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Abstract
One of the biggest challenges in averaging ECG or EEG signals is to overcome temporal
misalignments and distortions, due to uncertain timing or complex non-stationary dynamics.
Standard methods average individual leads over a collection of epochs on a time-sample by time-
sample basis, even when multi-electrode signals are available. Here we propose a method that
averages multi electrode recordings simultaneously by using spatial patterns and without relying
on time or frequency.

Index Terms
Biomedical signal processing; Electrocardiography; Electroencephalography; Multidimensional
signal processing; Time series analysis

1. INTRODUCTION
Extracting relevant parameters from biomedical signals such as EEG or ECG is important.
One approach to deal with problems with noise from sources like muscle artifacts, baseline
interference or measurement noise its to make repeated observations of the same underlying
phenomenon and average. Averaging is usually done over the ensemble of signals at each
time point, based on the assumptions that all the observations are time-shifted versions of
the same underlying signal perturbed with additive noise. Therefore, with the appropriate
alignment, performed manually or automatically [1], equivalent signal features across beats
occur at the same sample times. In practice, alignment is not a completely solved problem,
and it has been shown that misalignments lead to significant errors in averaging accuracy
[2]. Moreover, both in the brain and the heart, the assumption that different observations are
all pure shifted versions of the same underlying signal is a strong assumption. Processes like
habituation or sensitization in the brain, or heart rate dependent variability, suggest that
other factors may cause observations to vary in a manner not consistent with this
assumption.

In most settings multiple electrodes are used for EEG or ECG. Although these signals
contain different measurements of the same underlying electrical activity, averaging is
usually performed on an electrode by electrode basis. We propose here a method that uses
multi-electrode recordings to perform averaging by defining similarity in terms of spatial
patterns in the across-electrode snapshots without relying on time dependence. Our method
avoids explicit alignment and allows robustness to variable temporal dynamics.
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Single-lead ensemble averaging has been extended by several approaches, such as optimal
weighted averaging [3, 4], but with no added robustness to alignment errors. A number of
methods have used signal decompositions (e.g. wavelet transforms [5], empirical mode
decomposition [6], filter banks [7], adaptative filtering [8]) or statistical factorizations such
as principal or independent component analysis [9, 10]. However, all of these methods rely
on thresholding to distinguish between signal and noise. Moreover, many treat individual
leads independently. EMD and PCA [11] do not, for example, but the former approach is
still being studied and the latter is restricted to linear decomposition of the multidimensional
signal.

In a more general setting, this problem has been addressed by time warping multivariate
time series prior to averaging. One approach, which comes with a considerable
computational burden, has been to use dynamic time warping (DTW) [12] to obtain pairwise
time warps. Our method differs from this approach because it avoids explicitly computing
pairwise time warps, instead treating all observations jointly.

Specifically we treat each snapshot across all electrodes as a point in the appropriate vector
space which traces, as it evolves over the duration of the observation, as a curve in that
space. We define similarity of these spatial patterns based on distance in the vector space.
As in [13], we assume that the sample trajectories lie near a true underlying continuous
trajectory in that space, with no fixed velocity along the path. Rather instantaneous
velocities along the path can be different between observations. Our approach is to search
for the single curve that explains the set of sample curves, in effect traveling through the
middle of the observations, similar to the principal curve concept introduced by Hastie [14].
Although conceptually similar, we will approach the problem differently. In particular since
the unknown over which the optimization is performed in principal curves is the continuous
curve itself, which is then discretized, whereas we will use an explicit parametric curve.

