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Abstract

Proteolytic processing of the amyloid precursor protein (APP) by the b- and c-secretases releases the amyloid-b peptide
(Ab), which deposits in senile plaques and contributes to the etiology of Alzheimer’s disease (AD). The a-secretase cleaves
APP in the Ab peptide sequence to generate soluble APPa (sAPPa). Upregulation of a-secretase activity through the 5-
hydroxytryptamine 4 (5-HT4) receptor has been shown to reduce Ab production, amyloid plaque load and to improve
cognitive impairment in transgenic mouse models of AD. Consequently, activation of 5-HT4 receptors following agonist
stimulation is considered to be a therapeutic strategy for AD treatment; however, the signaling cascade involved in 5-HT4

receptor-stimulated proteolysis of APP remains to be determined. Here we used chemical and siRNA inhibition to identify
the proteins which mediate 5-HT4d receptor-stimulated a-secretase activity in the SH-SY5Y human neuronal cell line. We
show that G protein and Src dependent activation of phospholipase C are required for a-secretase activity, while,
unexpectedly, adenylyl cyclase and cAMP are not involved. Further elucidation of the signaling pathway indicates that
inositol triphosphate phosphorylation and casein kinase 2 activation is also a prerequisite for a-secretase activity. Our
findings provide a novel route to explore the treatment of AD through 5-HT4 receptor-induced a-secretase activation.
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Introduction

The most common form of dementia in elderly people is

Alzheimer’s disease (AD), which is pathologically characterized by

progressive neuronal loss and deposition of the amyloid-b peptide

(Ab) in amyloid plaques. Current therapeutic targets are the b-

and c-secretases, which generate Ab from amyloid precursor

protein (APP). Several drugs inhibiting or modulating the activity

of these secretases have failed in clinical trials due to severe side

effects or to difficulty in delivery through the blood brain barrier

[1]. APP is also cleaved by a third secretase called a-secretase. The

a-secretase cleaves APP within the Ab peptide sequence,

producing a soluble APPa fragment (sAPPa), which precludes

Ab generation. Indeed, in vivo overexpression or upregulation of a-

secretase activity in mice indicate that a-secretase activation leads

to a decrease in Ab production and a reduction in the amyloid

plaque load in AD mouse models [2,3]. These effects were

accompanied by an improvement in the cognitive deficits,

providing considerable support for modulation of a-secretase

activity as a viable strategy in the fight against AD [2,3].

To specifically target the non-amyloidogenic pathway of APP

processing, a fundamental consideration would be to understand

the mechanism of a-secretase activation and to determine the

signaling cascade of kinases and second messengers that directly

regulate a-secretase-mediated proteolysis of APP. These molecules

can be directly targeted pharmacologically, but also indirectly via

G protein-coupled receptors (GPCR), such as the muscarinic,

glutamatergic and serotonergic receptors. In particular, the G

protein coupled 5-hydroxytryptamine 4 (5-HT4) receptor is

gaining considerable interest as a modulator of a-secretase activity

due to its role in memory and learning and regulation of APP

processing [4]. Activation of the 5-HT4 receptor leads to an

increase in the population spike amplitude in the hippocampal

CA1 region, and this effect persists in a transgenic mouse model of

AD [5,6], suggesting that 5-HT4 receptor-mediated signaling

remains functional under these pathological conditions. On the

other hand, agonist stimulation of the 5-HT4 receptor results in

increased sAPPa secretion with a concomitant decrease in Ab
peptide levels in primary neuronal cultures and an alleviation of

amyloid plaque load in AD mouse models [7–9]. Such amelio-

ration of disease pathology is correlated with improvements in

memory and learning in behavioral paradigms and scopolamine-

induced models of cognitive deficit [10–12]. Additionally, an

increase in acetylcholine release is observed after 5-HT4 receptor

agonist application in vivo [13]. This could be a valuable property

when considering 5-HT4 receptor agonists for AD treatment,

which could complement the currently licensed therapy of

cholinesterase inhibition for partial symptomatic relief [14].

Despite numerous reports on 5-HT4 receptor function in

memory and learning and its effect on APP processing, the
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downstream signaling pathway responsible for this 5-HT4

receptor-mediated effect is still poorly understood. 5-HT4 receptor

stimulation results in an accumulation of cAMP, a second

messenger required for protein kinase A (PKA) and exchange

protein activated by cAMP (Epac) activation. However, 5-HT4

receptor-mediated non-amyloidogenic processing of APP occurs

independently of PKA activation, but can be regulated by Epac1

activation of Rac1 and Rap signaling in cell lines and primary

neurons [15]. The 5-HT4 receptor is constitutively bound to the

Src non-receptor tyrosine kinase, which is required for ERK

activation [16]. In addition, 5-HT4 receptor stimulation in

adrenocortical cells and cardiomyocytes results in an increase of

calcium influx, which results in activation of voltage-gated calcium

channels through PKA [17,18]. It is unknown whether these latter

pathways also contribute to a-secretase activation downstream of

the 5-HT4 receptor. Altogether, these studies suggest a compli-

cated picture of the downstream signaling pathways involved in 5-

HT4 receptor stimulation and reveal the importance of delineation

of the mechanism of 5-HT4 receptor-mediated APP proteolysis.

Finally, several metalloproteinases have been proposed as a-

secretase; however, the identity of 5-HT4 receptor-induced a-

secretase activity has not been fully addressed. The disintegrin and

metalloprotease ADAM10, a major constitutive a-secretase of APP

[19,20], is a feasible candidate [21]. However, ADAM17 is more

likely to be the inducible APP a-secretase based on studies which

have investigated the regulated ectodomain shedding of other

ADAM substrates after protein kinase C (PKC) activation [22]. In

support of this is the observation that M1 receptor induced sAPPa
release correlates with increased ADAM17 expression levels [23].

Nevertheless, additional metalloproteinases, such as meprin b and

membrane-type matrix metalloproteinases, were shown to mediate

a-cleavage of APP [24,25].

Here, we specifically determined the intracellular signaling

cascade involved in 5-HT4d receptor stimulation and inducible a-

secretase activity. We used human SH-SY5Y neuroblastoma cells

to analyze APP processing for practical reasons and experimental

consistency. Human SH-SY5Y cells can generate sustainable cells

with characteristics that resemble the morphology and biochem-

istry of mature neurons [26]. We present evidence that the G

protein-dependent pathway activating Src, phospholipase C (PLC)

and casein kinase 2 (CK2) is responsible for the 5-HT4d receptor-

stimulated induction of a-secretase activity. Interestingly and in

contrast to previous publications, we find that adenylyl cyclase

(AC) and cAMP signaling are not required for 5-HT4d receptor-

mediated a-secretase activity [15]. Furthermore, we analyzed the

reported a-secretases as putative mediators of the 5-HT4d receptor

effect on APP shedding using RNAi studies.

