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Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding
the CF transmembrane conductance regulator. Disruption of electrolyte homeostasis at mucosal
surfaces leads to severe lung, pancreatic, intestinal, hepatic, and reproductive abnormalities. Loss
of lung function as a result of chronic lung disease is the primary cause of death from CF. Using
high-throughput sequencing to survey microbes in the sputum of 16 CF patients and 9 control
individuals, we identified diverse microbial communities in the healthy samples, contravening
conventional wisdom that healthy airways are not significantly colonized. Comparing these
communities with those from the CF patients revealed significant differences in microbial
ecology, including differential representation of uncultivated phylotypes. Despite patient-specific
differences, our analysis revealed a focal microbial profile characteristic of CF. The profile
differentiated case and control groups even when classically recognized CF pathogens were
excluded. As a control, lung explant tissues were also processed from a group of patients with
pulmonary disease. The findings in lung tissue corroborated the presence of taxa identified in the
sputum samples. Comparing the sequencing results with clinical data indicated that diminished
microbial diversity is associated with severity of pulmonary inflammation within our adult CF
cohort.
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INTRODUCTION
Cystic fibrosis (CF) is a profoundly life-shortening disease (1) whose morbidity centers on
its pulmonary manifestations. A chronic, progressive process slowly destroys the airways,
leading to severe lung dysfunction and death from respiratory failure (2–4). Treatment of CF
pulmonary disease has focused on enhancing mobilization of secretions from the lower
airway and the use of long-term antibiotic therapy to suppress bacterial activity at airway
surfaces (1, 5). Paradoxically, antibiotic therapy often confers clinically detectable benefit
even in the context of continuing infection with antibiotic-resistant organisms or with
microbes that have established biofilms with minimum inhibitory concentrations far above
the applied dose. This paradox was recognized in the clinical setting and has been difficult
to reconcile with laboratory observations. Emerging hypotheses point to nontraditional
mechanisms of antibiotic action at sublethal antibiotic concentrations (2, 6–8).

These observations imply that Koch’s postulate, the long-standing paradigm of infectious
disease, wherein pathogenesis derives from the presence of a primary and culture-
identifiable organism, insufficiently explains pathogenesis in the airway microbial ecology
of CF-related lung disease (9). Several years ago, the application of 16S ribosomal RNA
(rRNA) gene sequence analysis methods to bronchopulmonary samples proved the use of
culture-independent approaches by revealing the presence of microbial species not
previously recognized in CF (10–13). Subsequent studies found higher incidences—but
incomplete penetrance—of recognized CF pathogens in patients relative to pulmonary
disease controls (14, 15), and a lower-resolution terminal restriction fragment length
polymorphism (T-RFLP) study found a higher incidence of such pathogens in CF patients
compared with healthy controls (14).

High-throughput pyrosequencing of 16S ribosomal DNA (rDNA) has been demonstrated as
a means of increasing the sensitivity and robustness of microbial surveys of CF patients (16–
18). Measures of microbial diversity within CF patient populations have been compared
with patient genotype, clinical status, and prescribed therapies, but the strongest correlation
found so far is that diversity within a given patient decreases over time (4, 19). A prejudice
that healthy lungs are devoid of microbes, based largely on negative clinical culture results,
has impaired testing of the alternative hypothesis that the major feature of pulmonary
communities is not the presence of microbes generally but particular perturbations of normal
pulmonary microbe communities. Notwithstanding molecular evidence of bacterial
populations in the lungs of individuals not diagnosed with lung disease (20–22), few
investigations that compare the microbial ecology of healthy and diseased airways have
been made. Determination of the microbial communities that are resident in the lungs of
both healthy control and disease subjects is necessary to gain insight into the pathogenesis of
human pulmonary disease.

To quantitatively examine the CF pulmonary microbiome relative to that in healthy
individuals, we undertook a phylogenetic survey of microbes in the sputum of 16 CF
patients and 9 healthy control individuals. Using the 454 DNA pyrosequencing platform, we
obtained a molecular census of microbes in each individual in the form of thousands of
microbial 16S amplicon sequences. Each quality-filtered sequence was classified to a
phylogenetic group using the naïve Bayesian rRNA gene sequence classifier from the
Ribosomal Database Project (RDP) (23). We discovered a pervasive CF-specific profile and
identified, in the CF pulmonary milieu, a subset of organisms (including but not limited to
recognized CF pathogens) that associated strongly with CF and either survived or thrived
under current paradigms of treatment. As a further control, we sequenced lung tissues
explanted from CF and other patients (table S1) who were undergoing lung transplants and
validated the rich microbial communities and taxa that constituted the CF microbiome in the
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sputum samples. The identification of a CF-specific microbial profile prompted us to test for
and discover correlations between microbial ecology and clinical parameters.

RESULTS
Using the 454 DNA pyrosequencing platform, we analyzed the diversity of microbial
consortia in CF and control sputum samples. More than 98% of the 283,470 filtered 16S
ribosomal gene sequence reads obtained were classified at the phylum level with at least
95% RDP classification confidence (Fig. 1A). The samples from healthy control subjects
were significantly more diverse at the phylum level than were the CF samples—by the

Shannon [ , where R is richness and pi is the proportion of group i; t test

for unequal variances, P = 0.01] and Gini-Simpson ( ; t test for unequal
variances, P = 0.01) indices (Fig. 1B)—with higher richness (R is the number of organism
types; t test for unequal variances, P < 0.001) and Pielou evenness (J =H/log(R); t test for
unequal variances, P = 0.03). Reduced richness in CF patient samples vis-à-vis healthy and
disease control individuals was suggested in the data from two earlier studies (13, 14).

