi:10.1371/journal.pone.0085184.g002

Grape Seed Extracts as Adjunct to Combat Mucositis

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e85184



5-FU were significantly enhanced by 26% (GSE = 25 mg/mL;

P,0.05; combined treatment vs. both agents alone) at 24 h. GSE

at higher doses (50–100 mg/mL) exerted greater growth inhibition

compared to 5-FU alone. At 24 h, GSE induced significant growth

inhibitory effects on Caco-2 cells (GSE 50 = 33% and GSE

100 = 27%; P,0.05) compared to 5-FU control (84% of control

value) (Figure 8A). In addition, GSE alone significantly (P,0.05)

decreased the viability of Caco-2 cells (GSE 50 = 31% and GSE

100 = 29%; P,0.05) compared to 5-FU control (64% of control

value) at 48 h (Figure 8B).

Discussion

The present study represents the first report of GSE dose-

responsively reducing severity of mucositis. Our findings suggest

that higher doses of GSE are more effective at reducing the

severity indicators of intestinal mucositis in rats and that these

GSE-induced effects are largely dose-dependent and more evident

in the proximal jejunum compared to the distal small intestine.

Injection of 5-FU impacts on the small intestine to a greater

extent than the large intestine, presumably due to the greater cell

turnover rate in the more proximal regions of the gut [3]. Our

Figure 4. Representative photomicrographs of the proximal jejunum sections stained with haematoxylin and eosin in Water+Saline
(A), GSE 400 mg/kg+Saline (B), GSE 600 mg/kg+Saline (C), GSE 1000 mg/kg+Saline (D), Water+5-FU (E), GSE 400 mg/kg+5-FU (F),
GSE 600 mg/kg+5-FU (G) and GSE 1000 mg/kg+5-FU (H). (Original magnification 406.)
doi:10.1371/journal.pone.0085184.g004
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results are in agreement with previous studies [18,19,21], in which

the 5-FU mucositis model resulted in severe intestinal injury 72 h

after the induction of mucositis. This damage was characterized by

a reduction of intestinal brush border enzyme activities [21],

increased neutrophil infiltration [22], increased disease severity

score [23] and decreased mucosal thickness [13]. Consistent with

earlier studies [13], blunting of the villi and disorganization of

crypts (location of stem cells) were the primary events associated

with severe mucositis. The jejunum is the maximal site of injury

induced by chemotherapy and the impact becomes less pro-

nounced in the more distal regions of the small intestine [13]. This

was demonstrated in the current study in which less injury was

observed in terms of MPO activity (neutrophil infiltration), villus

height and mucosal thickness at the distal end of the small intestine

The bioavailability of PCs in the gut system has been well

documented in other studies [24]. The unique polymerized

structure of PCs inhibits absorption across the small intestine, as

they adhere to the gut mucosa [25]. Tsang et al. [26] detected

larger forms of PCs in the small intestine of rats up to 12 h after

ingestion. Thus, an accumulation of relatively high PC concen-

trations can occur in the gut lumen to protect the intestinal barrier.

In the current study, higher doses of GSE (1000 mg/kg) were

effective at maintaining crypt depth and mucosal thickness in the

jejunal region, with most values approaching the values of healthy

Figure 5. Effects of GSE (mg/kg) on villus height and crypt
depth in the jejunum (A), JI (B) and Ileum (C) 72 h after either
saline or 5-FU injection. Data are expressed as mean (mm) 6 SEM. *
indicates P,0.05, ** indicates P,0.01 and *** indicates P,0.001
compare to Water+Saline. # indicates P,0.05 compared to Water+5-
FU.
doi:10.1371/journal.pone.0085184.g005

Figure 6. Effects of GSE (mg/kg) on mucosal thickness in the
jejunum(A), JI (B) and Ileum (C) 72 h after either saline or 5-FU
injection. Data are expressed as mean (mm) 6 SEM. * indicates P,0.05,
** indicates P,0.01 and *** indicates P,0.001. # indicates P,0.05
compared to Water+5-FU.
doi:10.1371/journal.pone.0085184.g006
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controls. Furthermore, the current study also showed improve-

ment of fecal output (less severe diarrhoea) in chemotherapy-

treated rats receiving the higher dose of GSE (600 mg/kg and

1000 mg/kg), suggesting reduced disruption of the mucosal lining

of the small intestine.