Materials and Methods

Reagents and Antibodies
Tissue culture reagents were purchased from Invitrogen.

GF109203X, SQ22536, D609, ionomycin, 4,5,6,7-tetrabromo-

1H-benzotriazole (TBB), GR113808, NF449, gallein and batima-

stat were obtained from Tocris. 5-hydroxytryptamine (5-HT),

cholera toxin B (CTB) and chlorogenic acid (CGA) were from

Sigma-Aldrich. Phorbol 12-myristate 13-acetate (PMA), 2,5-

dideoxyadenosine (DDA), IP3K inhibitor, TAPI-1 and GM6001

were obtained from Calbiochem/VWR. Bosutinib was from

Selleck. Prucalopride was kindly provided by Movetis (NV,

Turnhout, Belgium). Table 1 summarizes the known potencies

of the used agonists and antagonists. Following antibodies were

purchased: CK2 a (H-286) from Santa Cruz, MMP-9 (G657) and

ADAM9 (2099) from Cell Signaling, ADAM17 (T5442) and b-

Actin (A5441) from Sigma-Aldrich. ADAM10 (B42) and APP

(B63) antibodies were made in house and previously described

[27]. Gas dominant negative construct was previously described

(pcDNAI-Amp-GasDN, [28]).

Inhibitor treatment and soluble APP analysis (SEAP assay)
SH-SY5Y human neuroblastoma cells (CRL-2266, ATCC)

were cultured in DMEM/F12 supplemented with 10% fetal

bovine serum (FBS). For analysis of soluble APP secretion, a mix of

1,5 mg plasmid encoding human wild type APP695 linked to

Alkaline Phosphatase (AP-APP) at the N-terminus (pEAK12-AP-

APP, [29]), 1,35 mg of 5-HT4d receptor isoform in pcDNA3.1

(pcDNA3.1-5-HT4d, kindly provided by Joris De Mayer and Jan

Schuurkes, Movetis, Turnhout, Belgium) and 0,15 mg of GFP

(pmaxFP-Green-N, Amaxa) was prepared in OPTI-MEM and

combined with 20 ml of Lipofectamine 2000 (Invitrogen). After

20 minutes incubation at room temperature transfection mix was

combined with a trypsinized cell suspension in growth medium

containing 10% FBS. After another 15 minutes incubation at

room temperature cells were seeded in a 96-well plate at 80.000

cells/well. The next day medium was changed to DMEM/F12

supplemented with 5% dialyzed FBS (10,000 molecular weight

cutoff), which is devoid of serotonin otherwise present in

undialyzed FBS that causes 5-HT4 receptor desensitization. After

three days, cells were washed and incubated in serum free medium

(SFM) for another 24 hours. Next cells were stimulated with 1 mM

of the following compounds: prucalopride, 5-HT, PMA and

GR113808 in SFM for 24 hours and the conditioned medium was

analyzed for secreted AP (SEAP) activity with Great EscAPe SEAP

Chemiluminescence Kit 2.0 (Clontech) according to manufactur-

er’s instructions. Luminescence was measured with the EnVisionH
multilabel reader (PerkinElmer). For signaling studies dilution

curves of inhibitory compounds were made in combination with

induction by 1 mM prucalopride or 5-HT. DMSO incubation was

used as a control in all experiments carried out. The ratio of

individual luminescence counts from the tested conditions to the

mean value of DMSO treated cells was plotted as SEAP fold

induction. Cells were used for the MTS proliferation assay

(CellTiter 96H AQueous Non-Radioactive Cell Proliferation Assay)

and the LDH cytotoxicity assay (CytoTox 96H Non-Radioactive

Cytotoxicity Assay) according to manufacturer’s instructions

(Promega). Compound dilution curves were performed in the

range of the reported effective concentrations (Table 1) and

working concentrations were determined in the SEAP assay as

those giving significant inhibition of 5-HT4d receptor-stimulated

sAPPa secretion. MTS and LDH assays were used to define

working concentrations of the different compounds that were non-

toxic to the cells.

cAMP assay
cAMP levels were assessed using the AlphascreenH cAMP assay

kit (PerkinElmer Life Sciences). 2,88?106 or 1?106 SH-SY5Y cells

were seeded in T75 or T25 flasks, respectively. Adherent cells were

transfected after 4 hours with Lipofectamine and Plus reagent

(Invitrogen) according to the manufacturer’s instructions. A mix of

7,5 mg pEAK12-AP-APP, 6 mg pcDNA3.1-5-HT4d and 1,5 mg

pmaxFP-Green-N plasmids (ratio of 5:4:1) was used for transfec-

tion in T75 flasks. A mix of 1,25 mg pEAK12-AP-APP, 0,65 mg

pcDNA3.1-5-HT4d receptor and 2,6 mg pcDNAI-Amp-GasDN or

pcDNA3.1 as an empty vector control (ratio of 2:1:4) was used for

transfection in T25 flasks. 3 hours later transfection mixes were

replaced with growth medium for 16 hours and cells were treated

with medium supplemented with 5% dialyzed FBS and SFM as

described under ‘‘inhibitor treatment and soluble APP analysis’’.

5-HT4 Receptors and sAPPa Induction
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Then cells were gently dissociated with Versene solution

(Invitrogen) to obtain a single cell suspension. Next cells were

counted to determine the exact cell number. Equal numbers of

cells were combined with the acceptor beads coupled to an anti-

cAMP antibody and biotinylated cAMP, both provided in the

AlphascreenH cAMP assay kit (PerkinElmer Life Sciences), and a

serial dilution of compound. After incubating the cells for one

hour, streptavidin-donor beads were added and the cells were

permeabilized with 0,3% Tween-20 for 30 minutes, which

released intracellular cAMP. The assay is based on competition

between endogenously produced cAMP by the stimulated cells

and exogenously added biotinylated cAMP. The electron transfer

between donor and acceptor beads was measured with the

EnVisionH multilabel reader (PerkinElmer). DMSO was diluted to

a final concentration of 0,1% and kept equal in all samples to

avoid differential effects of different DMSO concentrations on the

cells. cAMP concentrations were determined using a standard

curve.