The microbial profiles obtained varied strongly among individuals within each cohort as
well as across the two cohorts. Firmicutes were the most prevalent phylum in both sample
groups (Fig. 1A; see fig. S1 and table S2 for detail on phylum-level data), representing about
half the sequences in each group. Bacteroidetes were unequally represented, with 15.7% in
the control group and only 3.5% in the CF group (t test for unequal variances, P = 0.04).
Conversely, Actinobacteria were much more prevalent in the CF samples at 24.8% than in
the healthy control samples (6.7%; t test for unequal variances, P = 0.01). A number of
microbial phyla with no cultured representative (that is, no reported laboratory isolate) were
apparent in the data set, including the phyla TM7 and SR1. These phyla were differentially
represented across the control and CF sample groups; for instance, SR1 occurred in 6 of 9
control samples and in 0 of 16 CF samples (z test, P = 0.0001), and the incidence of TM7
was significantly greater in control samples (1.1%) than in CF samples (0.14%) (t test for
unequal variances, P = 0.01). Fusobacteria in particular were enriched in controls versus CF
samples (t test for unequal variances, P = 0.03) and contributed to phylum-level diversity.

We also found a significant difference in the ratios of Firmicutes to Bacteroidetes (F/B) (Fig.
1C) in the sputum of control individuals (average ratio, 5:1) versus that of CF patients
(average ratio, 21:1) (t test for unequal variances, P = 0.002). Higher F/B ratios in the gut
microbiota have been correlated with obesity (24, 25), whereas lower gut F/B ratios have
been associated with autoimmunity and type 1 diabetes (26).We analyzed the representation
of cultured versus uncultured phyla by devising a dark matter index (DMI) (Fig. 1D). The
analysis revealed that control samples have a higher proportion of organisms that are poorly
represented in culture collections and genome sequence databases compared with the CF
samples (t test for unequal variances, P = 0.02).

To systematically explore differences among individual subjects and the control and CF
groups, we performed a principal components analysis (PCA) of taxon abundances in the
sputum samples (Fig. 2). PCA is a mathematical method for transforming data into a new set
of coordinates for exploring variation in high-dimensional data sets, displaying the variation
in such data sets with lower dimensionality, and finding hidden (composite) variables. The
new data coordinates (“principal components”) are linearly independent coordinates each
chosen to describe the maximum degree of variation in the original data set, and are ordered
by the amount of sample variation described. The first principal component is a coordinate
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freely chosen to ordinate (explain) the maximum possible variation in the original data set
(expressed as a percentage of the total variation); the second coordinate is that which
ordinates the most data set variation while being linearly independent from (that is,
orthogonal to) all other principal components, and so on. Thus, a significant portion of the
variation in a high-dimensional data set such as the abundances of a number of microbial
taxa (dimensionality = no. of taxa) can be rendered for print in a small number of
dimensions by plotting the data against the first few principal components (Fig. 2 shows
two-dimensional plots of the first principal component versus the second and third principal
components). The meaning of the principal components is understood by interpretation of
their relationship to the plotted data and the original coordinates (microbial taxa in our case).

Figure 2A shows the PCA of the phylum-level classification data. The first principal
component (PC1), which explained about one-third of the total variance in the data sets
(inclusive of additional variance introduced by our resampling procedure), efficiently
separated the healthy control and CF samples (Fig. 2A, upper plot, view separation of
sample groups along PC1 axis in plot of PC1 versus PC2), indicating the presence of a
stereotyped distinction between the control and the CF samples at the phylum level. The
second PCA component, which represented one-fifth of the data set variance, described
differences among the control samples (Fig. 2A, upper plot, view spread of control samples
along PC2 axis in plot of PC1 versus PC2). The third component, which represented 14% of
the data set variance, stratified both sample categories across exclusive regions of the graph
(Fig. 2A, lower plot, view spread of control and CF samples along PC3 axis in separate
regions of PC1 versus PC3 plot). By projecting the original data coordinates that
corresponded to the microbial phyla as vectors on the PCA plots, we determined which
microbial groups drove distinction among PCA-segregated subject groups. Bacteroidetes,
Fusobacteria, TM7, SR1, Spirochaetes, and Tenericutes were associated with health,
whereas Proteobacteria, Firmicutes, and particularly Actinobacteria were associated with
CF. The clustering of all 16 CF samples in one region of the PC1–PC2 plot suggests the
existence of a characteristic pulmonary microbiome for CF patients.

We tested for correlation between microbial diversity within the CF group and clinical
measures of patient status at the time of sampling. Because some clinical metrics were
strongly correlated with one another (see Materials and Methods and fig. S3), we computed
indices that represented two underlying variables: inflammation and pulmonary function. A
significant correlation between phylum-level diversity and inflammatory markers was found
[r = 0.61 to 0.62, P = 0.02, where P is the probability that random data yield an equal or
stronger correlation coefficient than observed in the data under test (|rrandom| ≥ |robserved|);
Fig. 3], but diversity did not correlate with pulmonary function in the present cohort.
Clinical status is known to decline over a patient’s lifetime and to correlate with reduced
microbial diversity (4, 19). Our cohort was relatively uniform in age, such that the major
differentiator was clinical status (or rate of clinical decline), not patient age per se.
Nonetheless, we tested for correlation of age with microbial diversity and found positive but
statistically insignificant values. Taxonomic diversity at the family level correlated less
strongly with inflammation than did phylum-level diversity. This may indicate that
functional diversity among microbes is the key variable related to patient clinical status
rather than phylogenetic diversity.

