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Abstract
The truncated gamma distribution has been widely studied, primarily in life-testing and reliability
settings. Most work has assumed an upper bound on the support of the random variable, i.e. the
space of the distribution is (0, u). We consider a doubly-truncated gamma random variable
restricted by both a lower (l) and upper (u) truncation point, both of which are considered known.
We provide simple forms for the density, cumulative distribution function (CDF), moment
generating function, cumulant generating function, characteristic function, and moments. We
extend the results to describe the density, CDF, and moments of a doubly-truncated noncentral
chi-square variable.
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1. INTRODUCTION
The truncated gamma distribution has been widely studied, primarily in life-testing and
reliability settings. Most work has assumed an upper bound on the support of the random
variable, i. e. the space of the distribution is (0, u) (Johnson, Kotz, and Balakrishnan, 1994,
§8.1). We consider a doubly-truncated gamma random variable restricted by both a lower (l)
and upper (u) truncation point, both of which are considered known.

Coffey and Muller (1999) encountered such a distribution when computing the conditional
distribution of the test statistic using an internal pilot design for sample size re-estimation as
proposed by Wittes and Brittain (1990). Internal pilot studies allow researchers to use some
fraction of the planned observations to re-estimate key parameters of interest and modify the
final sample size if the parameters were initially mis-specified. Although internal pilot
studies have been studied primarily in the clinical trials literature, these designs can be
applied to a wide range of applications.

In study planning for linear models with Gaussian errors, determining the sample size
required to detect a specified effect with some target power requires knowledge of the true
variance, σ2. An internal pilot study can be applied in order to protect against mis-
specification of σ2. The final sample size, N+, then becomes a function of the variance

estimate from the internal pilot sample . Coffey and Muller (1999) provided an algorithm
for computing the power under such a design. The power computations require first
conditioning on an observed final sample size and then applying the law of total probability.

Conditional upon an observed final sample size,  is restricted to those values leading to
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that final sample size and thus follows a doubly-truncated χ2 distribution, a special case of
the doubly-truncated gamma distribution.

2. PROPERTIES OF A DOUBLY-TRUNCATED GAMMA VARIABLE
2.1 Density and CDF

Consider a gamma random variable, X ~ Γ(α, β), with density

(2.1)

where Γ(α) indicates the complete gamma function. The CDF of this distribution is simply

(2.2)

We now consider Y ~ ΓT(α, β, l, u) to be a doubly-truncated version of X with lower
truncation point, l, and upper truncation point, u. Obviously,

(2.3)

and

(2.4)

2.2 Moment Generating Function
For a random variable X which follows a Γ(α, β) distribution, the moment generating
function (mgf) is given by

(2.5)

By definition, the moment generating function of Y is

(2.6)

Apply the transformation r = (1 − βt)y, from which it follows ∂r = (1 − βt)∂y. For t ∈ [0,
β−1), we use the transformation to rewrite the mgf as

(2.7)

For the sake of brevity, define
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(2.8)

Since the integrand in (2.7) equals P(t; α, β, l, u)fΓ[y; α, β, l(1−βt), u(1−βt)], it follows that

(2.9)

Thus the moment generating function for a ΓT(α, β, l, u) random variable equals the product
of the mgf of a Γ(α, β) random variable and a factor which accounts for the truncation.

Using parallel reasoning, it follows that the characteristic function of the doubly-truncated
gamma distribution is

(2.10)

2.3 Computing the mth Moment
One can compute the moments of a ΓT(α, β; l, u) using either the moment generating
function or the characteristic function. However, it may be easier to compute the moments
directly using the following lemma, which generalizes a χ2 property used implicitly by
Johnson, Kotz, and Balakrishnan (1994, p420).

Lemma 1— For any real number m > −α,

(2.11)

Corollary—For Y ~ ΓT(α, β; l, u) and m > −α,

(2.12)

Hence the mth moment of a ΓT(α, β; l, u) equals the mth moment of a Γ(α, β) times a factor
depending only on the distribution functions of two gamma variables. This expression seems
much easier to compute than the expression obtained directly from the mgf.

2.4 Cumulant Generating Function and Cumulants
For t ∈ [0, β−1), let KX(t) = lnMX(t) represent the cumulant generating function of X. Hence,
from (2.10) the cumulant generating function of the doubly-truncated random variable Y is

(2.13)

In order to compute the mth cumulant, we can evaluate the mth derivative of KY(t) at t = 0.
Note that the middle term in (2.13) does not depend on t and hence can be ignored in
differentiation. Furthermore, taking successive derivatives of the final term in (2.13) simply
leads to κm, the mth cumulant of a Γ(α, β). Thus the mth cumulant of a ΓT(α, β; l, u) equals

Coffey and Muller Page 3

Commun Stat Theory Methods. Author manuscript; available in PMC 2014 January 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2.14)

However, it is difficult to provide a convenient form for arbitrary derivatives of lnP(t; α, β;
l, u). Alternatively, we can use the expression for computing the mth moment in (2.12) to
compute the cumulants using a recursion relationship such as described by Harvey (1972).
Lee and Lin (1992, 1993) discussed an alternate relationship and provided an algorithm.
Zheng (1998) provided an algorithm using Mathematica for computing the cumulants
(analytically and numerically) in this manner.

3. EXTENSIONS TO NONCENTRAL χ2 RANDOM VARIABLES
Clearly all of the above results apply to a central χ2, a special case of a gamma. However,
there is no direct relationship between the noncentral χ2 and the gamma distribution. Taylor
and Muller (1996) described a situation using the General Linear Model in which a power
calculation was desired under censoring, i. e., we perform a power calculation only when the
previous test was negative or positive. The setting led to a truncated F-distribution. A
truncated noncentral χ2 would arise under this setting when the test statistic follows a
noncentral χ2 distribution, as is often the case, at least asymptotically, for likelihood ratio
test statistics. For this reason, we briefly consider some properties of a doubly-truncated,

noncentral χ2 variable, indicated . Let  and  represent the
density and distribution function, respectively, of a noncentral chi-square variable. Clearly

(3.1)

and

(3.2)

The noncentral χ2 density may be written as an infinite Poisson weighted sum of central χ2

densities (Johnson, Kotz, and Balakrishnan, 1995, p.436). For the sake of brevity, define

(3.3)

the density of a Poisson random variable with mean ω/2. We then write the density of the
noncentral χ2 as

(3.4)

For m any positive integer, we can use the above expression along with Lemma 1 to obtain

an expression for the mth moment of a :
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(3.5)

The form given allows straightforward computation with contemporary computers.
However, without a generalization of the lemma, expressions for the moment generating
function, characteristic function, and cumulant generating function are much more
complicated to develop. It is possible that recursive properties of generalized
hypergeometric functions may apply.
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