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Abstract
We consider the problem of robust Bayesian inference on the mean regression function allowing
the residual density to change flexibly with predictors. The proposed class of models is based on a
Gaussian process prior for the mean regression function and mixtures of Gaussians for the
collection of residual densities indexed by predictors. Initially considering the homoscedastic case,
we propose priors for the residual density based on probit stick-breaking (PSB) scale mixtures and
symmetrized PSB (sPSB) location-scale mixtures. Both priors restrict the residual density to be
symmetric about zero, with the sPSB prior more flexible in allowing multimodal densities. We
provide sufficient conditions to ensure strong posterior consistency in estimating the regression
function under the sPSB prior, generalizing existing theory focused on parametric residual
distributions. The PSB and sPSB priors are generalized to allow residual densities to change
nonparametrically with predictors through incorporating Gaussian processes in the stick-breaking
components. This leads to a robust Bayesian regression procedure that automatically down-
weights outliers and influential observations in a locally-adaptive manner. Posterior computation
relies on an efficient data augmentation exact block Gibbs sampler. The methods are illustrated
using simulated and real data applications.

Keywords
Data augmentation; exact block Gibbs sampler; Gaussian process; nonparametric regression;
outliers; symmetrized probit stick breaking process

1 Introduction
Nonparametric regression offers a more flexible way of modeling the effect of covariates on
the response compared to parametric models having restrictive assumptions on the mean
function and the residual distribution. Here we consider a fully Bayesian approach. The
response y ∈ corresponding to a set of covariates x = (x1, x2, …, xp)′ ∈ can be expressed
as

(1)

where η(x) = 𝖤(y | x) is the mean regression function under the assumption that the residual
density has mean zero, i.e., 𝖤(ε | x) = 0 for all x ∈  Our focus is on obtaining a robust
estimate of η while allowing heavy tails to down-weight influential observations. We
propose a class of models that allows the residual density to change nonparametrically with
predictors x, with homoscedasticity arising as a special case.

NIH Public Access
Author Manuscript
Ann Inst Stat Math. Author manuscript; available in PMC 2014 February 01.

Published in final edited form as:
Ann Inst Stat Math. 2014 February ; 66(1): 1–31. doi:10.1007/s10463-013-0415-z.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



There is a substantial literature proposing priors for flexible estimation of the mean function,
typically using basis function representations such as splines or wavelets (Denison et al
2002). Most of this literature assumes a constant residual density, possibly up to a scale
factor allowing heteroscedasticity. Yau and Kohn (2003) allow the mean and variance to
change with predictors using thin plate splines. In certain applications, this structure may be
overly restrictive due to the specific splines used and the normality assumption. Chan et al
(2006) also used splines for heteroscedastic regression, but with locally adaptive estimation
of the residual variance and allowance for uncertainty in variable selection. Nott (2006)
considered the problem of simultaneous estimation of the mean and variance function by
using penalized splines for possibly non Gaussian data. Due to the lack of conjugacy, these
methods rely on involved sampling techniques using Metropolis Hastings, requiring
proposal distributions to be chosen that may not be efficient in all cases. The residual
density is assumed to have a known parametric form and heavy-tailed distributions have not
been considered. In addition, since basis function selection for multiple predictors is highly
computationally demanding, additive assumptions are typically made that rule out
interactions.

Gaussian process (GP) regression (Adler 1990; Ghosal and Roy 2006; van der Vaart and van
Zanten 2008, 2009; Neal 1998) is an increasingly popular choice, which avoids the need to
explicitly choose the basis functions, while having many appealing computational and
theoretical properties. For articles describing some of these properties, refer to Adler (1990),
Cramér and Leadbetter (1967), van der Vaart and van Zanten (2008) and van der Vaart and
Wellner (1996). A wide variety of functions can arise as the sample paths of the Gaussian
process. GP priors can be chosen that have support on the space of all smooth functions
while facilitating Bayes computation through conjugacy properties. In particular, the GP
realizations at the data points are simply multivariate Gaussian. As shown by Choi and
Schervish (2007), GP priors also lead to consistent estimation of the regression function
under normality assumptions on the residuals. van der Vaart and van Zanten (2009)
demonstrated that a Gaussian process prior with an inverse-gamma bandwidth leads to an
optimal rate of posterior convergence in a mean regression problem with Gaussian errors.
Recently, Choi (2009) extended the results of Choi and Schervish (2007) to allow for non-
Gaussian symmetric residual distributions (for example, the Laplace distribution) which
satisfy certain regularity conditions and the induced conditional density belongs to a
location-scale family. Although they require mild assumptions on the parametric scale
family, the results depend heavily on parametric assumptions. In particular, their theory of
posterior consistency is not applicable to an infinite mixture prior on the residual density.
We extend their result allowing a rich class of residual distributions through PSB mixtures
of Gaussians in Section 3.