We also analyzed RDP classifications at the family level. Of the filtered reads, 96% could be
classified with a microbial family at 80% or better confidence; the high fraction of classified
sequences indicates an overall sequence quality that justifies classification at this level of
resolution. These data revealed a diverse (more so in the healthy control samples) microbial
community that consists of many taxa, including aerobes, obligate anaerobes, and
uncultured organisms (see fig. S2 and table S3 for family-level data).
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Figure 2B shows the results of the PCA on family-level abundance data for 41 microbial
families. In this analysis, the samples from control subjects formed dispersed foci and
remained distinct from one another, indicating that personalized pulmonary microbiomes
exist in the healthy cohort. Markedly, all 1600 data points derived from the 16 CF patient
samples collapsed within a confined region of the graph that was separate from the healthy
control data points and exhibited an overall range similar to that found for individual control
subjects. The cluster of CF data held even when the first three principal components,
representing almost half the total data set variance (which includes intersubject biological
variability and technical variability from the resampling procedure), were considered
together (Fig. 2C).

As noted above, analysis of the CF samples revealed microbial communities with lower
diversity than those of individual control samples. The collapse of the CF cluster
demonstrates that the CF samples were far less divergent from one another than were the
control samples. This effect is represented in Fig. 2C, which indicates that the inter-CF
sample distance was significantly smaller than the inter-control sample distance,
corroborating the visual collapse of the CF samples in Fig. 3B.

The original data coordinates also appear in Fig. 3B and allow identification of families that
drive segregation of the control and CF samples in the PCA plot. Families that contain the
most-recognized CF pathogens associate with the CF group, including Pseudomonadaceae,
Streptococcaceae, and Staphylococcaceae. Notably, the families Burkholderiaceae and
Pasteurellaceae, which include species whose presence is known to correlate with poor
clinical outcomes in CF, do not associate with the CF group. Only a small number of
Burkholderiaceae sequences were found in total, and these sequences were inconsistent with
the presence of Burkholderia cepacia complex (BCC); BCC infection has been associated
with morbidity and mortality in CF patients. Pasteurellaceae family members were more
consistently represented in the control group than in the CF group, with the exception of the
genus Haemophilus, which was found in both control and patient samples. Although the
occurrence in control subjects of taxonomic families (such as Pasteurellaceae) that
encompass known pulmonary pathogens is surprising, the Pasteurellaceae family includes
not only pathogens such as Haemophilus influenzae but also commensal organisms such as
Actinobacillus indolicus, Lonepinella koalarum, and the capnophile (CO2-loving)
Mannheimia succiniciproducens (27).

Many actinobacterial families—Actinomycetaceae, Micrococcaceae, and Bifidobacteriaceae
—associate with CF, but not all do (for example, Corynebacterineae and
Propionibacterineae). The Micrococcaceae have the strongest disease association overall,
with most of these sequences classified as Rothia and making strong hits to the sequenced
genomes of two species, Rothia dentocariosa and Rothia mucilaginosa. Rothia spp. have
been previously isolated from CF sputum samples (28) but are not generally considered to
be pathogens characteristic of CF. The Micrococcaceae, which make up about 20% of the
sequences we recovered from CF patients, constitute high-penetrance organisms that may
worsen the pulmonary status of patients with CF. The abundance of these organisms is
strongly and inversely correlated with the abundance of Pseudomonas spp. in our cohort [r =
−0.56, P = 0.02, where P is the probability that random data yield an equal or stronger
correlation coefficient than observed in the data under test (|rrandom| ≥ |robserved|)].
Carnobacteriaceae, Aerococcaceae, and Lactobacillaceae also show strong associations with
CF and should be investigated as agents of disease, as organisms whose growth may be
favored by current paradigms of intervention in CF, and as possible targets for new
therapies.
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Other families, including Fusobacteriaceae, Lachnospiraceae, Leptotrichiaceae,
Prevotellaceae, and Veillonellaceae, showed strong correlations with varied states of health
in the control group. Fusobacteriaceae and Leptotrichiaceae are known components of the
human oral microbiota, but the sequences we sampled in sputum are most likely of
pulmonary origin for the following reasons. First, it is known that the mixing of saliva with
viscous sputum is limited (29), and induced sputum is an accepted method for pulmonary
sampling (22, 29, 30). Second, compared to the control group, the prevalence of these
microbial families is markedly diminished and, in many cases, entirely absent from the CF
group, despite the use of identical sampling methods. Third, the quantities of microbial
DNA recovered from the CF and control sputum samples were statistically indistinguishable
(see Materials and Methods for details and table S4) and in line with quantities determined
by real-time quantitative polymerase chain reaction (qPCR) in explanted lung tissue samples
(table S4). Fourth, the sputum samples from control and CF individuals shared a larger
fraction of genera with each other than with saliva samples from two independent studies
that used comparable methodology (fig. S4) (31, 32). The co-occurrence of 30 to 40 core
genera between the oral and pulmonary samples was not surprising because colonization of
the airway by oral taxa was observed previously (29). Fifth, a recent study demonstrated
marked homogeneity of microbial communities found along the length of the respiratory
tract, indicating that contamination of deep-origin sputum by transit through the upper
respiratory tract is of minimal consequence (22). Finally, sequencing of 21 explanted lung
samples from seven individuals corroborated both the richness of microbial taxa evidenced
in the sputum samples and the correspondence between the microbial taxa found in sputum
samples and the microbes present in the lungs themselves. In a concordance analysis for the
presence and absence of microbial families, more than 85% concordance was found in the
flora present in CF lung tissue and the sputum of CF patients and more than 82%
concordance was found between microbial families scored in the control sputum samples
and those scored in the lung tissue samples in our study (table S5).

