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Abstract
In many clinical trials, a single endpoint is used to answer the primary question and forms the
basis for monitoring the experimental therapy. Many trials are lengthy in duration and
investigators are interested in using an intermediate endpoint for an accelerated approval, but will
rely on the primary endpoint (such as, overall survival) for the full approval of the drug by the
Food and Drug Administration. We have designed a clinical trial where both intermediate
(progression-free survival, (PFS)) and primary endpoints (overall survival, (OS)) are used for
monitoring the trial so the overall type I error rate is preserved at the pre-specified alpha level of
0.05. A two-stage procedure is used. In the first stage, the Bonferroni correction was used where
the global type I error rate was allocated to each of the endpoints. In the next stage, the O’Brien-
Fleming approach was used to design the boundary for the interim and final analysis for each
endpoint. Data were generated assuming several parametric copulas with exponential marginals.
Different degrees of dependence, as measured by Kendall’s τ, between OS and PFS were
assumed: 0 (independence) 0.3, 0.5 and 0.70. This approach is applied to an example in a prostate
cancer trial.
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1 Introduction
In many clinical trials a single endpoint is used to answer the primary question and forms
the basis for monitoring the experimental drug. Many clinical trials are lengthy in duration
and there is widespread interest among clinical investigators and pharmaceutical firms in
employing surrogate or intermediate endpoints to assist in making decisions about the
efficacy of certain drugs. Thus, more than one primary endpoint may be employed in the
design and in the monitoring in the clinical trial. For a drug or a device to be considered
efficacious, it must demonstrate tangible clinical benefit, generally defined as an
improvement in survival or improvement in symptoms [1]. The Food and Drug
Administration (FDA) established accelerated approval for oncology products by the
Oncology Drug Approval Committee (ODAC) if the product is “reasonably likely to predict
clinical benefit or an evidence of an effect on a clinical benefit other than survival” [2]. As a
result, many investigators and pharmaceutical firms are interested in using an intermediate
endpoint for an accelerated approval, but will rely on the primary endpoint for the full
approval of the drug by the FDA.
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In most randomized clinical trials, interim monitoring of data is a common practice if not a
requirement. Group sequential designs developed by Pocock [3] and O’Brien-Fleming [4]
have been widely applied. In addition, the more flexible alpha spending approaches
proposed by Lan and DeMets [5] have been widely implemented. Other designs developed
by Pampallona and Tsiatis [6] and Lakatos [7], who implemented the group sequential
design for survival endpoints, are employed. Whitehead [8] proposed a straight line
approach for comparing survival curves, while Jennison and Turnbull [9] support the use of
repeated confidence intervals for monitoring a trial.

Most of the authors of the literature cited above apply sequential monitoring designs for one
endpoint. Jennison and Turnbull described a method for monitoring two endpoints, namely
efficacy and safety endpoints [10]. On the other hand, Cook and Farewell proposed an
asymmetric procedure to control for the type I error rate for one efficacy and one toxicity
response outcome [11]. Todd proposed an adaptive method for monitoring bivariate
endpoint that can be extended to the multivariate case [12].

We sought to design the SPARC trial, a phase III trial in men with castrate resistant prostate
cancer (CRPC) who failed first line chemotherapy where both intermediate (progression-
free survival, PFS) and primary (overall survival, OS) are used for monitoring the trial. The
sponsor believes that there is an unmet need and would like to use the PFS endpoint for
accelerated approval, but OS, which requires more follow-up, will be used for full approval
of the drug by the FDA. In this study, PFS is defined as time from randomization to time of
disease progression (either bone, tumor, clinical or pain). OS is defined as interval between
time of randomization to time of death from any cause. Both of these endpoints are time-to-
event and there is some degree of dependence between them.

The main questions that we are interested in answering are: 1) how to allocate the type I
error rate between these time-to-event endpoints when there is a dependence, 2)what is the
impact of univariate monitoring of each endpoint on the global type I error rate and marginal
type I error rates for each of the two endpoints, and the proportion of not terminating the
trial early and 3)what is the impact of univariate monitoring of each endpoint on the global
power and univariate power for each of the two endpoints, and the proportion of terminating
the trial early.