Although GSE in the current study was more effective in the

jejunum, the site of major intestinal injury, bioactivity was reduced

in the distal small intestine. This may have been due to degraded

bioactive components reaching the distal region of the small

intestine [27,28]. The cleavage, absorption and metabolism of

GSE is important to identify the fate of bioactive compounds in

GSE. In future studies it will be necessary to identify the form, size

and bioactivity of procyanidins from GSE responsible for

promoting intestinal health using in vitro and in vivo models of

intestinal absorption. Additionally, future studies could examine

protection of GSE, possibly by microencapsulation, or via

suppository application, to better target GSE and improve its

bioavailability in the more distal regions of the bowel. Due to the

complexity of GSE content, it would be difficult to determine

which factors are responsible for the observed bioactivity. For this

reason, GSE, rather than alternative protein source such as bovine

serum was used as its own control. Administration of GSE on

normal animals allowed more precise comparison with GSE-

treated rats receiving 5-FU chemotherapy.

Interest in GSE has been primarily due to its high antioxidant

content. GSE is a more potent radical scavenger than other known

anti-oxidants such as vitamin C and E [29]. In the present study,

the partial reduction in acute inflammation by GSE, as indicated

by the decrease of MPO activity, and reduction in lymphocyte

infiltration recorded by the disease severity score analysis, could

strengthen the potential role of GSE as a potent anti-oxidant and

anti-inflammatory agent. A number of studies have described GSE

as an anti-inflammatory agent. For example, GSE has been

reported to reduce the expression of pro-inflammatory cytokines

(TNF-a and IL-6) in mesenteric lymph nodes [30], rat plasma [31]

and carrageenan-induced paw edema in rats [32]. The reduction

of these activities may represent a consequence of GSE and its

ability to prevent NF-kB activation and subsequently reduce the

activation of nitric oxide and pro-inflammatory cytokines. Thus,

inhibition of NF-kB activation may have been a possible

mechanism by which GSE reduced mucosal injury and hence

mucositis severity, in the current study. Other biomarkers such as

inflammatory cytokines in tissue and blood could be measured in

future studies to quantify GSE effects on the systemic and mucosal

immune system.

PC rich food has been reported to be both beneficial and

detrimental to human health due to its ability to interact with

proteins (enzymes, toxins, hormones) [10,33]. The current study

provides important information on the safety of GSE usage. Oral

administration of GSE (400 mg/kg, 600 mg/kg and 1000 mg/kg)

for nine days did not induce any deleterious side-effects in healthy

animals. The increased of stomach weight in GSE treated rats

might be due to indigestible of GSE PCs deposited in the stomach.

GSE did not impact negatively on daily metabolic parameters, nor

induce any side-effects in the small intestine. Moreover, the

sucrose breath test indicated that GSE did not affect small

intestinal brush border enzyme activity. These data concur with

other studies [34] in which rats ingesting up to 2 g/kg of GSE

showed no abnormal metabolic findings or toxicological effects. In

the current study, GSE (1000 mg/kg) significantly increased

stomach weight in healthy rats. This finding has not been reported

previously [35], but could be a reflection of differing rat strains

between studies. Thus, histological analyses on rat stomach should

be conducted in future studies.

The promising effects of GSE in the mucositis rat model

provided the impetus to further investigate its potential impact on

the effectiveness of chemotherapy against transformed colono-

cytes. Recently, various strategies have been developed to counter

the development of mucositis (reduced gastrointestinal toxicity) or

to enhance the chemotherapeutic activity of 5-FU. To date, a

number of strategies to enhance 5-FU efficacy on colon cancer

have been investigated although none are clinically available.