DISCUSSION
We have demonstrated the existence of an endemic pulmonary microbiome in healthy
individuals and shown that these communities are in fact significantly more diverse and
endowed with more uncultured microbial content than those found in CF patients. The
community profiles in both subject groups were highly variable from one individual to
another, although greater intersubject variability was found in the control cohort. Some of
the most marked findings in this study are commonalities identified among the CF sputum
samples, best visualized in the family-level PCA (Fig. 2, B and C). In this analysis, the
cluster containing 16 CF samples is highly focused in one region of the graph, with all the
samples overlapped with one another (indicating statistical congruence), even when
considering the first three principal components (Fig. 2C), which together describe nearly
half of the total variance in the analysis.

This is not to say that all CF patients harbor the same microbiome, but rather, that there
exists a signature in the microbial profile of CF sputum that is well characterized by the first
PCA component that describes the family-level data (Fig. 2B). At the phylum level, the third
principal component stratified CF patients along a Firmicutes-Proteobacteria axis (Fig. 2A);
such differences in microbial communities between patients are likely to have clinical
significance. From the PCA, it is also clear that the CF signature is not determined by one or
two pathogenic species. Instead, the signature consists of the presence or increased
abundance of more than half a dozen microbial families and the absence or decreased
abundance of many other microbial families compared with healthy controls. Thus, the
signature is that of a defined but complex microbial community characteristic of CF
patients, including groups not routinely detected or analyzed in clinical culture.
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Many of the taxa that drove segregation of the sample groups in the PCA are not known to
contain pathogenic species. For instance, the ratio of Veillonellaceae to Micrococcaceae was
much higher in controls than in CF cases, even though neither family contains widely
recognized CF pathogens; the CF and control groups were completely separated on the basis
of this metric, with values roughly greater than 1 characterizing the control group and values
less than 1 characterizing the CF group (Fig. 2D). The ability to stratify the disease and
control groups based on these taxa could form the basis of new molecular diagnostic tests.
The ability to do so based on taxa not routinely monitored in the clinic suggests that there is
much to learn about the ecology of pulmonary microbial communities and that this
knowledge is likely to inform treatment of CF patients. On the other hand, pathogenic taxa
that are unmonitored in the clinic might resist nonspecific antimicrobial therapies, exhibit
virulence, and contribute to disease. The lungs of CF patients show infection and
inflammation; thus, it is also possible that taxa absent from the CF samples and present in
the control samples have the job of protecting the pulmonary system, similar to the role
played by protective microbial species identified in the gut (33–36) wherein commensal
organisms inhibit pathogen outgrowth, expression of virulence genes, or inflammation. Such
protective communities could be displaced by pathogens in the CF airways or selected
against as a result of prolonged antibiotic therapy. Negative correlations between microbial
community diversity and pathogen growth are known in model CF communities (37).

In the gut, researchers have observed marked (if largely reversible) changes in microbial
consortia and in the state of the host epithelium upon antibiotic treatment (38–42), which
also has been connected to dysbiosis of the gut consortia, chronic inflammatory states (43,
44), and improper immune development (45, 46). Although it is possible that antibiotic
treatment accounts for the lower diversity we observed in the lungs of CF patients, there are
several reasons to consider this hypothesis unlikely. On the basis of the findings reported in
the literature, patterns of response to prolonged antibiotic treatment in the lung appear to
differ significantly compared with the responses in the gut to episodic antibiotic
administration (38–42, 44). Because many CF patients are treated on an ongoing basis with
multiple antibiotics that often have long half-lives and accumulate to high concentrations in
lung tissue, changes to microbial community structure in response to additional antibiotic
treatments may be muted. Evidence suggests that the clinical benefits that arise from
subsequent additional antibiotic treatments do not result from the elimination of pathogenic
bacterial populations but rather from noncanonical modes of action against pathogens such
as suppression of virulence (47–49) or direct anti-inflammatory activity of the antibiotic
compounds (50–52).

The CF subjects in our cohort were treated with zero to three antibiotics from six different
classes. The correlations between microbial diversity and antibiotic administration or the
number of administered antibiotics were consistent with random data, indicating no
significant relationship between these parameters in our cohort. The three samples from CF
patients not treated with antibiotics in the 6 months before sampling fell into the CF cluster,
supporting the idea that the stereotyped CF profile we identified is characteristic of the
disease and is not an epiphenomenon resulting from antibiotic treatment. Another fact
supporting this conclusion is that the association we observe between microbial diversity
and clinical measures of inflammation is observed within the CF group, not between the CF
group and the untreated control group.

