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Abstract
Breast cancer patients may experience ipsilateral breast tumor relapse (IBTR) after breast
conservation therapy. IBTR is classified as either true local recurrence (TR) or new ipsilateral
primary tumor (NP). The correct classification of IBTR status has significant implications in
therapeutic decision-making and patient management. However, the diagnostic tests to classify
IBTR are imperfect and prone to misclassification. In addition, some observed survival data (e.g.,
time to relapse, time from relapse to death) are strongly correlated with IBTR status. We present a
Bayesian approach to model the potentially misclassified IBTR status and the correlated survival
information. The inference is conducted using a Bayesian framework via Markov Chain Monte
Carlo simulation implemented in WinBUGS. Extensive simulation shows that the proposed
method corrects biases and provides more efficient estimates for the covariate effects on the
probability of IBTR and the diagnostic test accuracy. Moreover, our method provides useful
subject-specific patient prognostic information. Our method is motivated by, and applied to, a
dataset of 397 breast cancer patients.

Keywords
Binomial regression; Cox model; Frailty model; Latent class model; Markov chain Monte Carlo;
Tumor relapse

1. Introduction
Breast conservation therapy (BCT) offers similar overall survival and disease-free survival
rates as does mastectomy in breast cancer patients [1]. Approximately 8%-20% of patients
experience ipsilateral breast tumor relapse (IBTR), defined as the recurrence of tumor in the
previously treated breast, after undergoing BCT [2, 3, 4, 5]. IBTR is often classified as
either true local recurrence (TR) or new ipsilateral primary tumor (NP). TR is described as
“cases consistent with the regrowth of malignant cells not removed by surgery or not killed
by radiotherapy”, whereas NP is described as “de novo cases of malignancies arising from
mammary epithelial cells of the residual breast tissue” [6]. The correct classification of
IBTR status has significant implications in therapeutic decision-making and patient
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management; for example, TR patients will benefit from aggressive hormone therapy,
chemotherapy, and/or additional radiotherapy, whereas NP patients may need only mild
treatment. However, because of the inherent uncertainties of the clinical and pathologic
criteria used for classification, the diagnostic tests to classify IBTR are subject to
misclassification, and the validity of these tests has not been evaluated because there is no
widely recognized classification standard for IBTR.

We thus developed a Bayesian method to (1) estimate the accuracy (i.e., sensitivity and
specificity) of each diagnostic test to help clinicians make better decisions on which test to
use based on the sensitivity-specificity trade-off; (2) quantify the covariate effects on the
probability of IBTR's being NP and on the hazards of IBTR recurrence and death; and (3)
provide useful prognostic information to future patients experiencing IBTR, i.e., the
prediction of the IBTR status and the median survival time (i.e., from IBTR to death).

1.1. A motivating dataset
Our methodology development has been motivated by the dataset consisting of 397 patients
with invasive breast cancer who underwent BCT between 1970 and 2005 at The University
of Texas MD Anderson Cancer Center and later developed IBTR as a first recurrence. The
variables we collected included patient characteristics (age, race, family history of breast
cancer, other cancer history), primary tumor characteristics (contralateral breast cancer, i.e.,
the occurrence of a second independent primary cancer in the other breast, location,
histology, stage, size, estrogen receptor [ER] status), treatment characteristics (surgery,
radiation), and patient status at last follow-up. ERs are tissue markers useful in assessing
prognosis in breast cancer patients. An ER positive (ER+) score indicates that estrogen is
causing the tumor to grow and that the cancer should respond well to hormone-suppression
treatments, while ER negative (ER-) score implies that the tumor is not driven by estrogen
[7].

IBTR patients in this dataset were classified as having either NP or TR using two diagnostic
tests based on readily available clinical and pathologic data. Test 1 is based on tumor
location and histologic subtype: IBTR was defined as TR if the tumor was located within 3
cm of the primary tumor bed and its histologic subtype was consistent with that of the
primary tumor; otherwise, IBTR was defined as NP [8, 9, 10]. Test 2 is based on tumor
location, histologic subtype, and ER status: IBTR was defined as TR if the tumor was
located within 3 cm of the primary tumor bed, and its histologic subtype and ER status were
consistent with those of the primary tumor, otherwise, IBTR was defined as NP [11, 12].