Calcium measurements
Calcium imaging was assessed using the Fluo-4 NW calcium

assay kit (Invitrogen). SH-SY5Y cells were transfected with

pEAK12-AP-APP, pcDNA3.1-5-HT4d receptor and pmaxFP-

Green-N in Optilux black wall clear bottom plates (BD

Biosciences) and treated as described under ‘‘inhibitor treatment

and soluble APP analysis’’. Next cells were loaded with Fluo-4 NW

dye mix according to manufacturer’s instructions. Binding with

calcium ions increases fluorescence of the dye. Baseline fluores-

cence of the dye was recorded at the steady state, while stimulated

calcium release was assessed after automated addition of the

compounds at different time points using IN Cell Analyzer 2000

(GE Healthcare). Calcium images were analyzed using the ‘‘Plot

Z-axis Profile’’ function of ImageJ (NIH). Data are presented as a

ratio of fluorescence intensity of Fluo-4 NW at any given time to

baseline fluorescence (F/F0).

Construction of mutated cDNA
Mutations in the cDNA of the 5-HT4d receptor were introduced

using the QuickChange II XL site-directed mutagenesis kit from

Stratagene. All vector modifications were validated with sequenc-

ing using BigDyeH Terminator v3.1 Cycle Sequencing and the

ABI PrismH 3100 Genetic Analyzer (Applied Biosystems).

Obtained data were analyzed with the Sequence Scanner program

and LALIGN tool from ch.embnet.org.

siRNA-mediated knockdown and immunoblotting
Knockdown of the proteins of interest was performed 4 hours

after SH-SY5Y cells were transfected with pEAK12-AP-APP,

pcDNA3.1-5-HT4d receptor and pmax-FP-Green-N plasmids.

Half of the medium was replaced with transfection mix containing

3 nM target protein siRNA and Lipofectamine RNAiMAX

(Invitrogen) and left on the cells overnight. Next we proceeded

with the protocol as described under ‘‘inhibitor treatment and

soluble APP analysis’’. The following siRNAs were used: Stealth

RNAiTM siRNAs were used for GNAS HSS104240, GNAQ

HSS104237, GNA13 HSS173827, PLCG1 HSS108094,

CSNK2A1 HSS175396, ADAM9 HSS189548, MMP9

HSS181135 and BLOCK-iTTM Alexa FluorH Red Fluorescent

Oligo as a control (Invitrogen). The siGENOME SMARTpool

was used for ADAM10 and siGENOME Non-Targeting siRNA

Pool #1 as a control (Dharmacon). The FlexiTube GeneSolution

GS6868 SI02664501 was used for ADAM17 and AllStars

Negative Control siRNA as a control (QIAgen). Conditioned

medium was collected to measure SEAP activity. For detection of

Gas, Gaq, Ga13, CK2, ADAM9, 10, APP and b-Actin, cells were

lysed in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl,

1% NP-40, 0.5% Sodiumdeoxycholate, 0.1% SDS and Complete

protease inhibitor tablets (Roche Applied Science)). For detection

of MMP9, conditioned medium was cleared from cell debris by

centrifugation at 1500 rpm and concentrated with Ultracel-50

centrifugal filter unit (Millipore) according to manufacturer’s

instructions. For detection of ADAM17, cells were homogenized

in 50 mM Tris-HCl pH 8.0 and 150 mM NaCl, 1 mM batimastat

Table 1. Overview of agonists, antagonists and inhibitors used to investigate the proteins contributing to the induction of sAPPa
after 5-HT4d receptor stimulation.

Compound Target Ag/antag/inh Potency Experimental system Citation

Prucalopride 5-HT4 Ag EC50 10 nM SH-SY5Y cells [9]

5-HT 5-HT4 Ag EC50 1,1 nM HEK293 cells [34]

GR113808 5-HT4 Antag Ki 0,31 nM Mouse colliculi neurons [63,64]

Cholera toxin B (CTB) Gas Inh IC50 100 ng/ml L6 cells [65,66]

NF449 Gas Inh IC50 8 mM in vitro [67]

Gallein Gbc Inh IC50 5 mM HL60 cells [68]

SQ 22536 Adenylyl cyclase Inh IC50 1 mM Human blood platelets [69,70]

2,5-dideoxyadenosine (DDA) Adenylyl cyclase Inh IC50 100 mM in vitro [71,72]

Bosutinib Src Inh IC50 300 nM MDA-MB-468 cells [73,74]

D609 Phospholipase C Inh Ki 6,4 mM in vitro [75,76]

GF109203X Protein kinase C Inh IC50#5,8 mM in vitro [77,78]

IP3K inhibitor IP6K, IP3K Inh IC50 18 mM in vitro [79]

Chlorogenic acid (CGA) IPMK Inh IC50 1,15 mM in vitro [80]

4,5,6,7-tetrabromo-1H-benzotriazole (TBB) Casein kinase 2 Inh IC50 1,6 mM in vitro [81–83]

GM6001 MMP1, 2, 3, 8, 9; ADAM10 and 17 Inh Ki 0,1–110 nM in vitro [84,85]

Ag = agonist; antag = antagonist; inh = inhibitor.
doi:10.1371/journal.pone.0087014.t001

5-HT4 Receptors and sAPPa Induction
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and Complete protease inhibitor tablets and centrifuged at

100.000 g for 1 hour at 4uC. Pellets were resuspended in RIPA

buffer supplemented with 1 mM batimastat and centrifuged at

100.000 g for 1 hour at 4uC and supernatants containing the

membrane fraction were collected. Protein concentrations were

determined in each preparation using the Bradford assay (Bio-

Rad). Equal amounts of protein were separated with SDS-PAGE

in Novex Bis-Tris gels (Invitrogen), transferred to nitrocellulose

membranes (Whatman), blocked and probed with antibodies in

3% milk plus 0,1% Tween-20/TBS buffer. Secondary antibody

staining was detected with the Renaissance chemiluminescence kit

(Perkin Elmer). b-Actin staining was used as a loading control.

Statistical analysis
Differences between multiple means of data with parametric

distribution were assessed by ANOVA followed by Tukey-Kramer

or Dunnet’s post-hoc tests. All experiments were repeated three

times. All statistical analysis was performed with GraphPad Prism

5 (GraphPad Software). Optical density of specific immunobands

on western blot was quantified using the 1D densitometry package

of Aida Image Analyzer v4.27.039.