The strong connection between microbial diversity and inflammation in the lung directly
connects clinical parameters with quantitative details of microbial ecology and suggests that
the pattern of diversity contributes more to clinical presentation than the load of any
particular pathogen. This finding and that of an endemic pulmonary microbiome in healthy
individuals have the potential to inform current treatment paradigms for lung diseases
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characterized by infection or inflammation, including chronic obstructive pulmonary
disease, diffuse bronchiolitis, bronchiectasis, and asthma (53, 54). Rather than aggressively
prescribing broad-spectrum antibiotics, clinicians might introduce targeted antimicrobials
and probiotic therapies (55, 56) intended to regulate pathogen activity and enhance the
efficacy of natural immune mechanisms with reduced long-term toxicity to the patient and
the healthy microbiome (57).

MATERIALS AND METHODS
Methods summary

We extracted DNA from subject samples and preparatively amplified the 16S ribosomal
gene sequences using bar-coded PCR universal fusion primers, where the 16S
complementary portions were 515F/1391R (58) for sputum samples and 515F/907R for lung
explant samples. This PCR product was quantified with real-time and digital PCR (59) and
sequenced on the 454 platform (sputum samples) or Ion Torrent platform (lung explant
samples).

Subject recruitment
Human subject research approval was obtained for sample collection, and subjects signed
informed consent that allowed the banking of their specimens for later use. For this study,
we included sputum samples from a cohort of adults with significant CF disease; Table 1
presents the characteristics of the CF subjects from whom sputum samples were obtained.
All these subjects had a history of chronic Pseudomonas aeruginosa infection and had a
sputum culture within a month of study participation that grew predominantly P. aeruginosa
(mucoid and nonmucoid species). Sputum samples were selected at time points for which
clinical status and medication (including antibiotics) had been stable for 6 months or more.
Control individuals were adults with no history of pulmonary disease and no systemic
antibiotic use 6 months before sampling. All of the CF patients were at a stable clinical
baseline at the time of sampling (that is, were not experiencing pulmonary exacerbation).
Many of the patients were receiving antibiotic treatment at this time, although three were
not. Because six different antibiotics were prescribed variously to subsets of individuals, the
statistical power of this study to determine antibiotic treatment–microbiome correlations was
limited.

Explanted lung tissue samples were collected from normally scheduled transplant surgeries
at the Stanford Medical Center in 2011. Recipients had been diagnosed with either CF
(three), idiopathic pulmonary fibrosis (one), interstitial lung disease (two), or chronic
obstructive pulmonary disease (one). Table S1 presents data on the lung transplant patients
from whom explanted tissues were obtained.

Sample collection and preservation
The methodology to obtain lower airway secretions has been well standardized by our
group. In brief, subjects were asked to inhale nebulized (high-output nebulizer) 3%
hypertonic saline solution for 3 min. The subjects then are asked to take a deep inhalation,
clear their mouth of saliva, forcefully cough three times, and expectorate into a sterile
container. This maneuver is repeated four more times, and all the sputum collected was
preserved by mixing with RNA later (Ambion), pooled into a single specimen, immediately
snap-frozen in liquid nitrogen for later batch processing, and stored at −80°C.

Induced sputum is an accepted method of sampling the lungs in CF studies that, despite
limitations, compares favorably with alternative methods (29, 30, 60–62). Sputum samples
transit the upper respiratory system during collection; however, the high viscosity of sputum
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minimizes its mixing with fluids in the upper respiratory tract (for example, saliva) (29). On
the other hand, the upper respiratory system is contiguous with the lung, and its microbial
consortia possibly affects the etiology of CF. Temporal variation in mucus properties and
the geography of production inside the lung could affect the geography and efficiency (cells
per milliliter of sputum vis-à-vis cells per gram of lung tissue) of sampling.

The explanted lung tissue was refrigerated and processed within 24 hours of the transplant
procedure. Samples up to 0.5 g were excised from the explants and frozen at −80°C until
they were processed for DNA extraction (90 samples were obtained in total).

DNA extraction
DNA was extracted from each sputum or explant sample with the Qiagen DNeasy Blood &
Tissue Kit, generally following the pretreatment steps for Gram-positive bacteria, including
the optionally indicated mechanical disruption step. In detail, 50 µl of sputum or 50 mg of
explant tissue was washed twice with phosphate-buffered saline (tissue samples were not
washed) and then combined in 2-ml microcentrifuge tubes with 50 mg of acid-washed glass
beads (equal mass portions: 212 to 300 µm, Sigma G1277; 150 to 212 µm, Sigma G1145;
and 425 to 600 µm, Sigma G8772) and 300 µl of 20 mM tris, 2 mM EDTA, and lysozyme
(20 mg/ml). Disruption was carried out for 5 min at 30 Hz in the TissueLyser II instrument
(Qiagen). Fifty percent Tween 20 (9 µl) was added to the sample, which was then mixed and
allowed to incubate for 30 min at 37°C. DNeasy buffer AL (300 µl) and proteinase K (15
mg/ml) (38 µl) were then added, and a 30-min incubation at 56°C was carried out. Two
hundred proof ethanol (300 µl) was added to the samples, which were mixed and applied to
DNeasy spin columns. The columns were washed with 500 µl of DNeasy buffer AW1 and
then with 500 µl of the DNeasy buffer AW2. The columns were dried before elution of the
extracted DNA with DNeasy buffer AE (200 µl).