Because two criteria (tumor location and histology) are used in both test 1 and test 2 and
because one additional criterion (ER status) is used in test 2 only, the following inherent
relationships are true: NP by test 1 implies NP by test 2; TR by test 1 and NP by test 2
implies no change in tumor location and histology but change in ER status; and NP by test 1
and TR by test 2 is a null event. Therefore, test 2 always classifies more patients' IBTR as
NP than does test 1; in our dataset, test 2 classified 213 IBTRs (53.6%) as NP, whereas test
1 classified 196 IBTRs (49.4%) as NP. If NP represents disease and TR represents
nondisease in the conventional definitions of sensitivity and specificity, test 2 always has
higher sensitivity but lower specificity than test 1. While clinicians may use test 2 if higher
sensitivity is preferred or use test 1 if higher specificity is preferred, it is essential to develop
a methodological framework that provides accurate estimates of sensitivity and specificity
for each diagnostic test to help clinicians select the test that best fits their preference.
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1.2. Statistical challenges and solutions
Figure 1 displays the time plot of one patient, where t1 represents the time from BCT to
IBTR (referred to as time to relapse) and t2 represents time from IBTR to cause-specific
death or censoring (referred to as time from IBTR to death). An interesting feature of our
patient dataset is the presence of two survival times and their strong correlation with IBTR
status. To visualize the correlation, Figure 2 shows the Kaplan-Meier curves displaying
differences in time to relapse (left panels) and time from IBTR to death (right panels) for
patients classified as NP and TR by test 1 (top panels) and test 2 (bottom panels).
Specifically, the left panels show that TR patients had shorter time to relapse than NP
patients (mean: TR 5.4 years vs. NP 7.6 years; p< 0.0001 from test 1; mean: TR 5.4 years
vs. NP 7.4 years; p= 0.0003 from test 2). The right panels of Figure 2 show that TR patients
also had shorter time from IBTR to death than NP patients (mean, TR 5.5 years vs. NP 5.9
years; p< 0.0001 from test 1; mean, TR 5.6 years vs. NP 5.8 years; p< 0.0001 from test 2). If
properly included in the model, this survival information can be used to help classify IBTR.
Consider an extreme case as an example: If all NP patients lived longer than 15 years from
IBTR and all TR patients died before 15 years from IBTR, then the length of survival time
from IBTR would perfectly classify the IBTR status. Although our dataset does not reflect
this perfect dichotomy, the large gaps between NP and TR patients' Kaplan-Meier curves
provide useful information on the IBTR status.

To identify and quantify the risk factors associated with the binary IBTR status, researchers
often use binomial regression models, which assume that the variables included in the model
are accurately measured. In practice, categorical variables are often subject to
misclassification, and continuous variables are subject to measurement error.
Misclassification is due to many factors, including inaccuracy of data collection methods,
limited sensitivity and specificity of the diagnostic tests, inadequacy of information derived
from medical or other records, and recall bias in assessing exposure status [13].
Misclassification in binomial regression yields biased estimators of the association of
covariates with response [14, 15].

Misclassification may occur in outcome variables, covariates, or both. In this article, we
address misclassification in outcome variables. Magder and Hughes [16] showed that
corrected odds ratios can be obtained by incorporating external estimates of test sensitivity
and specificity into the likelihood for logistic regression. However, in many practical cases,
a gold standard or a validation subsample either does not exist or may be too expensive or
invasive to obtain. Therefore, it is impossible to have external estimates of sensitivity and
specificity. In addition, Magder and Hughes [16] treated test sensitivity and specificity as
fixed values and did not account for their uncertainty. To address this issue and to model the
covariate effects in prevalence estimation, researchers have proposed various Bayesian
models that use likelihood functions that are based on observed and latent variables [17, 18,
19] or observed variables only [20]. A unique feature of our proposed method is that the
likelihood formulation incorporates both the test sensitivity and specificity and the
correlated survival information, thus improving the estimation of the covariate effects on the
probability of IBTR's being NP and the diagnostic test accuracy.

In the statistical literature of misclassification, a common assumption is conditional
independence, i.e., that multiple diagnostic tests are independent conditional on the true
disease status. This assumption is relatively strong and unrealistic in many practical
situations [21]. Some models have been proposed to relax this assumption, including a
model with more than two latent classes [22, 23, 24], a random effects model [25], and a
model with two additional parameters [26]. Because the two diagnostic tests used in our
dataset have special relationships, we propose a simple two-latent-classes model that
naturally incorporates conditional dependence without using any additional parameters.
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The purpose of this article is to develop a Bayesian method to model the binomial regression
with misclassified binary outcome and the time to relapse and time from IBTR to death. We
describe a Bayesian model, a method to relax conditional independence assumption, and
model inference in Section 2. The proposed method is evaluated via extensive simulation in
Section 3. We apply our method to analyze the breast cancer dataset in Section 4. Section 5
provides the discussion.

