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Abstract

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Robust, 

reproducible segmentations of MR images with TBI are crucial for quantitative analysis of 

recovery and treatment efficacy. However, this is a significant challenge due to severe anatomy 

changes caused by edema (swelling), bleeding, tissue deformation, skull fracture, and other effects 

related to head injury. In this paper, we introduce a multi-modal image segmentation framework 

for longitudinal TBI images. The framework is initialized through manual input of primary lesion 

sites at each time point, which are then refined by a joint approach composed of Bayesian 

segmentation and construction of a personalized atlas. The personalized atlas construction 

estimates the average of the posteriors of the Bayesian segmentation at each time point and warps 

the average back to each time point to provide the updated priors for Bayesian segmentation. The 

difference between our approach and segmenting longitudinal images independently is that we use 

the information from all time points to improve the segmentations. Given a manual initialization, 

our framework automatically segments healthy structures (white matter, grey matter, cerebrospinal 

fluid) as well as different lesions such as hemorrhagic lesions and edema. Our framework can 

handle different sets of modalities at each time point, which provides flexibility in analyzing 

clinical scans. We show results on three subjects with acute baseline scans and chronic follow-up 

scans. The results demonstrate that joint analysis of all the points yields improved segmentation 

compared to independent analysis of the two time points.
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1. INTRODUCTION

Traumatic brain injury (TBI) occurs when an external force traumatically injures the brain, 

typically due to car accidents, accidental falls, and wartime injuries. It is a major cause of 

death and disability worldwide, especially in children and young adults, and it affects 1.7 

million Americans annually.1,2 Robust, reproducible segmentations of MR images with TBI 

are crucial for quantitative analysis of recovery and treatment efficacy. However, this is a 

significant challenge due to severe changes such as edema (swelling), bleeding, tissue 

deformation, skull fracture, and other effects related to head injury. Acute and chronic 

images of Subject I is shown in Fig. 1 where non-hemorrhagic lesions (edema / swelling) are 

shown as hyperintense regions in FLAIR while hemorrhagic lesions (bleeding) are shown as 

hypointense regions in T2 and GRE. Despite the clinical importance of quantifying changes 

in TBI patient images, few research has been done on segmentation of MR images of TBI 

patients. A previous work by Thatcher et al.3 used fuzzy C-means and/or k-nearest-neighbor 

(kNN) algorithms and manual classification to segment 3D MR images of TBI patients 

without a longitudinal component.

Many others have proposed automatic segmentation methods for 3D MR images. For 

segmenting normal brain MR images, van Leemput et al.4 and Zhang et al.5 proposed atlas 

based methods, while Tu et al. proposed a learning-based method.6 Brain tumor is an 

example of a pathology that have similar properties to TBI. For segmenting brain MR 

images with tumor, Prastawa et al. proposed methods based on outlier detection7 and subject 

specific modification of atlas priors.8 Clark et al. proposed a automatic tumor segmentation 

using knowledge-based techniques.9 Ho et al. proposed a level-set based tumor 

segmentation method.10 Menze et al. presented a generative model for brain tumor 

segmentation using multi-modal MR images.11 For brain MR images with TBI, automatic 

segmentation is difficult due to the variability of lesion types, shapes, and appearances. In 

this paper, we introduce a novel user-initialized multi-modal image segmentation framework 

for longitudinal (4D) MR images with TBI.

This paper is organized as follows: Section 2 describes a patient-specific segmentation 

framework for longitudinal MR images of TBI patients. The framework is composed of 

Bayesian segmentation with user initialization, and personalized atlas construction. Section 

3 shows the results of the proposed method. We compare the result of temporally 

independent segmentation with our result. We present conclusions and potential future work 

related to our method in Section 4.

2. METHOD

2.1 Bayesian segmentation with user initialization

The segmentation framework for multi-modal MR images is depicted in Fig. 2. The 

framework is initialized through manual input of primary lesion sites and affine-registered 

atlas at each time point, which are then refined by a joint approach composed of Bayesian 

segmentation and construction of a personalized atlas.