Results

5-HT4d receptor-stimulated APP shedding requires G
protein signaling and is independent of b-arrestin
recruitment

In agreement with previous reports which show that activation

of the 5-HT4d receptor induces APP shedding in CHO cells [7],

we find a significant upregulation of SEAP (secreted alkaline

phosphatase) activity in SH-SY5Y human neuroblastoma cells

transiently transfected with human 5-HT4d (pcDNA3.1-5-HT4d)

and human wild type APP695 coupled to SEAP (pEAK12-AP-

APP) following treatment with the 5-HT4 receptor agonists

prucalopride or 5-HT. Co-treatment with the 5-HT4 receptor

antagonist GR113808 abolishes the increase in AP-APP shedding,

demonstrating the specificity of the effect (Figure 1A). Using an

alphaLISA specific for sAPPa, we previously demonstrated that

the increase in SEAP activity reflects an increase in sAPPa release

[9].

Signaling pathway activation down-stream of the 5-HT4

receptor is mediated through assembly and activation of a

heterotrimeric G protein complex. Receptor phosphorylation by

GPCR-related kinases (GRKs) limits G protein-mediated signaling

and facilitates recruitment of b-arrestins, which mediate receptor

internalization and turnover and provide a scaffold for the

initiation of signals to several kinases [30]. We used 5-HT4d

receptor mutants deficient in either G protein or b-arrestin

signaling to distinguish which pathway leads to increased sAPPa
secretion upon receptor stimulation. We introduced mutations in

the DRY conserved motif, which interrupt coupling to G proteins

and prohibit the G protein complex from acquiring an active GTP

bound state [31,32]. Expression of the alanine substitution DRY

mutant of the 5-HT4d receptor (pcDNA3.1-5-HT4dDRY117/

118AAY) in pEAK12-AP-APP transfected cells resulted in

significant downregulation of sAPPa secretion after 5-HT

treatment, indicating the putative involvement of G protein signal

transduction in 5-HT4d receptor-stimulated release of sAPPa
(Figure 1B). Recruitment of b-arrestins to the receptor requires

phosphorylation of the C terminus, allowing further internaliza-

tion and possible signal transduction through the scaffolding of

down-stream kinases. We generated a 5-HT4d receptor mutant

truncated at amino acid 346 in the C terminus (pcDNA3.1-5-

HT4dD346), which lacks a conserved sequence of serine and

threonine residues required for association of b-arrestins with the

receptor after phosphorylation by GRKs. Expression of this

mutant in pEAK12-AP-APP transfected cells maintained stimu-

lated induction of sAPPa secretion after prucalopride and 5-HT

treatment (Figure 1B). These data suggest that b-arrestins do not

contribute to 5-HT4d receptor-induced APP shedding.

In order to confirm that G proteins participate in a-secretase

induction, we co-treated pEAK12-AP-APP transfected cells with

inhibitors of Gas, i.e. CTB and NF449. Inhibition of Gas signaling

indeed resulted in significant decrease of induced sAPPa secretion

(Figures 1C and D). We also tested a GasDN mutant, which

abolishes all GPCR-mediated G protein-dependent signaling [28].

We found that co-transfection of pcDNAI-Amp-GasDN with

pEAK12-AP-APP and pcDNA3.1-5HT4d inhibited induced

sAPPa secretion after prucalopride and 5-HT treatment

(Figure 1E), indicating that Gas activation is involved in 5-HT4d

receptor-stimulated a-secretase activity.

The 5-HT4 receptors promiscuously activate several G proteins,

i.e. Gas, Gaq and Ga13, leading to distinct second messenger

generation [33–35]. We wondered which G protein subunit is

specifically responsible for the effect on sAPPa secretion.

Therefore, we performed RNAi mediated knock-down of Gas,

Gaq and Ga13 in SH-SY5Y cells and analyzed sAPPa secretion

upon 5-HT4d receptor stimulation (Figure S1A). Knock-down

efficiency and specificity of siRNA oligonucleotides was confirmed

by western blotting (Figures S1B and C). Surprisingly, our data

show that single knock-down of each individual Ga subunit

equally abolishes 5-HT4d receptor-mediated sAPPa secretion

(Figure S1A), suggesting that sAPPa release can be mediated

through Gas, Gaq and Ga13. Such an effect could be explained if

there is a requirement for the functional activation of the Gbc
subunits. We used gallein to inhibit Gbc signaling and found that

co-treatment of pEAK12-AP-APP transfected cells with this

inhibitor and prucalopride or 5-HT abolished induction of sAPPa
secretion (Figure 1F). Altogether, these studies suggest that Ga and

Gbc activation is required for 5-HT4d receptor-stimulated sAPPa
release.

5-HT4d receptor-stimulated APP shedding does not
involve activation of adenylyl cyclase and cAMP

Gas and cAMP mediate canonical signaling of 5-HT4 receptors

[33]. Therefore, we sought to determine whether, in SH-SY5Y

cells, accumulation of cAMP is also necessary for a-secretase

activity as previously described for CHO cells [15]. We used the

adenylyl cyclase inhibitors SQ22536 and DDA, which potently

inhibit increases in cAMP levels (Figure 2C). Interestingly, we

found that these inhibitors do not affect prucalopride or 5-HT-

stimulated sAPPa release in SH-SY5Y cells (Figures 2A and B).

These results suggest that activation of adenylyl cyclase and

accumulation of cAMP is not required for 5-HT4d receptor-

stimulated APP shedding.

5-HT4d receptor-stimulated APP shedding requires Src
and phospholipase C

Given that 5-HT4d receptor-stimulated APP shedding does not

require an elevation in cAMP levels, we sought to determine

whether generation of inositol triphosphate (IP3) is involved in 5-

HT4d receptor-stimulated sAPPa release. This second messenger is

produced by PLC and can be activated either directly down-

stream of Gaq and Gbc or through the Src non-receptor tyrosine

kinase (reviewed in [36]). To analyze the contribution of PLC and

Src, we co-treated pEAK12-AP-APP and pcDNA3.1-5-HT4d

transfected SH-SY5Y cells with the Src inhibitor Bosutinib or

5-HT4 Receptors and sAPPa Induction
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the PLC inhibitor D609 and 5-HT4 receptor agonists. In both

cases, we observed that APP shedding was abolished compared to

control treatment (Figures 3A and B).

PLC cleaves phosphatidylinositol 4,5-bisphosphate into IP3 and

diacylglycerol, resulting in mobilization of intracellular calcium and

activation of several downstream effector proteins including PKC

[37]. In addition, several studies suggest that calcium and PKC

signaling can activate a-secretase shedding of APP [38,39]. Co-

treatment of transiently transfected SH-SY5Y cells with the PKC

inhibitor GF109203X did not induce sAPPa secretion after 5-HT4d

receptor stimulation. In contrast, direct activation of PKC with PMA

induced sAPPa, but this induction was inhibited with GF109203X

showing that the inhibitor was functional (Figure 3C). Similarly,

prucalopride did not significantly alter extracellular calcium influx in

SH-SY5Y cells, in contrast to ionomycin and ATP; two positive

controls that prove assay functionality (Figure 3D). Taken together

these data suggest that Src and PLC, but not PKC or calcium

signaling, contribute to 5-HT4d receptor-induced APP shedding.