2. Statistical methodology
2.1. Model and notation

In this section, we consider two diagnostic tests for IBTR status and formulate the modeling
framework. Let the subscript j = 1, 2 denote time to relapse and time from IBTR to death,
respectively. Suppose y (1 if NP, 0 if TR) is the unobserved true IBTR status. Let y1 and y2
(1 if NP, 0 if TR) be the observed outcomes from two diagnostic tests. Let (pk, qk), for k = 1,
2, be the sensitivity and specificity of test k given the true IBTR status y, i.e., pk = p(yk = 1|y
= 1) and qk = p(yk = 0|y = 0). We assume that pk and qk do not depend on covariates (non-
differential assumption). Given covariate x, we use binomial regression model for the
probability that the IBTR being NP with π(x) = P(y = 1|x) = g−1(xβ), where β is a vector of
regression coefficients and g−1 is the inverse of a link function (e.g., probit, logit,
complementary log-log). Specifically, we use logit link function. The likelihood of
observing outcomes y1 and y2 for one patient is:

(1)

where the overhead bar denotes 1 minus the variable (e.g., π̄(x) = 1 − π(x)). The likelihood
derivation (Appendix A) assumes that two diagnostic tests are independent conditional on
the true IBTR status (conditional independence assumption). This assumption will be
relaxed in Section 2.2. The likelihood formulation involves only the binomial regression
with misclassified outcome and is essentially identical to model (2) of Tu et al. [17] or
model (2) of McInturff et al. [20].

Next, we extend the above model by including the time to relapse t1 and the time from IBTR
to death t2 (Figure 1). Following the notation of Cox proportional hazards model, λj0 is the
baseline hazard function of survival time for tj, with j = 1, 2. We consider two types of
baseline hazard function: Weibull distribution (Appendix B) and piecewise constant
function. Lawless and Zhan [27] and Feng et al [28] illustrated that models using a
piecewise constant baseline hazard yield good estimators for both fixed effects and frailty.
Piecewise constant baseline hazard function has been widely used in the literature [29, 30,
31, 32, 33, 34]. Given a set of fixed time points 0 = τj0 < τj1 < … < τjm < τj(m+1), and the
baseline hazard vector g = (g1, g2) with gj = (gj0, gj1, …, gjm), we define the piecewise

constant hazard function as , with Ijl(tj) = 1 if τjl ≤ tji < τj(l+1) and 0
otherwise. Let δj (1 if uncensored, 0 otherwise) be the censoring indicator for time tj.
Because the event for t1 is IBTR and is observed in every patient, δ1 ≡ 1, whereas δ2 can be
either 1 or 0 due to censoring.

To account for the within-patient correlation between t1 and t2, we use the shared frailty b
and assume b follows normal distribution with mean 0 and variance σ. We also assume that
t1 and t2 are independent conditional on the frailty term b. The hazard function of survival
time tj is λN(tj) = λj0(tj) exp(xγj + b), where the superscript N denotes NP status. Note that
the covariates included in the hazard function can differ or overlap with those in model (1).
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The corresponding survival function is .
If τja ≤ tj < τj(a+1), the survival function can be simplified to

. To solve for tj:

(2)

The condition τja ≤ tj < τj(a+1) imposes the following constraint:

.

The hazard function for TR patients is , where
αj describes the additional hazard of being TR patients compared with NP patients and the

superscript T denotes TR status. Following the same procedure, we can derive , ,

and the constraint of .

The likelihoods of observing tj for NP and TR patients are  and

, respectively. By multiplying the survival likelihood functions  and

 into model (1), the observed likelihood conditional on frailty b for one patient is:

(3)

where θ = (β, p1, q1, p2, q2, γ1, α1, γ2, α2, σ, g) is the unknown parameter vector. The
likelihood formulation (3) involves both the binomial regression with the misclassified
outcome and the survival times. The marginal likelihood is L(θ) = ∫ L(θ|b)f(b)db. Because
this integral cannot be evaluated analytically we use Bayesian inference based on Markov
Chain Monte Carlo (MCMC) posterior simulation (Section 2.3).