In this article, we consider an approach that will allow statisticians to design a trial for
monitoring two co-primary time-to-event endpoints when there is a dependence structure.
We investigate the global and marginal type I error rates and the power empirically using
extensive simulations. Furthermore, we study these operating characteristics under several
dependence structures by using parametric copulas. Finally, we investigate the operating
characteristics of the design using different allocation of the type I error rate.

2 Methods
A simulation framework that does not incorporate dependency between OS and PFS may be
unrealistic. To address this issue, we will employ copulas to generate OS and PFS under
various dependence structures. From a statistical perspective, a copula is a bivariate
distribution function with uniform marginals. Suppose that (U, V ) is a random pair with
uniform marginals (i.e, P[U ≤ u] = u for all u ∈ [0, 1] and P[V ≤ v] = v for all v ∈ [0, 1]).
Then the copula, say ℂ, associated with (U, V ) is defined as

(2.1)
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for all (u, v) ∈ [0, 1]2. Given a pair of continuous marginal distribution functions, say F1 and
F2, the function (U, V ) is distributed according to ℂ if and only if

 is distributed according to ℍ,

(2.2)

Due to a result by Sklar [13], for any random pair (X, Y ) with marginals F1 and F2, there
exists a copula ℂ. Furthermore, the representation is unique if the marginals are continuous.

Suppose that (U, V ) is a random pair with uniform marginals generated by copula ℂ. Also,
suppose that f− and f+ are decreasing and increasing functions from [0, 1] into [0, 1]. Then U
and V are independent if and only if ℂ[u, v] = [u, v] = uv, U = f−[V ] almost surely if and
only if ℂ[u, v] = [u, v] = max[u + v − 1, 0] and U = f+[V ] almost surely if and only if ℂ[u,
v] = [u, v] = min[u, v], for all (u, v) ∈ [0, 1]2. Furthermore, for any copula L[u, v] ≤ ℂ[u, v]
≤ [u, v] for all (u, v) ∈ [0, 1]2. The copulas  and  are called the lower and upper
Frechet-Hoeffding bounds.

There exists a rich family of copulas where the dependence structure is parameterized by a
single parameter. We will consider three examples. The normal copula is defined as

(2.3)

where θ ∈ [−1, 1]. Here  denotes the quantile function for a univariate standard normal
distribution and Φ2[·, ·, ρ] denotes the distribution function for a standard bivariate normal
distribution with correlation parameter ρ ∈ [−1, 1]. Frank’s copula is given as

(2.4)

where θ ∈ (−∞, ∞) − {0} Finally, Gumbel’s copulas is given by

(2.5)

where θ ∈ [1, ∞).

For the normal copula, ℂ ↑ (↓)  as θ ↑ (↓)0, ℂ ↓  as θ ↓ −1 and ℂ ↑  as θ ↑ 1. We are
using the up- and down-arrows to denote monotone increasing and decreasing convergence.
For Frank’s copula, ℂ ↑ (↓)  if θ ↑ (↓)0, ℂ ↓  if θ ↓ −∞ and ℂ ↑  if θ ↑ ∞. For Gumbel’s
copula, ℂ ↓  if θ ↓ 1 and ℂ ↑  if θ ↑ ∞. Note that unlike the normal and Frank’s copula,
Gumbel’s copula does not admit negative dependence structures.

The dependence parameter in the above-mentioned family may not be easily interpretable.
As such, it may be useful to use standard measures of dependence to quantify the degree of
dependency. There is an intimate relationship between copulas and standard non-parametric
measures such as Kendall’s coefficient of concordance and Spearman’s correlation
coefficient. More specifically, if (X, Y ) is distributed according to ℂ[u, v; θ], then Kendall’s
coefficient is expressible in terms of the generating copula as
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Note that for any copula, the parameter θ corresponding to a desired τ[ℍ] may be obtained
by solving the above equation as a function of θ.

For more details on copulas, see the monographs by Nelsen [14] and Joe [15] and for a
review article with biostatistical applications see Owzar and Sen [16].