Quantification of the extracted DNA
The extracted product was initially quantified by ultraviolet light absorption at 260 nm on a
NanoDrop spectrophotometer (Thermo Scientific). The results indicated that the quantity of
extracted DNA was somewhat lower in control sputum samples (2.1 ± 0.7 ng/µl) compared
with the CF sputum samples (2.3 ± 1.2 ng/µl). 16S gene copy numbers were estimated by
qPCR with universal small subunit rRNA (SSU rRNA) gene primers (58) and by the
universal TaqMan scheme (59, 63) with the locked nucleic acid FAM probe 149 (Roche).
The primers, with sequences 515F GTGCCAGCMGCCGCGGTAA, 515F-UPL
GGCGGCGAGTGCCAGCMGCCGCGGTAA, and 1391R GACGGGCGGTGWGTRCA
(sputum samples) or 907R CCTCCGTCAATTCCTTTRAGTTT (explant samples), were
obtained as desalted synthesis products from Integrated DNA Technologies (IDT). A
standard hot-start (10 min, 95°C), two-step (95°C, 30 s; 60°C, 60 s) PCR program was used
on an MX3005-P thermocycler (Stratagene) with Applied Biosystems TaqMan Gene
Expression Master Mix. Escherichia coli genomic DNA was serially diluted to generate a
standard curve. The qPCR-determined SSU rRNA gene concentration values for the sputum
and tissue sample types were comparable.

After the removal of human DNA sequences (see Sequence quality filtering section), the
control samples again showed a slightly lower quantity of DNA than was found in the CF
samples (table S4). We interpreted these values as amplifiable rDNA units and found that
the difference in the average DNA quantity between the cohorts was not significant (P =
0.37).
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Amplification and library generation
Between 100,000 and 1,000,000 amplifiable rDNA units, determined by qPCR
quantification of the extracted DNA, were used as the template for a preparative PCR to
generate adapted and bar-coded 16S amplicons for 454 DNA pyrosequencing with titanium
chemistry. For sputum samples, the primer sequences were Ti-A-MID-515F (5′-
CATCCCTGCGTGTCTCCGAC-TCAG-XXXXXXXXXX-
GTGCCAGCMGCCGCGGTAA-3′) and Ti-B-1391R (5′-CCCTGT-
GTGCCTTGGCAGTC-TCAG-CA-GACGGGCGGTGWGTRCA-3′), where
XXXXXXXXXX represents one of 20 standard Roche 10-base bar code sequences used in
this study. These primers were obtained polyacrylamide gel electrophoresis–purified from
IDT.

The reverse primer 1391 was found to be insufficiently selective for microbial DNA against
the stronger human signal in tissue samples in 454 sequencing. For this reason, the 907R
reverse primer was used to generate indexed libraries that could be deep-sequenced on
Illumina MISeq instrument. After failed sequence runs and Illumina primer redesign, the
highest-quality Illumina libraries were converted for fast-turnaround sequencing on the Ion
Torrent Personal Genome Machine with the primers PGM-B-515F (5′-
CCTCTCTATGGGCAGTCGGT-GATCAGTGCCAGCMGCCGCGGTAA-3′) and 5′-
PGM-A-P7 (CCATCTCATCCCTGCGTGTCTCCGACTCAGGGCAAGCAGAA-
GACGGCATACGAGAT-3′). The thermal program—94°C, 5 min; then 6 to 10 cycles of
92°C, 20 s; 50°C, 30 s; 65°C, 60 s; 75°C, 60 s; 70°C, 60 s—was applied to the samples with
an additional 10-min 70°C final extension step. The PCRs were carried out in a 50-µl
volume with Platinum HiFi Master Mix (Invitrogen) on an MJ PTC-100 thermocycler.
Reaction products were purified by the QIAQuick method (Qiagen), followed by a solid-
phase reversible immobilization purification and size-selection step on calibrated AMPure
magnetic beads (Agentcourt) according to the Roche/454 method.

Sequence library quantification
The purified libraries were quantified with the previously described digital PCR method
(59), except that the 48.770 Digital Array (Fluidigm) was used for the microfluidic digital
PCR step and amplification primers complementary to the Titanium adaptor sequences were
used. Briefly, serial dilutions of the sequencing libraries were made in 20 mM tris buffer
with 0.02% Tween 20. The quantitated libraries were then diluted to 105 molecules/µl in 20
mM tris with 0.02% Tween 20 and aliquoted for storage at −60°C.

Sequencing of 16S amplicons
We carried out 16S amplicon sequencing on the 454 platform using “Titanium” chemistry
for the sputum samples. Emulsion PCR was carried out with DNA/bead ratios between
0.08:1 and 0.3:1. We chose sequencing of the V4/V5 region of the 16S gene on the 454
Titanium platform over alternative methods including 16S gene clone sequencing (12, 14,
15), temporal temperature gradient gel electrophoresis (11), length heterogeneity PCR (10),
T-RFLP analysis (12, 13, 62), and microarray approaches such as the Phylochip (19) for a
variety of reasons. Although full-length 16S gene sequences are routinely obtained when
sequencing clones and aid phylogenetic assignment at high resolution, V4/V5 sequences can
be classified with very high confidence at lower levels of phylogenetic resolution (64, 65).
All of these methods are subject to biases introduced at early steps including DNA
extraction and PCR amplification and during the preparation of sequencing libraries and the
sequencing procedures. Specific procedures can be established to minimize these biases and
should be regularized across samples such that intersample analyses detect sample-
dependent rather than procedural variation (the differences in primers and sequencing
platform between sputum and lung explant samples are the reasons we limit the comparison
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of the disparate sample types to presence/absence).Molecular bar coding and large sample
sets are necessary to reduce per-sample costs in high-throughput screening, and accurate
library quantification (59) is critical to obtain adequate representation of all the samples.