2.2. Conditional dependence
As discussed in Section 1.1, the two diagnostic tests used to classify IBTR share some
criteria (tumor location and histology). These two tests are likely to be highly correlated,
even conditional on the true IBTR status. Therefore, the likelihood formulations (1) and (3)
in Section 2.1, which are derived under conditional independence assumption, may not be
valid. In this section, we discuss how to address this issue of conditional dependence.

Tumor location and histology are clinical and pathologic features, respectively, whereas ER
status is measured by standard immunohistochemistry with antigen retrieval prior to
antibody incubation. One can assume that these three features are different phenotypes
representing the underlying disease trait (i.e., the true IBTR status), which contains all
information that the three features share. Thus, we assume that ER status is independent of
tumor location and histology (i.e., that ER is independent of the outcome of test 1),
conditional on the true IBTR status. This assumption is much weaker than the conditional
independence assumption in Section 2.1.

We define the indicator function IE for ER status change (1 if ER status changes, 0
otherwise). Similar to the definitions of sensitivity and specificity, we define pE = P(IE = 1|y
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= 1) and qE = P(IE = 0|y = 0), respectively. Using the relationships between test 1 and test 2
illustrated in Section 1.1, the sensitivity and specificity of test 2 are:

(4)

Test 1 and test 2 are now dependent conditional on the true IBTR status.

The likelihood of observing outcomes y1 and y2 for one patient is

(5)

The derivation of the likelihood is detailed in Appendix C. After including the survival
information, the observed likelihood conditional on frailty b for one patient becomes

(6)

where unknown parameter vector θ = (β, p1, q1, pE, qE, γ1, α1, γ2, α2, σ, g). The estimates of
p2 and q2 can be computed from the estimates of θ using Eq (4). Throughout the article, we
refer to models (1) and (5) as the “reduced model” and models (3) and (6) as the “proposed
model” due to the fact that the reduced model is a special case of the proposed model when
there is no survival information available.

2.3. Bayesian inference
In this section, we describe our Bayesian framework for parameter estimation. To obtain the
parameter estimates, we use Bayesian inference based on MCMC posterior simulation.
Vague prior distributions are used for all parameters. Specifically, independent normal
distribution with mean 0 and variance 10 is taken for each component of the parameter
vectors β, γj, and αj, where j = 1, 2. Assuming the diagnostic tests are more accurate than the
toss of a fair coin, we use uniform prior distribution pk, qk ∼ Unif(0.5, 1), for k = 1, 2, under
the conditional independence case or use uniform prior distributions p1, q1 ∼ Unif(0.5, 1)
and pE, qE ∼ Unif(0, 1) under the conditional dependence case. While this accuracy
assumption is slightly stronger than the identifiability condition, i.e., p + q > 1, employed by
Fujisawa and Izumi [35], we believe that the assumption is reasonable for tests in practical
use. For the frailty variance σ and each component in baseline hazard vector g, we assume a
noninformative inverse gamma prior distribution, IG(0.01, 0.01) so that the distribution has
mean of 1 and variance of 100. If a Weibull distribution is used as the baseline hazard
function, the prior distribution for the scale and shape parameters is log-normal, i.e., log(λj),
log(υj) follows a normal distribution with mean 0 and variance 10. The MCMC sampler is
implemented using WinBUGS software [36]. We use the trace plots available in WinBUGS
and view the absence of apparent trend in the plots as evidence of convergence. In addition,
we run multiple chains with disperse initial values and compute Gelman-Rubin scale
reduction statistics R̂ to ensure R̂ of all parameters are smaller than 1.1.

To select between Weibull distribution and piecewise constant function as the baseline
hazard function and to determine the covariates in the proposed method, we adopt a model
selection approach using the deviance information criterion (DIC) proposed by Spiegelhalter
et al. [37]. The DIC provides an assessment of model fit and a penalty for model
complexity. The deviance statistics is defined as D(θ, b) = −2 log f(y|θ, b) + 2 log h(y),
where f(y|θ, b) is the likelihood function for the observed data vector y given the parameter
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vector θ and frailty b, and h(y) denotes a standardizing function of the data alone that has no
impact on model selection [38]. The DIC is defined as DIC = 2D̄ − D(θ̄, b̄) = D̄ + pD, where
D̄ = Eθ,b|y [D] is the posterior mean of the deviance, D(θ̄,b̄) = D(Eθ,b|y [θ, b]) is the deviance
evaluated at the posterior means θ̄ and b̄, and pD = D̄ − D(θ̄, b̄) is the effective number of
parameters. Smaller values of DIC indicate a better-fitting model. WinBUGS is used to
compute DIC. This DIC definition applies the original definition of DIC to the conditional
distribution and it is the conditional DIC (i.e., DIC7) defined in Celeus et al [39].