2.1 Notations and Assumptions

The actual time-to-event variables are denoted by ( ) respectively. Furthermore, the

joint distribution of ( ) is generated by a known parametric copula ℂ[u, v; θ]. The
marginal distribution function of OS and PFS are assumed to be exponential with rates λOS
and λPFS respectively. The administrative censoring distribution is uniform on the interval
[FU,FU+AP], where AP denotes the accrual period and FU denotes the follow-up time.
Draw Z from a uniform distribution on [FU,FU+AP]. What is observed is (OS, ΔOS, PFS,
ΔPFS), where observed time-to-event variable is then defined as

where x ∧ y denote the minimum of x and y, and the event indicators are defined as

2.2 Description of Simulations
We conducted extensive simulations to evaluate the impact of alpha allocation on the overall
type I error rate, marginal type I error rates for each endpoint and the proportion of time that
we do not terminate the trial early using the SPARC trial as the motivating example.
Because the majority of patients are expected to experience disease progression before
dying, PFS in essence is the same as another time-to-event endpoint known as time to
progression (TTP). Time to progression is defined as the interval between time of
randomization to time of disease progression.

The SPARC trial was a phase III trial where 912 men with CRPC were to be randomized
with 2:1 allocation ratio to either an experimental arm or a placebo. The trial duration was
44 months, with 26-month and 18 months for the accrual and follow-up period, respectively.
The median PFS and OS times in the placebo arm were assumed to be 3 months and 12-
months, similar to the SPARC trial. The marginal distributions of OS and PFS were
generated with exponential distributions with hazard rates of 0.231 and 0.058. The censoring
times were drawn from a uniform distribution on [18, 18+26] as described in section 2.1.
The failure times and censoring times were generated completely independently.

We considered different simulation conditions by varying the following: allocation of type I
error rate (equal vs. unequal), number of interim analysis for the PFS and OS endpoints (one
or two or three), degree of dependence, as measured by Kendall’s τ, between the two
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endpoints (τ=0, 0.10, 0.30, 0.50, 0.70) and family of copula (normal, Frank, Gumbel) using
a two-stage procedure. In the first stage, the Bonferroni correction was used where the
global type I error rate was allocated to each of the endpoints. Two scenarios were
considered: the type I error rate was equally split between the two endpoints (i.e=0.025) or
unequal type I error rate was assumed for the PFS and the OS endpoints: (0.03 for PFS and
0.02 for OS, 0.04 for the OS and 0.01 for the PFS). In the next stage, once the alpha level for
each endpoint was decided, we used the O’Brien-Fleming approach to design the boundary
for the interim and final analysis for each endpoint.

For each of the above scenarios, 10,000 simulated datasets were generated. We were
interested in testing the null hypothesis for the PFS endpoint

(2.6)

against the alternative hypothesis

(2.7)

where λ1a and λ2a are the hazard rates of progression in groups 1 and 2, respectively. In
addition, we were interested in testing the null hypothesis for the OS endpoint:

(2.8)

against the alternative hypothesis

(2.9)

where λ1b and λ2b are the hazard rates of death in groups 1 and 2.

The empirical global type I error rate was estimated as the proportion of simulated datasets
that would reject the null hypothesis of no difference in PFS or no difference in OS or both.
The associated hypotheses are

(2.10)

Furthermore, the empirical type I error rate for the PFS endpoint was estimated as the
proportion of simulated datasets that would reject the null hypothesis of no difference in
PFS (equation 2.6). Similarly, the empirical type I error rate for the OS endpoint was
estimated as the proportion of simulated datasets that would reject the null hypothesis of no
difference in OS (equation 2.8). Under the alternative hypothesis, we were interested in
evaluating the global power, marginal power for each endpoint and the proportion of exiting
the trial early. In addition, the global power was estimated as the proportion of simulated
datasets that would reject the null hypothesis of a difference in PFS (equation 2.7) or a
difference in OS (equation 2.9) or both. The empirical power for the PFS endpoint (or the
OS) was estimated as the proportion of simulated datasets that would reject the null
hypothesis under the alternative hypothesis of a difference in the PFS or the OS or both. A
copy of the code is provided online at this link: http://www.duke.edu/~shalabi/JBB/
simulate-code.R.
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3 Results
Table 1 presents the empirical global type I error rate, empirical type I error rates for each
endpoint and the proportion of not exiting the trial early at each look, assuming an equal
allocation of the type I error rate =0.025 for each endpoint. In addition, two analyses are
assumed for the PFS and OS endpoints with O’Brien-Fleming type I error rate boundaries of
0.00146 and 0.02441. When τ = 0, the two endpoints are considered to be independent and
the empirical type I error rate was 0.05. The empirical type I error rates for each of the
endpoints were approximately 0.025. When normal copula and τ= 0.10 was assumed, the
global type I error rate was 0.05. The empirical type I error rates were 0.0243 for the PFS
endpoint and 0.0265 for the OS endpoint. Similar patterns were observed when τ=0.30 and
τ=0.50. The empirical global type I error rate, however, decreased when τ=0.70. The
empirical global type I error rate is 0.039, with error rates of 0.0229 and 0.0259, for the PFS
and OS endpoints, respectively. Again, similar patterns were observed when Frank and
Gumbel copulas were utilized. The stronger the dependence between the PFS and OS
endpoints, the smaller were the empirical global type I error rates. On the other hand, the
empirical type I error rates for the PFS and OS endpoints were very close to the nominal
values of 0.025.