2. METHODS
We denote the multi-electrode signal as a multi-channel time-varying vector:

(1)

where N is the number of electrodes. We parameterize the desired curve as a piecewise
cubic spline in each electrode dimension; the number of knots is fixed but the knot locations
are unknown. Because cubic splines also have two extra parameters to specify, we added the
derivatives at the first and last knot points to the knot locations as unknown parameters,
collecting all parameters into the variable θ. Then we minimize the total distance of the data
to the unknown curve as a function of θ in the multidimensional space. Geometrically, we
seek to minimize the sum of Euclidean distances squared from all data points to their
projection onto the curve. We approximate the projection of a point to the curve by
searching over a discrete set of candidate points, regularly sampled from the continuous
curve at regular intervals of the curve parameter s. The optimization problem is then:

(2)

(3)
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where c(s, θ) is the parameterized curve, M is the total number of observed data points, si is
the curve parameter of the curve point onto which x[i] projects, and S the collection of
discrete candidate points si. We solve this problem using the Nelder-Mead simplex
reflection method [15]. We initialize this algorithm by choosing the best fit individual
observation after regularly sampling all observations to select knot points, and estimating
their end point derivatives using finite differencing. The initialization is thus chosen to be a
trajectory going through the middle of the point cloud. The averaged curve is the local
minimum found by our optimization algorithm starting from this initialization.

2.1. Denoising individual observations
After solving the optimization problem, our resulting curve is parameterized by a curve
parameter which is a warped version of the original observation time domain. In order to
recover the original timings of our observations, we project all the samples of each
observation to the closest point on our averaged curve, yielding a de-noised version of the
observation which preserves its original individual “velocity”. This step can be regarded as a
nonlinear filter. Furthermore, the same procedure provides the Time Warping Function,
which relates the original time domain in individual observations to the values of the curve
parameter s to which the observations get projected onto.

3. EXPERIMENTS
In order to show the performance of the proposed method we report here on two different
types of multi-electrode electrocardiogram signals. The first dataset starts with a standard
measured 12 lead ECG and synthesizes noisy, misaligned measurements, while the second is
a clinically-recorded dataset using a 120 electrode torso array (called a “body surface
potential map”).

3.1. 12 electrodes synthetic torso dataset
We used a normal sinus rhythm heartbeat recorded from a healthy patient available from the
ECGSIM software package [16]. The sample rate was 1000 Hz. We extracted only the QRS
complex q(t) for our study. We generated 20 synthetic heartbeats xj(t), j = 1, 2, …, 20 from
the original data by time-shifting and then adding noise as follows:

(4)

(5)

where n(t) is zero-mean additive Gaussian noise whose variance was chosen to match a
number of different signal-to-noise ratio (SNR) values.

We note that because we choose the SNR globally across all leads, we mimic a realistic
scenario where the amplifier noise is not signal dependent. The effect is that individual
signals will have different effective SNRs.

The actual SNR is also affected by the misalignment. Thus we calculate an initial SNR
(SNR0) for xj(n) as follows:

(6)
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where T is the total number of time samples. We denote the denoised versions of our
individual heartbeats as x̂j(n). In the Fig. 1a we have plotted the Time Warping Functions
that we obtained after projecting all the heartbeats with an input SNR of 25 dB onto an
averaged curve with 9 knot points. This figure reveals clearly that the only difference in
timing between heartbeats is a global shift, shown by the constant translation difference
between the curves. We also note that one heartbeat gets projected from the beginning of the
beat to the end of our average curve. This is due to the fact that our heartbeats are periodic in
space, because they start and end around the baseline. With no timing constraint in the
projection step, the nearest neighbor to a point in the beginning of a heartbeat can be in the
end of our average curve, and vice versa. To quantify the performance of the proposed
method we calculated the SNR improvement in each lead SNRimpl across all the denoised
heartbeats:

(7)

This measure allows us to compare the performance of our method to the results that were
obtained by applying ensemble averaging to all the heartbeats on a lead by lead basis,
without performing any time alignment previous to it, as shown in Fig. 1b, using 9 knot
points in our method. Our method performs better on all twelve leads. We think it is
important to point out that the improvement in this figure includes both the noise removal as
well as the overcoming misalignments. Finally we have calculated a scalar measure SNRimp
of the performance of our method by averaging SNRimpl across leads. When we described
the mathematical details of our method we mentioned that the number of knot points used to
create the splines was fixed, which implies a model order selection step. In Fig. 1c we have
used the metric of SNR improvement across leads to study how the proposed method
performs for different numbers of knot points and input SNR. We observe that if the level of
noise is high, the performance of the method is stable for different numbers of knot points.
However, if it is low compared to the amplitude of the signals using more knot points
improves performance, presumably because we obtain a more refined version of the average
curve.