3. Simulation studies
We evaluated the performance of our method using extensive simulation studies. We
considered four covariates: x = (x1, x2, x3, x4)′, where x1 was continuous and generated from
N(47, 122), and centered at its rounded median; and x2, x3, and x4 were binary, were
generated from Bernoulli distributions with probabilities of 0.3, 0.1, and 0.3, respectively.
The details of these variables are presented in Section 4 and the numbers used to generate
them resemble their characteristics. We simulated 100 datasets of 400 subjects each. To
determine the burn-in iterations and assess the MCMC convergence and mixing properties,
we examined the trace plots and the autocorrelations. We found that the chains converged
reasonably fast and all achieved stationarity within 10, 000 iterations with R̄ of all
parameters smaller than 1.1. To ensure the convergence, we chose 25,000 iterations for
burn-in for each MCMC sample and the inference was based on the subsequent 25,000
iterations. The histories of 8 parameters of interest from one randomly selected chain for one
of the simulated datasets indicated reasonable convergence and mixing properties, even
though, for clarity, only every 100th simulation was displayed (Web Figure 1). Similar good
chain properties were noted in all other examples presented in this article.

In the first set of simulation, we used the Weibull distribution as the baseline hazard
function and simulated data structure consisting of an imperfectly classified binary outcome
and the correlated survival information. We estimated the parameters of the proposed model
using Weibull distribution as the baseline hazard function and examined the advantages of
the proposed model over the logistic regression method and the reduced model under either
conditional independence or conditional dependence assumption. We simulated the data
using the following steps.

1. Simulated y using Bernoulli distribution with π(x) generated from logit[π(x)] = xβ
with β = (0.31, 0.006, −1.8, 0.7)′ and x = (x0, x1, x2, x3).

2. Conditional on y, simulated the observed outcomes y1 and y2 with sensitivity and
specificity p1 = 0.8, q1 = 0.85, p2 = 0.9, and q2 = 0.7 for the conditional
independence case or p1 = 0.8, q1 = 0.85, pE = 0.15, and qE = 0.75 to get p2 = 0.830
and q2 = 0.638 for the conditional dependence case.

3. Simulated the shared frailty b from normal distribution N(0, 0.12).

4. Simulated the survival probabilities  and  from uniform(0, 1) for j = 1, 2.

5. Conditional on y, generated the time to relapse  and  from Eq (2) with γ1 =
(−0.02, 0.2)′, and the covariate vector being (x1, x4), α1 = 1, and the Weibull
distribution parameters λ1 = υ1 = 1.

6. Conditional on y, generated the uncensored time from IBTR to death ζN and ζT

from Eq (2) with γ2 = (−0.004, 0.7)′, and the covariate vector being (x1, x4), α2 = 3,
and the Weibull distribution parameters λ2 = υ2= 1.
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7. Simulate the censoring time from IBTR to death c2 from uniform(0.1, 30). Let the

observed time from IBTR to death  and  and
obtain the censoring indicator δ2 accordingly.

8. Repeated steps 1 to 7 until all subjects were generated.

The mean, standard error (the square root of the average of the posterior variances, denoted
by SE), standard deviation (the standard deviation of the posterior means, denoted by SD),
and coverage probabilities (CP) of 95% credible intervals estimated from logistic regression
(LR) model (in which the second measurement y2 was treated as the true y), the reduced
model, and the proposed model are shown in Table 1. When conditional independence was
assumed, logistic regression gave severely biased parameter estimates, and the coverage
probabilities were far away from the nominal level of 95% (Table 1a). The reduced model
was valid in this scenario, giving consistent estimates and coverage probabilities close to
95% nominal level. Compared with the reduced model, the proposed model provided
estimates with negligible bias and much smaller standard deviation for all parameters while
retaining the coverage probabilities at 95%. The asymptotic relative efficiency (i.e., ARE,
comparing the estimator based on the proposed model to the reduced model) in Table 1a
indicates large efficiency gain in all parameter estimates (ranging from 5.378 to 1.690).
These results indicated that the proposed model, which incorporates the additional correlated
survival information, markedly improved the parameter estimation in terms of bias and
efficiency.