When τ=0, the average proportion of not terminating the trial early at the first look was
0.0015 for both endpoints. The proportion of not terminating early at the final analysis were
0.0244 and 0.0251 for the PFS and OS endpoints. Overall, these values were very close to
the nominal values for the first interim and final analyses with a few exceptions. When
τ=0.70, the proportion of exiting the trial early were 0.0005 and 0.0020 when normal and
Frank copula’s were assumed.

Table 2 lists the empirical global power, empirical power for each of two endpoints and the
proportion of terminating the trial early based on 10,000 simulations. The overall power was
above 0.95 and the empirical powers were 0.852 and 0.856 for the PFS and OS endpoints,
respectively. Overall, the power was about 0.85 for each of the two endpoints, regardless of
the degree of dependence (i.e. value of τ) and type of copula that were assumed.

In Table 3, we present the empirical global type I error rate, marginal type I error rates for
each endpoint and the proportion of not exiting the trial early at each look assuming equal
allocation of the type I error rate of 0.025 for each endpoint. We assumed two analyses for
the PFS and OS endpoints each at 50% and 100% of the total information, but the
Pampallona and Tsiatis type I error rate boundaries of 0.00067 and 0.02479 were used. We
observed similar trends as we did in Table 1.

Table 4 presents the empirical power for the global power, empirical power for each of two
endpoints and the proportion of exiting the trial early assuming two analyses for the PFS and
OS endpoints each at 50% and 100% of the total information with Pampallona and Tsiatis
type I error rate boundaries of 0.00067 and 0.02479. Overall, the empirical powers for the
PFS and OS endpoints were approximately 0.85 and the empirical global power was higher
than 0.95 when τ was less than 0.7.

We also evaluated the empirical global type I error rate and type I error rates for each
endpoint assuming unequal allocation of the error rate (Table 5). We allocated type I error
rates of 0.03 and 0.02 for the PFS and OS endpoints, respectively. Using the O’Brien-
Fleming approach, the type I error rate boundaries were 0.00042 and 0.02990 for the first
and final analysis for PFS, whereas they were 0.0014 and 0.01938 for the OS endpoint. The
empirical global type I error rate was 0.05, although it decreased to below 0.05 when τ was
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0.5 or higher. The empirical marginal type I error rates for each endpoint were
approximately 0.03 and 0.02.

In Table 5, we observed that the empirical global power was greater than 0.95 when τ was
small to moderate (i.e. less than 0.7). The global power decreased to 0.91 when τ =0.7.
Overall, the empirical powers were approximately 0.86 and 0.84 for the PFS and the OS
endpoints, respectively. In addition, we considered an unequal allocation of the type I error
rate where a type I error rate of 0.01 was used for PFS and 0.04 for the OS. We observed
similar patterns with empirical global type I rates of 0.05 and type I error rates of 0.01 and
0.04 for the PFS and OS endpoints, respectively (Table not presented). We also considered
three analyses for the PFS endpoint at 50%, 75% and 100% events and two analyses for the
OS endpoint. The empirical type I error rates, marginal type I error rates, and powers were
similar to we observed for the two analysis scenario.