These include omega 3-fatty acid [36], chloroquine [37], violecin

Figure 7. Viability of Caco-2 cells treated with 5-FU for either
24 h or 48 h, assessed by MTT assay. Data are expressed as
percent of cell viability relative to viability of untreated controls. Data
are presented as means 6 SEM of 2–3 independent experiments. Bar
data not sharing the same letter are significantly different P,0.05.
doi:10.1371/journal.pone.0085184.g007

Figure 8. Viability of Caco-2 cells either treated with GSE alone
(mg/mL) or GSE (mg/mL)+5-FU (100 mM) for either 24 h (A) or
48 h (B). Data are expressed as percent of cell viability relative to
untreated controls. Data are presented as means 6 SEM of 4
independent experiments. Bar data not sharing the same letters are
significantly different P,0.05.
doi:10.1371/journal.pone.0085184.g008
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[38] and ginseng [39] which have been reported to effectively

improve 5-FU efficiency at killing cancer cells in vitro compared to

the chemotherapy agent acting independently. In the current

study, the effects of GSE and 5-FU on Caco-2 cell viability were

examined at 24 h and 48 h. This was because 5-FU (100 uM)

significantly reduced cell viability to 70–85%, reflecting gastroin-

testinal toxicity in cancer patients. Moreover, longer time exposure

(24–48 h) of cancer cells to both GSE and 5-FU resulted in a

further reduction in cell viability. However, the differences

between treatments remained relatively unchanged even up to

72 h (data not shown). Importantly, GSE acted synergistically with

5-FU to inhibit Caco-2 cell proliferation.

GSE may act as a potent chemotherapeutic agent as it has been

demonstrated to exert selective cytotoxicity against tumour cells

compared to normal cells [40,41]. It has been suggested that GSE

induces growth inhibition in cancer cells via induction of cell cycle

arrest which eventually leads to the induction of caspase-

dependent apoptosis [8] and disruption of the mitochondrial

membrane [42]. Moreover, the current study demonstrated that

GSE alone at higher concentration, tended to induce greater

growth inhibitory effects on Caco-2 cells compared to 5-FU alone.

Thus, the current data support GSE as a promising anti-neoplastic

adjunct to cancer treatment. Future in vitro studies including

invasion, proliferation and growth analysis should be performed to

identify the phenotypic changes of colon cancer cells after GSE

treatment.

Although the current in vivo study revealed that GSE only

minimally improved parameters of intestinal mucositis (disease

severity score), future studies could examine the efficacy of higher

doses of GSE or alternatively more highly purified PC compounds.

Chemotherapy is likely to progress to a chronic condition. Future

studies should investigate GSE effects in rat models over

protracted periods of several weeks and months. The promising

findings of GSE in the in vitro model also support further studies

into the identification of bioactive components of GSE responsible

for these effects. The present study was conducted using female

Dark Agouti rats which can be manipulated to develop breast

cancer [43]. Such studies would facilitate further investigations

into GSE and its potential to modify tumour growth. The colon

cancer cell line was selected on the basis that it could be translated

later to an animal model of colon cancer. The current work

represents the synergistic effect of GSE and 5-FU at partially

preventing mucositis, whilst reducing Caco-2 cells viability. This

will allow us to further investigate GSE for its potential to modify

tumour growth with 5-FU by determining its effects on tumour

growth such as that induced by azoxymethane in rat model [44].

In conclusion, the current investigation provides the first

evidence for GSE to reduce the severity of intestinal mucositis in

a dose-responsive manner while enhancing the impact of 5-FU

chemotherapy on colon cancer cells. Dietary GSE could be a

promising adjunctive approach for combating intestinal mucositis

while concurrently potentiating the impact of conventional

chemotherapy for colon cancer.
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