Table 1b displays the estimation results under conditional dependence. Logistic regression
had severe bias for all parameters. Because the reduced model correctly accounted for the
conditional dependence structure, it was a valid model with consistent estimates and
coverage probabilities close to 95%. In contrast, the proposed model's parameter estimates
all had small bias and coverage probabilities that were reasonably close to 95%. These
findings indicated that the conditional dependence between two diagnostic tests could be
successfully addressed using the techniques in Section 2.2. The ARE in Table 1b indicated
large efficiency gain in the proposed model due to the inclusion of the correlated survival
time information.

Web Table 1 displays the simulation results when no misclassification was present (pj = qj =
1 for j = 1, 2) and conditional independence was assumed. All three methods provided
comparable results, i.e., the bias was negligible and the credible interval coverage
probabilities were reasonably close to the nominal level of 95%. In addition, all estimates of
sensitivity and specificity were close to 1. The results indicated that both the reduced and
proposed models were robust in parameter estimation when no misclassification existed.
The proposed model's estimates of the parameters (γ1, α1, γ2, α2, g, σ) related to survival
information had small bias, and the coverage probabilities of 95% credible intervals were
close to 95% nominal levels (results not shown).

In the second set of simulation, we investigated the performance of our method when the
piecewise constant function was used as the baseline hazard function. The data simulation
followed the steps above with changes in step 5 using the baseline hazard vector g1 = g2 =
(0.05, 0.07, 0.1, 0.12, 0.16, 0.17, 0.18, 0.2, 0.15, 0.3, 0.1) at the fixed time points τ1 = (0,
2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 200) and τ2 = (0, 2, 4, 6, 8, 10, 12, 14, 20, 30, 40,
200), respectively. We simulated the datasets and estimated the parameters using piecewise
constant baseline hazard function while assuming either conditional independence (Table
2a) or conditional dependence (Table 2c). Our model provided unbiased estimates, the SE
close to the SD, and coverage probabilities close to 95%. In addition, we simulated the
datasets using Weibull distribution as the baseline hazard function, but estimated the
parameters using piecewise constant function while assuming either conditional
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independence (Table 2b) or conditional dependence (Table 2d). Bias was small, SE was
close to SD, and coverage probabilities were close to 95% in all parameters except α1 and
α2, whose estimates were slightly off the true values and whose coverage probabilities were
off from the nominal value. These results indicated that our model could account for the
misclassification, and could recover the true parameters, and was generally robust to
baseline hazard function misspecification.

4. Application to the breast cancer dataset
We applied the proposed method to the breast cancer patient dataset. We used three parallel
chains with overdispersed initial values and ran each chain for 50, 000 iterations. The first
25, 000 iterations were discarded as burn-in; the parameter estimates were based on the
remaining 25, 000 iterations from each chain. Good mixing properties of the chains for the
model parameter were observed in the trace plots.

We considered 4 covariates in our method: x1 represented age at breast cancer diagnosis
(mean: 47.5 years; SD: 11.3 years); x2 represented whether a distant recurrence developed in
organs other than breasts (e.g., bones, lung, brain, liver; prevalence: 26.7%); x3 represented
whether contralateral breast carcinoma developed (prevalence: 12.8%); x4 represented
primary tumor stage (x4 = 1 if more aggressive stage II or higher and 0 otherwise;
prevalence: 28%) [40]. Using the quantiles of each survival time, we obtained the time
points τ1 = (0, 1.3, 2.2, 3.6, 4.8, 7.0, 9.7, 13.5, 24.6) and τ2 = (0, 1.15, 1.9, 2.5, 3.7, 5.2, 7.7,
12.1, 31.4).

For model selection and comparison, we computed the DIC (illustrated in Section 2.3). Web
Table 2 presents estimated DICs for some models using either the piecewise constant
function or the Weibull distribution as the baseline hazard function. The piecewise constant
model, with x1, x2, and x4 in the binomial regression part and x1 and x4 in both survival parts
of our model, had the lowest DIC value and was selected as the final model. To check the
proportional hazard assumption in modeling the survival times, we plotted the product-limit
estimates of log cumulative hazard rates for the covariates (e.g., tumor stage displayed in
Web Figure 2). The absence of gross departure from the hypothesis of parallel curves
suggested that the proportional hazard assumption was reasonable. In addition, to check the
assumption of constant hazard ratio for TR patients compared with NP patients, we plotted
in Web Figure 3 the product-limit estimates of log cumulative hazard rates of time to relapse
(left panels) and time from IBTR to death (right panels) for patients classified as NP or TR
by test 1 (top panels) and test 2 (bottom panels). The pattern of parallel curves indicated that
the proportionality assumption for being NP was reasonable.