We obtained between 1971 and 62,807 raw 16S sequence reads from each sputum sample
(387,309 total reads). Between 3 and 80% of the sequences obtained from each sample using
the degenerate primers were identified as host-derived. The fraction of human DNA was
80% higher in patient samples (average, 32%) than in controls (average, 18%), and this
difference was significant (t test for unequal variances, P = 0.002). After eliminating human
sequences and reads less than 150 base pairs (bp) long, the number of high-quality microbial
reads per sample ranged from 1389 to 48,525 (219,804 in all). Using the RDP classifier, we
assigned a microbial phylum to 219,728 reads. A total of 862,806 reads were obtained from
21 explant samples, a negligible fraction of which originated from host cells. Four hundred
fifty-four sequences were demultiplexed with the Roche-supplied SFF file software tool
with standard parameters, whereas PGM sequences were demultiplexed in the MOTHUR
environment (66).

Sequence quality filtering
Human sequences were filtered from all sequence data on a local server by running the basic
local alignment search tool plus (blast+) (http://blast.ncbi.nlm.nih.gov) with the following
command: blastn -query [query file] -db [human genome database] -num_descriptions 20 -
culling_limit 2 -max_target_seqs 10 -out [output filename] -task megablast -evalue 20 -
outfmt 6 -num_threads 6. Sequence reads with hits were omitted from subsequent analyses.
The results were insensitive to moderate changes in the parameter values. Custom code that
was run in the Matlab (MathWorks) environment was used to check for and trim primer
sequences and eliminate 454 reads shorter than 150 bases. To compare with a more stringent
filtering procedure, we alternatively filtered 454 reads from selected samples in the
MOTHUR environment for quality, alignment frame (perfect start required against the
curated Silva bacterial database), maximum homopolymer size (no greater than 8), the
absence of ambiguous bases, and chimeras (chimera slayer algorithm) after removal of
human sequences. Although some additional sequences were removed, the resulting
distribution of sequence classifications was not significantly altered, indicating the use of
classification confidence filtering (indicated as Classification, below) in rejecting
problematic sequences from the classification results. PGM reads representing the explant
samples were filtered similarly in the MOTHUR environment, but with a minimum length
requirement of 125 bp rather than 150 bp, and without the chimera removal step. PGM reads
(317,081) remained after these filtering steps, with the 125-bp requirement dominating the
attrition of reads.

Classification
Phylogenetic classification was carried out with the RDP MultiClassifier (August 2010
release) (23). More than 98% of the filtered 454 reads were assigned to one of the RDP
phyla at the 95% confidence level. For classification of 454 reads at each taxonomic level,
we required 95% confidence at the phylum level and 80% confidence at every descending
taxonomic level. The results were relatively insensitive to variation of the “confidence level”
parameter between 50 and 80% at these levels of phylogenetic resolution. Most of the
filtered 454 sequences (96%) were successfully classified down to the family level with
greater than 80% confidence. High-confidence genus-level classifications corresponding to
candidate phyla were back-propagated to intermediate taxonomic levels. The PGM reads
were similarly classified, except that 50% classification confidence was accepted for these
shorter sequences.
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Principal components analysis
The classification data were analyzed with a custom code in the Matlab environment. These
bootstrap samples were mean-centered and variance-normalized with a custom Matlab code
to even out the contribution of each classification category. This makes PCA less sensitive
to the outgrowth of a particular pathogenic strain, for instance, and allows variation in less
abundant (but still adequately sampled) groups to contribute to the analysis. Taxa with
overall occurrence greater than 0.03% or representation of at least 0.01% in three or more
samples were included (12 phyla, 41 families). For each sample, 1000 read classifications
were sampled 100 times with replacement. This type of subsampling is commonly used to
empirically describe the statistics of a given data set. The approach is referred to as “the
bootstrap” in statistics (67) and has several advantages over classical methods, including
accuracy for non-Gaussian error distributions and faster convergence than regression
analysis.

PCA was carried out on the entire collection of bootstrap samples. The distances among CF
samples and those among healthy control samples in the PCA space were calculated with a
custom Matlab code. We tabulated Euclidian distances between all combinations of
intracategory bootstrap replicates (excluding bootstrap replicate comparison within a given
subject sample) in the PCA space with the indicated dimensionality (Fig. 2C) and calculated
the mean and SD of the distance value distributions.

DMI and clinical indices
The DMI of a phylogenetic category, DMIcategory, is defined as follows: If A = 0,
DMIcategory = 1, else, DMIcategory = 0.8 × [log(A) − log(B)]/log(B), where A is the number of
Genomes OnLine Database (GOLD) genomes and genome projects in the phylogenetic
category, and B is the number of GOLD genomes and genome projects in the phylogenetic
domain. The DMI of a given sample (DMIsample) is defined as the dot product of the phylum
fractional abundance vector and the calculated DMIcategory vector.