5-HT4d receptor-stimulated APP shedding requires
inositol polyphosphates and casein kinase 2

IP3 can be further phosphorylated by inositol 1,4,5-triphosphate

3-kinase (IP3K) and inositol polyphosphate multikinase (IPMK) to

Figure 1. 5-HT4d receptor-stimulated APP shedding requires G protein signaling and is independent of b-arrestin recruitment. (A)
Prucalopride induced sAPPa secretion in SH-SY5Y human neuroblastoma cells is specific for the 5-HT4 receptor. SH-SY5Y cells, transfected with
pEAK12-AP-APP and pcDNA3.1-5-HT4d, were treated with 1 mM prucalopride and 5-HT (5-HT4 receptor agonists) in the absence or presence of 1 mM
GR113808 (5-HT4 receptor antagonist) or PMA and secretion of sAPPa was analyzed via measuring SEAP. (B) SEAP levels were measured in
supernatants of SH-SY5Y cells, transfected with pEAK12-AP-APP and pcDNA3.1-5-HT4d (WT), pcDNA3.1-5-HT4dDRY117/118AAY (DRY) or pcDNA3.1-5-
HT4dD346 (D346) mutants and stimulated with 1 mM prucalopride or 5-HT. (C), (D) and (F) SEAP levels were measured in supernatants of SH-SY5Y
cells, transfected with pEAK12-AP-APP and pcDNA3.1-5-HT4d and treated with 1 mM prucalopride or 5-HT in the absence or presence of 100 mM CTB
(Gas inhibitor) (C), 100 mM NF449 (Gas inhibitor) (D) or 100 mM gallein (Gbc inhibitor) (F). (E) SEAP levels were measured in SH-SY5Y cells, transfected
with pEAK12-AP-APP, pcDNA3.1-5-HT4d and pcDNAI-Amp-GasDN or pcDNA3.1 at a ratio of 2:1:4, respectively, and treated with 1 mM prucalopride or
5-HT. Values shown are mean 6 SEM of 6 individual wells and were normalized to vehicle control. * P,0.05, ** P,0.01, *** P,0.001, one-way ANOVA
with Tukey-Kramer or Dunnet’s post-hoc test.
doi:10.1371/journal.pone.0087014.g001
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generate inositol polyphosphates (IP4, IP5 and IP6). These

molecules recently emerged as versatile second messengers with

an increasing number of cellular functions [40]. We tested the

IP3K inhibitor and the IPMK inhibitor CGA in transfected SH-

SY5Y cells and found that prucalopride or 5-HT-stimulated a-

secretase activity depends on the generation of these inositol

polyphosphates (Figures 4A and B). The reported literature

suggests that IP4 and/or IP6 can activate CK2 in vitro [41]. In

Figure 2. 5-HT4d receptor-stimulated APP shedding does not require accumulation of cAMP. (A) and (B) SH-SY5Y cells, transfected with
pEAK12-AP-APP and pcDNA3.1-5-HT4d, were treated with 1 mM prucalopride or 5-HT (5-HT4 receptor agonists) in the absence or presence of 4 mM
SQ22536 (AC inhibitor) (A) or 100 mM DDA (AC inhibitor) (B) and secretion of sAPPa was analyzed via measuring SEAP. (C) Concentration of cAMP was
measured in SH-SY5Y cells, transfected with pEAK12-AP-APP, pcDNA3.1-5-HT4d and pmax-FP-Green-N at a ratio of 5:4:1, were treated with 1 mM
prucalopride or 5-HT in the absence or presence of 4 mM SQ22536 or 100 mM DDA. Values shown are mean 6 SEM of 6 individual wells and were
normalized to vehicle control. *** P,0.001, one-way ANOVA with Tukey-Kramer’s post-hoc test.
doi:10.1371/journal.pone.0087014.g002

Figure 3. 5-HT4d receptor-stimulated APP shedding requires Src and phospholipase C, but not PKC or calcium. (A), (B) and (C) SH-SY5Y
cells, transfected with pEAK12-AP-APP and pcDNA3.1-5-HT4d, were treated with 1 mM prucalopride or 5-HT (5-HT4 receptor agonists) and PMA in the
absence or presence of 50 mM Bosutinib (Src inhibitor) (A), 30 mM D609 (PLC inhibitor) (B) or 2 mM GF109203X (PKC inhibitor) (C) and secretion of
sAPPa was analyzed via measuring SEAP. Values shown are mean 6 SEM of 6 individual wells and were normalized towards vehicle control. (D) SH-
SY5Y cells, transfected with pEAK12-AP-APP and pcDNA3.1-5-HT4d, were loaded with Fluo-4 NW mix and fluorescence of the calcium-sensitive dye in
each well was recorded at the baseline (F0) and after stimulation with 1 mM prucalopride, 30 mM ATP (purinergic ionotropic receptors agonist), 20 mM
Ionomycin (calcium ionophore) or DMSO (F). Calcium response shown is a ratio of maximum fluorescence intensity at 40 sec to baseline fluorescence
(F/F0). Values shown are mean 6 SEM of 2 individual wells and were normalized to vehicle control. * P,0.05, ** P,0.01, *** P,0.001, one-way ANOVA
with Tukey-Kramer’s post-hoc test.
doi:10.1371/journal.pone.0087014.g003
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cells, Wnt3a can induce IP5 generation which then activates CK2

[42]. Inhibition of CK2 activity with TBB in pcDNA3.1-5-HT4d

receptor and pEAK12-AP-APP expressing SH-SY5Y cells stimu-

lated with prucalopride or 5-HT led to a decrease in sAPPa down

to baseline levels (Figure 4C), suggesting that CK2 is involved in 5-

HT4d receptor-stimulated APP shedding. In addition, we found

that co-transfection of CK2 siRNA completely abolished stimu-

lated APP shedding in SH-SY5Y cells treated with prucalopride or

5-HT (Figures 4D, E and F). These results demonstrate that 5-

HT4d receptor-stimulated APP shedding requires inositol polypho-

sphates and CK2.