Table 3 provides the means, SDs, and 95% CIs from our model assuming conditional
dependence as illustrated in Section 2.2. The rows labeled “Regression” in Table 3 display
the results of modeling the probability of have NP. A negative sign for a parameter β
indicated a smaller probability of having NP, or a larger probability of having TR. The odds
ratio of the IBTR being NP for the patients who developed distant recurrence in organs other
than breasts was 0.0011 (i.e., exp(−6.737); 95% CI: [4.067e – 5, 0.010]) compared with the
patients without distant recurrence. The covariates age at diagnosis and tumor stage were not
statistically significant. These findings were consistent with the results of previous studies
[8, 9, 10]. The sensitivity and specificity estimates of both tests were below 0.8, while test 2
had higher sensitivity but lower specificity than test 1. Because TR patients tend to have
shorter survival time from IBTR to death and need more aggressive treatment than NP
patients, the misclassification of TR patients into NP are likely to be more costly than vice
versa. Thus test 1 may be more preferable because of its higher specificity and the proposed
model provided the estimates of the test accuracy.
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The rows labeled T1 in Table 3 show the results of modeling the hazard of IBTR occurrence
after BCT. The hazard rate of IBTR occurrence is 1.246 (95% CI: [1.116, 1.377]) for every
10-year increase in the age at breast cancer diagnosis. The relative risk of IBTR in patients
with stage II or higher tumors relative to patients with stage I tumors was 1.415 (95% CI:
[1.052, 1.943]). The TR status significantly increased the risk of IBTR, with a relative risk
of 1.978 (95% CI: [1.443, 2.729]) compared with NP patients. Finally, the rows labeled T2
in Table 3 show the results of modeling the hazard of death. The hazard rate of death is
1.271 (95% CI: [1.010, 1.616]) for every 10-year increase in age at breast cancer diagnosis.
Tumor stage was not associated with the risk of death whereas TR status significantly
increased the risk. The large risk differences between TR and NP statues (indicated by the
significant estimates of α1 and α2) are visually displayed in the large gaps in the Kaplan-
Meier curves (Figure 2) and had been reported previously [8, 9, 41].

We further provided some insight into our model's ability to compute the subject-specific
estimates and predictions for future patients who develop IBTR. We obtained data from 20
additional breast cancer patients who were treated at MD Anderson Cancer Center, had
experienced IBTR, and were not included in the above analysis. We applied our model-
fitting results to this new dataset. We first calculated the probability of the IBTR being NP
and obtained a minimum probability being 0.01, mean probability of 0.40, and maximum
probability of 0.98. Using 0.90 as cut point, eight patients' IBTR were classified as NP.
Based on the IBTR status, each patient's median survival time could be computed. For
example, one patient had breast cancer at age 50 years, IBTR at age 52 years, no distant
recurrence, and a stage II or higher tumor. The estimated probability of her IBTR being NP
was 0.02 and was therefore classified as TR. The estimated median survival time from IBTR
to death was 1.4 years. In contrast, another patient had breast cancer at age 45 years, IBTR
at age 54 years, had distant recurrence, and a stage I tumor. The estimated probability of her
IBTR being NP was 0.95 and was therefore classified as NP. The estimated median survival
time from IBTR was 14.3 years.

5. Discussion
In this article, we developed a Bayesian method to model binomial regression with the
misclassified binary outcome and two correlated survival times (time to relapse and time
from IBTR to death). We described a simple two-latent-classes model to relax the
assumption of conditional independence between diagnostic tests conditional on the true
IBTR status. Using extensive simulation, we found that our modeling framework corrects
biases and provides more efficient estimates for the covariate effects on the probability of
IBTR and the diagnostic test sensitivity and specificity, compared with the method that does
not use the survival information.