Wang et al. Page 2

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2014 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Suppose the multi-modal images at time point t are Xt = x1,t, … , xN,t with Dt the number of 

channels, where we use mixtures of Gaussians to model the data following van Leemput et 

al.4 We segment the images by maximizing the log likelihood function:

(1)

where t ∈ {1 … T } is the number of time points, Kt is the number of classes at time point t, 

 is the multivariate Gaussian distribution, αi,j,t = p(zi,t = j) is the prior, and zi,t 

∈ {1 … K} is the tissue class label at position i and time point t. We use the Expectation-

Maximization (EM) algorithm12,13 to maximize the log likelihood function.

• E step: update the expectation weights p(zi,t = j|xi,t, μj,t, Σj,t) at each location i of 

each time point t.

• M step: update the Gaussian parameters μj,t, Σj,t at time point t.

We use user input and an affine-registered atlas to initialize the parameters μj,t, Σj,t, and αj,t. 

The user input are spheres St indicating lesions and the number of lesion classes Lt at each 

time point t. We use the K-means algorithm14 to get initial estimates μj,t and Σj,t for each 

lesion class. For other tissue classes (white matter (WM): k = 1, gray matter (GM): k = 2, 

cerebrospinal fluid (CSF): k = 3 and background (BG): k = 4), we use the affine-registered 

atlas (masked by user input St) to estimate μj,t and Σj,t. The initial priors αj,t of each class are 

obtained by modifying the standard atlas using St, following Prastawa et al.7 We assume that 

lesions are found in WM and GM regions, so the initial prior for each lesion class becomes 

αj,t = w(α1,t + α2,t)+St, for j ≥ 5, where w is a uniform weight for lesions chosen to be 0.001 

in our calculation. The αj,t of other classes are linearly transformed to ensure that 

 at each location. The initial priors of one subject are shown in Fig. 3. The 

results of the EM algorithm are the posteriors Pt which are p(zi,t = j|xi,t, μj,t, Σj,t) at each 

location i of each time point t.

One advantage of our method is that the number of channels Dt at different time point t can 

vary, which allows us to use different sets of modalities at each time point, a practice which 

can occur in clinical scanning, and thus provides flexibility for handling clinical diagnosis.

2.2 Construction of a personalized atlas

We use the segmentation results (the posteriors) to create personalized atlases using the 

unbiased diffeomorphic atlas construction method.15 Here we assume that there is no 

topological changes between the images of different time points. The flowchart of 

constrction of personalized atlas is depicted in Fig. 4. In atlas construction, we estimate an 

average  (set of probability density functions / PDF) that requires the minimum amount of 

deformation ht to transform into the posteriors Pt at every time point t, specifically:

(2)
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where D(e, ht) is the distance of deformations ht to the identity transform e. We use these 

average PDF  as tissue prior probability maps in subsequent segmentations to get more 

consistent results by combining information from all time points.

The number of classes Kt at different time points in longitudinal TBI images typically varies 

because bleeding or edema can disappear in follow-up scans. Following,16 we address this 

problem by combining the posteriors of lesions (j ≥ 5) at a specific time point t. The 

combined lesion class formed by  follows 

our observation that both hemorrhagic and non-hemorrhagic lesions in preceding scans can 

still be observed in subsequent scans, though they may change appearance due to recovery. 

Compared to deformable atlas building using the MR image intensities, the benefit of this 

approach is that intensity calibration is not needed.17 Fig. 5 shows an example of a 

constructed personalized atlas.