ADAM9, ADAM10, ADAM17 and MMP9 are not
responsible for 5-HT4d receptor-stimulated a-secretase
activity

Several enzymes of the ADAM and MMP family, such as

ADAM9, 10, 17 and MMP9, are suggested candidate proteins

responsible for inducible shedding of APP (reviewed in [43]). To

determine the relative contribution of the metalloproteinases in 5-

HT4d receptor-stimulated sAPPa release, we first analyzed

expression levels of ADAM9, 10, 17 and MMP9 in SH-SY5Y

cells. Expression of ADAM9, 10, 17 and MMP9 was not changed

after prucalopride treatment of pEAK12-AP-APP transfected SH-

SY5Y cells (Figures S3A and B). To test whether a metallopro-

teinase would be responsible for induced a-secretase activity, we

treated the cells with non-toxic concentrations of the broad

spectrum metalloproteinase inhibitor GM6001 (dose response

curve shown in Figure S4). Treatment with GM6001 abolished

induction of sAPPa secretion (Figure 5A), confirming that a

metalloproteinase is indeed responsible for 5-HT4d receptor-

stimulated sAPPa release. To identify the 5-HT4d receptor-

stimulated a-secretase, we performed RNAi knock-down of the

candidate a-secretases. We found that induction of sAPPa release

was preserved after prucalopride treatment and single knock-down

of ADAM9, 10, 17 or MMP9 (Figure 5B). The efficiency of the

downregulation was between 85–95% as documented by western

blot analysis (Figures 5C and D). These data suggest that ADAM9,

10, 17 or MMP9 are not responsible for 5-HT4d receptor-

mediated inducible a-secretase activity in SH-SY5Y cells. We also

analyzed constitutive sAPPa secretion upon ADAM10 knock-

down in non-treated cells and confirmed that ADAM10 acts as the

constitutive a-secretase of APP in our experimental conditions

(data not shown).

Metalloproteinases are notorious for their functional redundan-

cy between family members. To test whether more than one

candidate metalloproteinase could be responsible for induction of

a-secretase activity, we treated transfected SH-SY5Y cells with

combinations of RNAi directed at ADAM9 and 10, ADAM9 and

17, ADAM10 and 17 (Figure 6A). We observed no change in

sAPPa secretion upon 5-HT4d receptor stimulation under any of

these conditions. Moreover, knock-down of all four candidate

Figure 4. 5-HT4d receptor-stimulated APP shedding requires inositol polyphosphates and casein kinase 2. (A), (B) and (C) SH-SY5Y cells,
transfected with pEAK12-AP-APP and pcDNA3.1-5-HT4d, were treated with 1 mM prucalopride or 5-HT (5-HT4 receptor agonists) in the absence or
presence of 20 mM IP3K inhibitor (A), 80 mM CGA (IPMK inhibitor) (B) or 2.5 mM TBB (CK2 inhibitor) (C) and secretion of sAPPa was analyzed via
measuring SEAP. (D) SEAP levels were measured in supernatants of SH-SY5Y cells, co-transfected with pEAK12-AP-APP, pcDNA3.1-5-HT4d and 3 nM
siRNA for knock-down of CK2 and treated with 1 mM prucalopride. (E) Cell lysates of (D) were analyzed for CK2 expression levels by western blotting.
(F) Quantification of experiments in (E). Values shown are mean 6 SEM of 6 individual wells and were normalized to vehicle control. * P,0.05, **
P,0.01, *** P,0.001, one-way ANOVA with Tukey-Kramer’s post-hoc test.
doi:10.1371/journal.pone.0087014.g004
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metalloproteinases, i.e. ADAM9, 10, 17 and MMP9, still resulted

in induction of sAPPa release after 5-HT4d receptor activation

(Figure 6B). The levels of C-terminal fragments generated by the

cleavage of APP at b- and b9-sites remained unchanged after the

knock-down of ADAM9, 10, 17 and MMP9, suggesting that b-

secretase activity was not affected by reduced expression levels of

these metalloproteinases (Figures S5A and B). We used western

blotting to confirm the efficiency and specificity of RNAi mediated

downregulation (Figures 6C and D). Notice also the strong

upregulation of MMP9 expression when ADAM9, 10 and 17 are

downregulated, while single MMP9 knock-down did not affect 5-

HT4d receptor-induced sAPPa secretion. Altogether, our data

suggest that an unidentified GM6001-sensitive metalloproteinase

participates in the regulated cleavage of APP upon 5-HT4d

receptor stimulation (Figure 6B).

Discussion

In this report, we examined the signaling pathway that leads to

a-secretase induction after 5-HT4d receptor stimulation in the

human neuroblastoma SH-SY5Y cell line. We present here a

previously uncharacterized signaling pathway involved in the

mediation of 5-HT4d receptor-induced a-secretase activity

(Figure 7). The characterization of this pathway was based on a

combination of pharmacological, siRNA and site-directed muta-

genesis experiments. Our data indicate that PLC is essential for a-

secretase activation following 5-HT4d stimulation. This effect is

dependent on Ga and Gbc recruitment and signaling downstream

of the 5-HT4d receptor. Src tyrosine kinase acts as an intermediate

molecule, mediating PLC activation and inositol triphosphate

production. The latter is converted by multiple kinases to inositol

polyphosphates, which activate CK2. Downstream of CK2, a yet

unknown mechanism of a-secretase activation is triggered. The 5-

HT4d receptor-induced a-secretase activity could not be ascribed

to any known candidate a-secretase (ADAM9, 10, 17 and MMP9)

in the SH-SY5Y cells, which has hampered delineation of the final

step regulating 5-HT4d receptor-stimulated sAPPa release.

We found also that b-arrestin signaling did not contribute to a-

secretase activity upon 5-HT4d receptor stimulation as the mutant

receptor deficient in b-arrestin recruitment maintained the ability

to stimulate sAPPa secretion after agonist treatment (Figure 1B).

Interestingly, b-arrestins have recently emerged as regulators of

Ab generation downstream of the b2-adrenergic receptor and

GPR3, independently of G protein activation [44,45]. In these

studies, b-arrestins appear to bind to the Aph1 subunit of the c-

secretase complex, affecting complex localization and thereby

increasing the catalytic activity of the c-secretase complex. Our

work suggests that different signaling pathways regulate a- and c-

secretase activity as we find that G proteins are indispensable for 5-

HT4d receptor-stimulated a-secretase activity, while they are not

involved in the c-secretase regulation by GPCRs. Indeed, several

molecules that are activated downstream of G proteins are

proposed to regulate a-site APP processing, e.g. PKC, PKA,

MAPK, ERK and PI3K (reviewed in [46]).