From the analysis of our patient dataset, we found that the sensitivity and specificity of both
tests, which used only clinical and pathological criteria, were smaller than 0.8. A more
accurate diagnostic test using the molecular criteria should be developed in the future, as
pointed out by Huang et al. [8]. Our model will enable clinicians to make better-informed
decisions about which diagnostic test to use and have better knowledge in identifying and
quantifying the covariate effects on the probability of IBTR being NP and on the hazards. In
addition, the model-fitting results from the original dataset can be used to provide new
patients who develop IBTR the subject-specific prediction of some useful prognostic
information such as the probability of the IBTR being NP and the median survival time from
IBTR to death. This prognostic information is valuable for efficiently developing, targeting,
and evaluating intervention, thus helping clinicians provide more suitable therapy for their
patients, which in turn will improve patient outcomes. Our proposed method can be broadly
applied to many studies with a similar data structure consisting of imperfectly classified
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binary outcomes and survival information that is correlated with the outcomes. For example,
tumor grade is an important prognostic indicator of pancreatic cancer survival after
pancreatic resection [42, 43, 44, 45, 46, 47], as higher tumor grade (III vs. I/II) is generally
associated with poor survival [48]. Another example is that higher expression level of the
chemokine CXCL12 (high vs. low/moderate) is an important predictor of poor survival in
ovarian cancer [49]. However, the classification of tumor grade and CXCL12 expression
level are subject to errors and there is no gold standard available.

Adjustment for potential bias due to misclassification requires information on the
misclassification structure to make the model identifiable [50]. The covariates in x in
modeling IBTR status are instrumental variables and they make the reduced model
identifiable when their number of different possible realizations is sufficient [51]. In
addition, the survival information included in the proposed model is an important
determinant of IBTR status. This is manifested by the clear dichotomy in the Kaplan-Meier
curves displayed in Figure 2. As pointed out by one of the reviewers, when there is no
correlated survival data and the probability of IBTR being NP is independent of covariate,
i.e., π(x) ≡ π, the proposed model reduces to the scenario of two conditionally independent
tests and one population and hence lacks identifiability. The detailed discussion of the
identifiability, modeling, and parameter estimation of multiple conditional dependent
diagnostic tests can be found in some recent literature, e.g., Dendukuri and Joseph [52],
Georgiadis et al [53], and Jones et al [54].

Bayesian inference using MCMC simulation described in this article produces reliable
results. However, the model fitting was computationally intensive. For example, it took
approximately 8 and 6 hours for piecewise constant and Weibull baseline hazard function
models, respectively, to get 50, 000 samples for a single MCMC chain on a PC (Dell
workstation Optiplex 960, Intel quad CPU at 3GHz, 8 GB RAM). In contrast, it took only
about 30 minutes and a few seconds, using the reduced model and the logistic regression
method, respectively, on the same PC. Even though our implementation was slower, our
proposed method improved the parameter estimation in bias and efficiency and produced
subject-level predictions. It has been previously discussed that the improvement on
parameter estimation is important and necessary [55].

Our modeling strategy had some limitations that we will address in our future research
endeavors. One limitation was that both sensitivity and specificity were assumed to be non-
differential, i.e., that they did not depend on the covariates. In reality, there may be a
subgroup of patients whose disease is less likely than that of other patients to be
misclassified under both diagnostic tests. For example, most previously published studies
assumed that the IBTR that occurred at the same location and with the same histology as the
primary tumor was TR. Thus the classification of patients with no change in tumor location
and histology into the TR group is less prone to errors than the classification of other
patients into the NP group.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Likelihood derivation of model (1)
The likelihood of observing outcomes y1 and y2 for one patient is

(7)

The second equality is derived from the law of total probability and the last equality holds
because we assume that two diagnostic tests are independent conditional on the true IBTR
status (conditional independence assumption).

Appendix B: Formulation of Weibull distribution as baseline hazard
function

We assume that baseline hazard function λ0j for survival time tj follows Weibull distribution

, where λj is the scale parameter and υj is the shape parameter. The hazard

function of survival time tj for NP patients is , where the
superscript N denotes NP status. The survival function is:

. To solve for tj, we have

. The likelihood of observing tj is . The

hazard function for TR patients is , where αj
describes the additional hazards of being TR patients comparing to NP patients, the
superscript T denotes TR status. We can derive

, , and the

likelihood .

Appendix C: Likelihood derivation of model (5)
Under conditional dependence assumption, we have
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Note that P(y1 = 1, y2 = 0) is a null event because of the inherent relationship between the
two diagnostic tests explained in Section 1.2.

The likelihood of observing outcomes y1 and y2 for one patient is

(8)
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Figure 1.
Time plot of one patient. t1 is the time from BCT to IBTR and t2 is time from IBTR to
cause-specific death or censoring
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Figure 2.
Kaplan-Meier curves displaying differences in time to relapse (left panels) and time from
IBTR to death (right panels) for patients classified as having new primary tumors (NP) and
true recurrences (TR) by test 1 (top panels) and test 2 (bottom panels).
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