3.2. 120 electrode torso dataset
In the second study we used body surface potentials recorded from a subject at the Charles
University Hospital in the Czech Republic during a clinical procedure. The heart was paced
by applying electrical stimuli to the interior wall of the left ventricular blood chamber at
multiple sites with the tip of a CARTO ablation catheter. Measurements were recorded at a
2048 Hz sampling rate from 120 torso leads, and two of them were discarded as defective
recordings. Again we considered only the QRS complex, and a baseline correction was
performed. We present results for 28 heartbeats paced from the mid-anterior part if the left
ventricle, although different pacing sites were also studied and all showed similar results.
The presence of a “pacing spike” in the data allowed accurate alignment of the beats by a
manual procedure. We performed ensemble averaging on a lead by lead basis as well as
using our approach.

Fig. 2 summarizes these results. We observe that in the resulting Time Warping Function
(panel (e)) the translation behavior of the curves for different beats is now time dependent,
suggesting that the instantaneous velocities in the different heartbeats vary. To further study
the results, we have plotted body surface maps (shown as colormapping of interpolated
potential values along with isopotential contour line). We show maps for two heartbeats in
the same (real) time instant in panels (a) and (b) along with the result of performing
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ensemble averaging over all beats in panel (d) (as shown by the vertical green bar in panel
(e). In panel (c) we show another map which was recorded at a different sample time, but
which was warped to the same time instance as the map in panel (b). Panel (f) shows the
spatial average map we obtained by our method (as shown by the horizontal blue bar in
panel (e)). The results illustrate that the individual beats chosen indeed reflect different
“velocities” during the heartbeat, so that maps at the same time post-stimulus are quite
different, but the spatial patterns travel over similar trajectories, so that after time-warping
we can average similar maps. Clearly this similarity cannot be seen on a lead-by-lead basis
but rather depends on the nature of the trajectories in the higher-dimensional space. Finally
we note that in this case we used 10 knot points in our parameterization.

4. DISCUSSION
We have shown that time misalignments, noise, and variability in underlying physiological
parameters can lead to significant errors when performing averaging. Our proposed spatial
averaging method allows a more coherent averaging and in addition showed improvement in
signal to noise ratio both in individual leads (1b) and across them (1c).

Finally, there are several aspects of the method we propose that remain to be studied. For
one, we have mentioned that we do not impose any restriction in the projection step that
accounts to errors due, for example, to signals that show a periodic pattern. Secondly, as a
result of our method we obtain a parametric curve that explains the spatial pattern of our
signals, which implies a continuous solution that could be used in prediction or for
interpolation purposes. Furthermore, we compress the parametric solution in just several
parameters (knot points locations and derivatives in first and last one of them) which could
also be explored for compression purposes or increasing computation efficiency.
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Fig. 1.
Results obtained in the 12 lead synthetic scenario
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Fig. 2.
Body surface maps of 120 torso leads. From the Time Warping Function extracted from all
the heartbeats (e) with 10 knot points we show two body potential maps corresponding to
the same time sample in two different heartbeats (figures (a) and (b)), and the result of
averaging all the heartbeats across that time sample in figure (d). We have highlighted such
process in the Time Warping Function as a vertical grouped heartbeats (blue). Separately,
we have highlighted a set of heartbeats that correspond to similar spatial locations with an
horizontal group (green) and plotted the body maps of two of them in figures (a) and (c).
Finally, the result of the proposed method for such spatial location with 10 knot points is
shown in figure (f).

Orellana et al. Page 8

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2014 January 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