Figure 5. Single knock-down of ADAM9, ADAM10, ADAM17 and MMP9 does not affect 5-HT4d receptor-stimulated APP shedding.
(A) SH-SY5Y cells, transfected with pEAK12-AP-APP and pcDNA3.1-5-HT4d, were treated with 1 mM prucalopride or 5-HT (5-HT4 receptor agonists) in
the absence or presence of 80 mM GM6001 (metalloproteinases inhibitor) and secretion of sAPPa was analyzed via measuring SEAP. (B) SEAP levels
were measured in supernatants of SH-SY5Y cells, co-transfected with pEAK12-AP-APP, pcDNA3.1-5-HT4d and 3 nM siRNA for knock-down of ADAM9
(A9), ADAM10 (A10), ADAM17 (A17) and MMP9 and treated with 1 mM prucalopride. (C) Cell lysates of (B) were analyzed for protein expression of
ADAM9, 10, 17 and MMP9 by western blotting. The ADAM10 and ADAM17 immature precursor proteins are indicated by an x, whereas the mature
catalytically active forms are indicated by an xx for ADAM9, 17 and MMP9. The immature ADAM9 and the mature ADAM10 proteins were not visible.
(D) Quantification of experiments in (C). Values shown are mean 6 SEM of 6 individual wells and were normalized to vehicle control. * P,0.05, **
P,0.01, *** P,0.001, one-way ANOVA with Tukey-Kramer’s post-hoc test.
doi:10.1371/journal.pone.0087014.g005
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Originally the 5-HT4 receptor was shown to couple to Gas

[17,33–35,47]. We show here that the Gas, Gaq and Ga13

subunits are equally required for sustainable a-secretase activity

after 5-HT4d receptor stimulation (Figure S1A). We did not

observe functional compensation between the different Ga
subunits, even though protein expression was modulated in a

reciprocal manner for Gas and Gaq (Figure S2). These results were

unexpected and we speculate that parallel signaling initiated by the

different Ga subunits or a certain threshold level of G proteins

would be required to transduce the agonist-dependent signal. In

those views reduction of the level of one of subunit could already

abolish the signal. Our results also show that the signal relies on

the association with the Gbc subunits as a converging signal

transduction mediator (Figure 1F). Similar observations have been

previously made for PLC activation by G proteins in vitro. IP3

production was more efficient in the presence of the G protein

trimeric complex than in separate preparations of either Gaq or

Gbc alone [48,49]. Interestingly, we also observe a reduction in

constitutive sAPPa release after the knock-down of Gas, Gaq and

Ga13 (Figure S1A). These data suggest a dominant negative effect

Figure 6. Combined knock-down of ADAM9, ADAM10, ADAM17 and MMP9 does not affect 5-HT4d receptor-stimulated APP
shedding. (A) and (B) SH-SY5Y cells, co-transfected with pEAK12-AP-APP, pcDNA3.1-5-HT4 and combinations of 3 nM siRNA for knock-down of
ADAM9 (A9) and ADAM10 (A10), ADAM9 (A9) and ADAM17 (A17), ADAM10 (A10) and ADAM17 (A17) in (A) or ADAM9, 10 and 17 or ADAM9, 10, 17
and MMP9 in (B), were treated with 1 mM prucalopride (5-HT4 receptor agonist) in the absence or presence of 80 mM GM6001 (metalloproteinases
inhibitor) (B) and secretion of sAPPa was analyzed via measuring SEAP. (C) Cell lysates of experiments in (A) and (B) were analyzed for protein
expression of ADAM9, 10, 17 and MMP9 by western blotting. ADAM10 and ADAM17 immature precursor proteins are indicated by an x, whereas the
mature catalytically active forms are indicated by an xx for ADAM9, 17 and MMP9. The immature ADAM9 and the mature ADAM10 proteins were not
visible. (D) Quantification of experiments in (C). Values shown are mean 6 SEM of 6 individual wells and were normalized to vehicle control. **
P,0.01, *** P,0.001, one-way ANOVA with Tukey-Kramer’s post-hoc test.
doi:10.1371/journal.pone.0087014.g006
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of G proteins inhibition on constitutive a-secretase activity, which

may be mediated by additional GPCRs besides the 5-HT4d

receptor.

5-HT4 receptor coupling to different G proteins suggests several

possibilities for downstream signal transduction. Several reports

describe a PKA-independent and cAMP-dependent a-secretase

activation following 5-HT4d receptor stimulation [7,50,51]. In

CHO cells, sAPPa release is regulated by Epac1, which promotes

small GTPases Rap1 dependent Rac activation [15]. However, we

find that AC and cAMP accumulation are not required for 5-

HT4d receptor-induced APP shedding under our experimental

conditions (Figure 2). Differences in the cellular systems, a human

neuronal cell line versus a Chinese hamster ovary cell line, could

explain the discrepancy between the studies. We then found that

IP3 generation through Src and PLC activation contributes to 5-

HT4d receptor-induced a-secretase activity (Figure 3). PLC is also

an important component of the a-secretase activation pathway

through Gaq coupled GPCRs, e.g. mGluR1 and mGluR5 [52],

M1 and M3 [53], 5-HT2a and 5-HT2c [54] and thus a point of

convergence for several transduction pathways activating a-

secretase.

Investigations of the cerebral cortex and cerebellum of AD-

affected individuals reveal disturbed G protein signal transduction

compared to control patients [55]. In accordance, the phospho-

inositide hydrolysis pathway is also altered in AD because of

reduced levels of phosphatidylinositide 3-kinase and disturbed

agonist and G protein regulation of PLC [56,57]. It is proposed

that 5-HT4 receptor stimulation could counteract such detrimental

changes. We show here that the 5-HT4d receptor indeed induces

IP3K and IPMK mediated IP3 conversion to inositol polypho-

sphates and that these contribute to the non-amyloidogenic

pathway of APP processing (Figure 4). This effect is mediated

through the activation of CK2, which was recently identified to be

downstream of the cholinergic receptors in a pathway of a-

secretase induction [58]. As activation of the 5-HT4 receptor can

increase acetylcholine levels in the brain [6,13] and we need

24 hours to obtain a significant induction of the a-secretase, an

indirect mechanism through upregulation of acetylcholine could

play a role. As our cells are of the dopaminergic origin, we think

this possibility is rather unlikely. However, we cannot rule out that

other indirect mechanisms are playing a role in the 5-HT4d

receptor-mediated a-secretase induction.