There is a rich literature on Bayesian methods for density estimation using mixture models
of the form

(2)

where f(·) is a parametric density and P is an unknown mixing distribution assigned a prior
Π. The most common choice of Π is the Dirichlet process (Ferguson 1973), 1974). Lo
(1984) showed that Dirichlet process mixtures of normals have dense support on the space
of densities with respect to Lesbesgue measure, while Escobar and West (1995) developed
methods for posterior computation and inference. James et al (2005) considered a broader
class of normalized random measures for Π.

In order to combine methods for Bayesian nonparametric regression with methods for
Bayesian density estimation, one can potentially use mixture model (2) for the residual
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density in (1). A number of authors have considered nonparametric priors for the residual
distribution in regression. For example, Kottas and Gelfand (2001) proposed mixture models
for the error distributions in median regression models. To ensure identifiability of the
regression coefficients, the residual distribution is constrained to have median zero. Their
approach is very flexible but has the unappealing property of producing a residual density
that is discontinuous at zero. In addition, the approach of mixing uniforms leads to blocky
looking estimates of the residual density particularly for sparse data. Lavine and Mockus
(2005) allow both a regression function for a single predictor and the residual distribution to
be unknown subject to a monotonicity constraint. A number of recent papers have focused
on generalizing model (2) to the density regression setting in which the entire conditional
distribution of y given x changes flexibly with predictors. Refer, for example, to Müller et al
(1996); Griffin and Steel (2006, 2008); Dunson et al (2007) and Dunson and Park (2008b)
among others. Bush and MacEachern (1996) consider estimating the random block effects
non parametrically in an anova-type mean linear-regression model with a t-residual density
rather than density regression.

Although these approaches are clearly highly flexible, there are several issues that provide
motivation for this article. First, to simplify inferences and prior elicitation, it is appealing to
separate the mean function η(x) from the residual distribution in the specification, which is
accomplished by only a few density regression methods. The general framework of
separately modeling the mean function and residual distribution nonparametrically was
introduced by Griffin and Steel (2008). They allow the residual distribution to change
flexibly with predictors using the order-based Dirichlet process (Griffin and Steel 2006). On
the other hand, we want to able to have a computationally simpler specification with
straightforward prior elicitation. Chib and Greenberg (2010) develops a nonparametric
model jointly for continuous and categorical responses where they model the mean of the
link function and residual density separately. The mean is modeled using flexible additive
splines and the residual density is modeled using a DP scale mixture of normals. However
they didn’t allow the residual distribution to change flexibly with the predictors. Often we
have strong prior information regarding the form of the regression function. Most density
regression models do not allow incorporation of prior information on the mean function
separately from the residual densities. Second, in many applications, the main interest is in
inference on η or in prediction, and the residual distribution can be considered as a nuisance.
Third, the use of residual distribution with zero mean has rarely been attempted in the
nonparametric Bayes literature. This is one of the important contributions of the paper.
Finally, we would like to be able to provide a specification with theoretical support. In
particular, it would be appealing to show strong posterior consistency in estimating η
without requiring restrictive assumptions on η or the residual distribution. Current density
regression models lack such theoretical support. In addition, computation for density
regression can be quite involved, particularly in cases involving more than a few predictors,
and one encounters the curse of dimensionality. Our goal is to obtain a computationally
convenient specification that allows consistent estimation of the regression function, while
being flexible in the residual distribution specification to obtain robust estimates.