3.1 Application
The SPARC trial was an international double-blinded phase III trial where 950 men with
CRPC were randomized with 2:1 allocation ratio to satraplatin (experimental arm) or a
placebo [17]. The trial was designed so that the PFS endpoint has a 85% power to detect a
hazard ratio (HR) of 1.3. Under the alternative hypothesis of a difference in PFS, 700 PFS
events were expected to occur at about 24 months. Similarly, under the alternative
hypothesis of the OS endpoint, the study was designed with 85% power to detect a HR=1.3.
The 700 deaths were projected to occur at 44 months after trial activation.

The Bonferroni correction was used in which the type I error rate of 0.05 was equally split
between the two endpoints. In addition, two analyses were to be performed on the PFS
endpoint: at 50% PFS events and at 100% of the total events which were projected to occur
at 15 and 24 months after study activation. Similarly, for the OS endpoint, one interim
analysis was to be performed at 50% and the final analysis when 700 deaths have been
observed. A two-stage procedure was used to adjust for the type I error rate. First, the
Bonferroni method was used to adjust for the type I error rate between the two endpoints.
Once the type I error rate was allocated, we used the O’Brien-Fleming method to derive the
z-score boundaries and the type I error rates for each of the interim and final analysis so the
overall global type I error rate is preserved at the pre-specified type I level. The trial was
monitored by the data monitoring committee for both the PFS and the OS endpoints.

4 Discussion
The present study empirically assessed the global type I error rate and the marginal type I
error rates for two endpoints when the alpha level was allocated between two dependent
time to-event endpoints. The results of the simulations demonstrate that we control for the
global type I error and type I rates for both of the endpoints under the null hypothesis. When
τ, which is a measure of the dependence between the two endpoints, was close to zero, the
type I error rates were very close to the Bonferroni corrected alpha level. Not surprisingly,
the empirical global type I error rate and type I error rates for each endpoint were smaller
than the nominal values as the value of τ increased.

In addition, the global power and individual power for each endpoint were attained at the
desired level under the alternative hypotheses. As expected, the power was very close to the
desired power when τ was equal to or close to zero. As the value of τ increased, the
empirical power was approximately 0.90, but the powers for each endpoint were controlled
at the desired levels of 0.85.

Halabi Page 7

J Biom Biostat. Author manuscript; available in PMC 2014 January 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Our simulations assumed two interim analyses at 50% and 100% of the information for the
PFS and the OS endpoints. In addition, we considered different combinations three interim
analyses at 50%, 75% and 100% for PFS and two for OS. These scenarios were chosen
based on common practices in industry sponsored phase III trials in oncology. Nevertheless,
depending on the specifics of a trial, this approach will allow for the inclusion of more
interim looks. In addition, varying strategies may be used to best allocate the type I error
rate. For instance, if a drug is promising, a statistician may allocate less of the type I error
rate on the intermediate endpoint, but reserve a large proportion of type I error rate on the
primary endpoint that will be used in the full approval of the drug by the relevant regulatory
authorities.

Another consideration is how to estimate the dependence between the two endpoints. In our
example, we expected the two endpoints of PFS and OS to be highly dependent. We
estimated τ based on historical data that were collected as part of phase II and phase III trials
in men with CRPC. The estimated τ ranged from 0.31–0.50 depending on the definition of
the PFS endpoint [18].

Although we have used PFS as the intermediate endpoint, in our example PFS and TTP
were similar endpoints as the majority of the patients (96%) were anticipated to experience
progression before death [18]. In some cancers, however, patients may die before evidence
of progression. And as such, more elaborate simulations to address this issue could be
implemented.

The results of our simulations were robust regardless of the copula that we assumed. We are
not able to recommend a choice of copula, but a graphical method discussed in Wang and
Wells may help the reader in this respect [19]. One advantage of using parametric copula is
that they are flexible tools and can describe the dependence between two endpoints by a
single parameter. The bivariate normal model is a special case of our model, that is, a
Gaussian copula with normal marginals. They are computationally easy to implement and
another advantage is that most of the literature on sequential methods is based on normal
distribution.

In summary, the univariate monitoring approach seems to work if the dependence between
the two endpoints is not too large. This approach is intuitive and easy to implement. Most
available software can compute the sequential boundaries. The main drawback of using the
Bonferroni correction is that it may be conservative.
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