To understand the molecular mechanism of a-secretase

activation downstream of the 5-HT4d receptor, we investigated

the contribution of ADAM9, 10, 17 and MMP9 in the regulation

of APP processing. Previously, regulated a-secretase activity was

partially attributed to MMP9, whose expression levels increased

after 5-HT4d receptor stimulation in APP-overexpressing H4

human neuroglioma cells [59]. However, in our cellular system,

expression levels of the investigated proteinases do not change

(Figure S3) and specific protein downregulation suggests that a

different metalloproteinase, besides the major candidate a-

secretases ADAM9, 10, 17 and MMP9, contributes to 5-HT4d

receptor-induced sAPPa release (Figures 5 and 6). Indeed,

ADAM10 was not responsible for the 5-HT4d receptor-dependent

induction of sAPPa release through the cAMP/Epac pathway

[21]. At this moment, we cannot rule out that the remaining

protein expression of these four major a-secretases contribute to

the preserved inducible a-secretase activity. Our data are

consistent with the present view of different proteases contributing

to regulated APP processing as previously reported for the M1

receptor, the insulin-like growth factor-1 receptor and the

purinergic P2Y2 and P2X7 receptors [23,60–62]. To identify

the metalloproteinase(s) responsible for induced a-secretase

activity we were reluctant to use differences in susceptibility to

GM6001 because we were working with overexpression condi-

tions. This would require a large-scale RNAi knock-down study

but is beyond the scope of the current manuscript.

In conclusion, our studies show the complexity of a-secretase

regulation upon 5-HT4d receptor stimulation. Taking into

consideration that receptor modulation of signaling pathways

depends on the cellular context and that recombinant overex-

pression and RNA interference may reveal cell type specific

results, a relevant physiological system should be used for the

confirmation of the identified signaling pathway. Clinical trials of

agonists targeting 5-HT4 serotonergic and M1 muscarinic

receptors will provide validation of a-secretase activation as a

therapeutic approach for the treatment of AD. We report here that

PLC dependent production of IP3 and CK2 activation are

important mediators of the 5-HT4d receptor signaling that

enhance the non-amyloidogenic processing of APP. These proteins

can also participate in signaling downstream of muscarinic

receptors, suggesting the possibility of a common pathway for a-

secretase activation through GPCRs. Finally, our data will also aid

with the development of 5-HT4 receptor agonists as therapeutics

for neurodegenerative or psychiatric disorders and allow for a

better understanding of potential risks associated with these drugs.

Figure 7. Schematic representation of the proposed 5-HT4d

receptor-stimulated signaling pathway leading to increased
sAPPa production. The proteins involved in 5-HT4d receptor-
mediated non-amyloidogenic APP shedding are shown with green
circles while orange circles and red characters indicate proteins or
second messengers that were tested but were ineffective in modulating
5-HT4d receptor-stimulated sAPPa release. The dotted lines with the
question marks indicate remaining areas of investigation for further
elucidation of the molecular mechanism of a-secretase activation.
cAMP-dependent pathway of a-secretase induction was previously
reported and is depicted as a plausible way for 5-HT4d receptor-
mediated sAPPa release [15].
doi:10.1371/journal.pone.0087014.g007
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Supporting Information

Figure S1 5-HT4d receptor-stimulated APP shedding
requires the G proteins Gas, Gaq and Ga13. (A) SEAP

levels were measured in supernatants of SH-SY5Y cells, co-

transfected with pEAK12-AP-APP, pcDNA3.1-5-HT4d and 3 nM

siRNA for knock-down of Gas, Gaq and Ga13 and treated with

1 mM prucalopride (5-HT4 receptor agonist). (B) Cell lysates of (A)

were analyzed for protein expression of Gas, Gaq and Ga13 by

western blotting. (C) Quantification of experiments in (B). Values

shown are mean 6 SEM of 6 individual wells and were

normalized to vehicle control. ** P,0.01, *** P,0.001, one-way

ANOVA with Tukey-Kramer’s post-hoc test.

(TIF)

Figure S2 Knock-down of Gas and Gaq but not Ga13

alters protein expression of the G protein family. (A) SH-

SY5Y cells, transfected with 3 nM siRNA for knock-down of Gas,

Gaq and Ga13, were harvested and expression levels of G proteins

were analyzed. (B) Quantification of experiments in (A). Values

shown are mean 6 SEM of 2 individual wells and were

normalized to vehicle control. ** P,0.01, one-way ANOVA with

Tukey-Kramer’s post-hoc test.

(TIF)

Figure S3 Expression levels of major candidate a-
secretases and APP do not change upon 5-HT4d receptor
stimulation. (A) SH-SY5Y cells, transfected with pEAK12-AP-

APP and pcDNA3.1-5-HT4d, were treated with 1 mM prucalo-

pride (5-HT4 receptor agonist) and collected to analyze protein

expression of ADAM9, 10, 17, MMP9 and APP by western

blotting. ADAM10 and ADAM17 immature precursor proteins

are indicated by an x, whereas the mature catalytically active

forms are indicated by an xx for ADAM9, 17 and MMP9. The

immature ADAM9 and the mature ADAM10 proteins were not

visible. (B) Quantification of experiments in (A). Values shown are

mean 6 SEM of 2 individual wells and were normalized to vehicle

control.

(TIF)

Figure S4 The metalloproteinase inhibitor GM6001
can inhibit secretion of sAPPa upon 5-HT4d receptor

stimulation. SH-SY5Y cells, transfected with pEAK12-AP-APP

and pcDNA3.1-5-HT4d, were treated with 1 mM prucalopride or

5-HT in the absence or presence of different concentrations of

GM6001 and secretion of sAPPa was analyzed via measuring

SEAP. Values shown are mean 6 SEM of 6 individual wells and

are normalized towards vehicle control. ** P,0.01, *** P,0.001,

one-way ANOVA with Tukey-Kramer’s post-hoc test.

(TIF)

Figure S5 Knock-down of ADAM9, 10, 17 and MMP9
does not affect the pattern of CTFs generated by the 5-
HT4d receptor-stimulated a-secretase activity. (A) SH-

SY5Y cells, co-transfected with pEAK12-AP-APP, pcDNA3.1-5-

HT4d and combinations of 3 nM siRNA for knock-down of

ADAM9 (A9), ADAM10 (A10) and ADAM17 (A17) or ADAM9,

10, 17 and MMP9, were treated with 1 mM prucalopride (5-HT4

receptor agonist) and secretion of sAPPa was analyzed via

measuring SEAP. Values shown are mean 6 SEM of 6 individual

wells and were normalized to vehicle control. *** P,0.001, one-

way ANOVA with Tukey-Kramer’s post-hoc test. (B) Cell lysates

of the experiment in (A) were analyzed for the levels of different

APP C-terminal fragments (CTFs) were analyzed by western

blotting using B63 antibody (16% Tricine SDS-PAGE).

(TIF)

Table S1
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