Groups of correlated clinical variables were variance-normalized and averaged to form
indices in the following combinations: The pulmonary severity index was determined from
the functional vital capacity percentage predicted (FVC%) and the forced expiratory volume
in 1 s, percentage predicted (FEV1%). The inflammatory severity index was determined
from measurements of sputum elastase, sputum T protein, sputum tumor necrosis factor–α,
sputum interleukin-6, and sputum interleukin-8 concentrations. The two spirometry
parameters (FVC% and FEV1%) were correlated with r = 0.77, and the correlation
coefficients of the 10 pairs of inflammatory metrics averaged r = 0.49 with an SD of 0.24.
Figure S3 presents a histogram of these values.

Diversity estimates
The diversity of each sample was estimated at the phylum and family levels on the basis of
the Shannon and Gini-Simpson measures as calculated on bootstrap subsamples (100 sets of
1000 read classifications for each sample) with a custom Matlab code.

Comparison of taxon occurrence
Comparisons of the occurrence of taxa in the CF and control sputum samples with that in the
explant samples were made at the phylum and family levels. Each taxon was scored as a
match in pairwise comparisons if so-classified reads were present in each sample or if reads
were present in both samples at less than 0.1%. The definition of absence was relaxed
slightly to effectively exclude rare taxa that may not have a clinical impact or be reliably
detectable in our approach. The coverage of taxa scored in one sample by another is
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tabulated as the percentage of matches in the total number of comparisons made. At the
family level, >82% of classifications in the control sputum samples were matched by the
lung explant sample classifications, whereas >85% of classifications in the CF sputum
samples were matched by the lung explant sample classifications (see table S5).

Statistics
Pearson product-moment correlation coefficients among microbiological and clinical
variables were calculated in the Matlab programming environment. Significance testing of
various metrics was carried out with the Student’s t test for unequal variances (68). P values
were determined by integration of Student’s t distribution with appropriately determined
degree-of-freedom parameters, except where a z test (69) was indicated for categorical data.
P values that report representation differences among microbial taxa were Bonferroni-
corrected (70) for multiple testing on the basis of the number of comparisons made (12
comparisons for phyla, 41 comparisons for families). P values for ratios of taxonomic
groups were not corrected because specific taxa were chosen for significance testing on the
basis of the literature and our PCA results. Error bars represent SEM. In Fig. 2C, the sample
number used for calculations of SEM and P values is the number of intersubject
comparisons: 36 for the control set and 120 for the CF set.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Phylum-level analysis of 16S rRNA gene sequences from CF patients and healthy control
individuals. (A) Representation of microbial phyla in subject sputum. (B) Diversity of
microbiota in the sputum of CF and control patients. (C) Ratio of Firmicutes to
Bacteroidetes in the sputum of CF and control patients. (D) Representation of uncultivated
organisms in the sputum of CF and control patients according to our DMI (see Materials and
Methods for definitions).
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Fig. 2.
PCA of sequence classification occurrence. (A) Phylum-level and (B) family-level
classification data are presented on the same scale in the two representations in each part.
Data variance in each populated category (here, 12 phyla or 41 families) is normalized to
minimize the influence of large variations in the abundance of one group across samples on
the overall analysis. To test the PCA for robustness and dependence on sequencing depth
(e.g., counting statistics for rare species), we repetitively rarefied the data, sampling 1000
sequences 100 times (with replacement) from each sample, and performed PCA using all
2500 (25 samples by 100 subsamples) subsamples. Points correspond to individual bootstrap
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replicate samples, with study subject clusters marked where distinct. The 16 CF samples
(red points) cluster separately from controls (blue points). Solid gray lines show the
projected original coordinates (corresponding to microbial taxonomic groups). (C) Mean
interindividual PCA distance for the two study populations. Mean distances in the family
PCA space among the 900 control subsamples (n = 360,099) and 1600 CF subsamples (n =
1,200,099) are plotted in consideration of an increasing number of PCA components (PC1,
PC1, and PC2, and PC1, PC2, and PC3). Controls are separated to a much greater degree
than are CF samples (t test for unequal variances, P < 10−6). (D) Ratio of Veillonellaceae to
Micrococcaceae can be used to segregate subject population by clinical status. Box plots
represent data quartiles with outliers indicated.
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Fig. 3.
Phylum-level correlations with clinical parameters. (A and B) Scatter plots reveal
correlation of the Shannon diversity index (A) and the Simpson diversity index (B) with the
inflammatory severity index.
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Table 1

Summary of CF subject characteristics.

Age in years (mean ± SD) 28.14 ± 7.23

Gender 10 male, 6 female

FVC (mean ± SD), liters 3.88 ± 0.60

  % – Predicted 85.65 ± 8.9

FEV1 (mean ± SD), liters 2.72 ± 0.54

  % – Predicted 71.89 ± 12.70

CFTR genotype

  p.Phe508del/p.Phe508del 7

  p.Phe508del/other 4

  Other/other 2

Sweat chloride (mM) 97.40 ± 29.29

Number of patients on chronic antibiotic therapy (not mutually exclusive)

  Oral azithromycin 9/15

  Inhaled tobramycin 8/15

  Inhaled colistin 5/15

  Oral dicloxacillin 1/15

  Oral levofloxacin 1/15

FVC, full vital capacity; FEV1, forced expiratory volume, 1 s; CFTR, gene encoding the cystic fibrosis transmembrane conductance regulator.
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