3. RESULTS

We apply our framework to data sets of three patients with TBI, each with two time points 

(acute and chronic). The image data of each subject include T1, T2, FLAIR, and GRE 

modalities. We use manual segmentations by a human expert as ground truth. Also, we 

compare our result to supervised segmentation (i.e. independent segmentations at each time 

point). We compare our results and the supervised segmentation results to the ground truth 

using the Dice coefficient, which is a standard similarity index in the range of 0 to 1 to 

measure the volumetric overlap of two binary segmentations. Dice coefficient values 

comparing segmentation results to the ground truth are shown in Table. 1. Please note that 

the Dice coefficients are relatively low due to the complex boundary shape and relatively 

random spatial distribution of lesions. The volume of lesions for each subject in the manual 

segmentation is shown in Table. 2. Our framework generally performs better than 

independent segmentations, with the primary exception of subject III where there is almost 

no lesion in the chronic scans and the lesion volumes are very small. The visualization of 

deformation field via determinant of Jacobian and vector magnitude is shown in Fig. 6. 

Axial view of acute images of subject I and of the associated segmentation using our 

framework are presented in Fig. 7.

4. CONCLUSIONS

In this paper, we presented a segmentation framework for longitudinal TBI images. The 

framework is initialized through manual input describing primary lesion sites at each time 

point, which are then refined by a joint approach composed of Bayesian segmentation and 

construction of a personalized atlas. Our proposed framework has the advantage of being 

able to deal with different sets of modalities at each time point. The proposed joint analysis 

of different time points yields improved results compared to independent analysis.

There are several limitations in our proposed method. One limitation of the proposed 

method is that we assume there are no topological changes in the images of different time 

points so that we can use diffeomorphic atlas construction method to build personlized atlas. 

However, for longitudinal images of TBI patients this assumption is not always true. One 
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possible solution is to mask the lesion area before registration.18 Alternatively, registration 

methods which are robust to missing correspondence could be used.19-22 Moreover, the 

approach will have limited applicability when lesion volumes are very small. In this case, 

the proposed joint approach may not be able to segment and capture these structures.

In the future, we would like to model the topological changes and thus make the atlas 

construction robust to topological changes. We will explore potential application of our 

method to aid registration of longitudinal MR images, with TBI, such as the geometric 

metamorphosis method proposed by Niethammer et al.23 We intend to apply our method to 

quantify recovery from longitudinal brain MR images with TBI under different treatments, 

with the potential of determining effective treatment strategies in the future.
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Figure 1. 
Axial views of acute and chronic images of Subject I.
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Figure 2. 
Our semi-automatic segmentation framework for MR images with TBI.
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Figure 3. 
Axial view of the initial atlas probabilities for Subject II combining a healthy atlas and user 

defined lesions (spheres).
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Figure 4. 
Illustration of construction of personalized atlas.
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Figure 5. 

Constructed personalized atlas for Subject II, where the average PDF  is deformed to the 

space at each time point and functions as tissue prior maps.
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Figure 6. 
Visualization of the deformation field of Subject I via Jacobian determinant (a) and vector 

magnitude (b).
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Figure 7. 
Results of our method for the acute images of Subject I. NHL is non-hemorrhagic lesion, HL 

is hemorrhagic lesion.
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Table 1

Dice values comparing automatic segmentation results against ground truth, using temporally independent 

segmentations and our approach. ANHL is acute non-hemorrhagic lesion, AHL is acute hemorrhagic lesion, 

CL is chronic lesion.

Dice values

Lesion types ANHL AHL CL

I 0.5080 0.4672 0.2455

Indepedent analysis II 0.2165 0.3550 0.4899

III 0.2747 0.2500 0.1945

I 0.5990 0.5962 0.3435

Joint analysis II 0.4398 0.5938 0.6637

III 0.4768 0.2764 0.1176
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Table 2

Lesion volumes (in voxels) for each subject in the manual segmentations. ANHL is acute non-hemorrhagic 

lesion, AHL is acute hemorrhagic lesion, CL is chronic lesion.

Subject ANHL AHL CL

I 57297 24486 9678

II 57526 36820 8847

III 50151 18136 1060
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