We propose to place a Gaussian process prior on η and to allow the residual density to be
unknown through a probit stick-breaking (PSB) process mixture. The basic PSB process
specification was proposed by Chung and Dunson (2009) in developing a density regression
approach that allows variable selection. On the other hand we are concerned with robust
estimation of the mean regression function allowing the residual distribution to change
flexibly with predictors. While we want to model the mean regression function
nonparametrically, we also want to be able to incorporate our prior knowledge for the
regression function quite easily. Here, we propose four novel variants of PSB mixtures for
the residual distribution. The first uses a scale mixture of Gaussians to obtain a prior with
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large support on unimodal symmetric distributions. The next is based on a symmetrized
location-scale PSB mixture, which is more flexible in avoiding the unimodality constraint,
while constraining the residual density to be symmetric and have mean zero. In addition, we
show that this prior leads to strong posterior consistency in estimating η under weak
conditions.

To allow the residual density to change flexibly with predictors, we generalize the above
priors through incorporating probit transformations of Gaussian processes in the weights.
The last two prior specifications allow changing residual variances and tail heaviness with
predictors, leading to a highly robust specification which is shown to have better
performance in simulation studies and out of sample prediction. It will be shown in some
small sample simulated examples that the heteroscedastic symmetrized location-scale PSB
mixture leads to even more robust inference than the heteroscedastic scale PSB mixture
without compromising out of sample predictive performance.

Section 2 proposes the class of models under consideration. Section 3 shows consistency
properties. Section 4 develops efficient posterior computation through an exact block Gibbs
sampler. Section 5 describes measures of influence to study robustness properties of our
proposed methods. Section 6 contains simulation study results, Section 7 applies the
methods to the Boston housing data and body fat data, and Section 8 discusses the results.
Proofs are included in the Appendix.

2 Nonparametric regression modeling
2.1 Data Structure and Model

Consider n observations with the ith observation recorded in response to the covariate xi =
(xi1, xi2, … xip)′. Let X = (x1, … xn)′ be the predictor matrix for all n subjects. The
regression model can be expressed as

We assume that the response y ∈ is continuous and x ∈ where ⊂ ℝp is compact. Also,
the residuals εi are sampled independently, with fx denoting the residual density specific to
predictor value xi = x. We focus initially on the case in which the covariate space is
continuous, with the covariates arising from a fixed, non-random design or consisting of i.i.d
realizations of a random variable. We choose a prior on the regression function η(x) that has
support on a large subset of ∞( , the space of smooth real valued → ℝ functions. The
priors proposed for {fx, x ∈  will be chosen to have large support so that heavy-tailed
distributions and outliers will automatically be accommodated, with influential observations
downweighted in estimating η.

2.2 Prior on the Mean Regression Function
We assume that η ∈ ℱ = {g : → ℝ is a continuous function}, with η assigned a Gaussian
process (GP) prior, η ~ GP(μ, c), where μ is the mean function and c is the covariance
kernel. A Gaussian process is a stochastic process {η(x) : x ∈  such that any finite
dimensional distribution is multivariate normal, i.e., for any n and x1, …, xn, η(X) ≔ (η(x1),

…, η(xn))′ ~ N(μ(X), Ση), where μ(X) = (μ(x1),…, μ(xn))′ and . Naturally the
covariance kernel c(·, ·) must satisfy, for each n and x1, …, xn, that the matrix Ση is positive
definite. The smoothness of the covariance kernel essentially controls the smoothness of the
sample paths of {η(x) : x ∈ . For an appropriate choice of c, a Gaussian process has large
support in the space of all smooth functions. More precisely, the support of a Gaussian
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process is the closure of the reproducing kernel Hilbert space generated by the covariance
kernel with a shift by the mean function (Ghosal and Roy 2006). For example, when ⊂ ℝ,

the eigenfunctions of the univariate covariance kernel, , span C∞(  if
κ is allowed to vary freely over ℝ+. Thus we can see that the Gaussian process prior has a
rich class of functions as its support and hence is appealing as a prior on the mean regression
function. Refer to Rasmussen and Williams (2006) as an introductory textbook on Gaussian
processes.

We follow common practice in choosing the mean function in the GP prior to correspond to
a linear regression, μ(X) = Xβ, with β denoting unknown regression coefficients. As a

commonly used covariance kernel, we took the Gaussian kernel ,
where τ and κ are unknown hyperparameters, with κ controlling the local smoothness of the
sample paths of η(x). Smoother sample paths imply more borrowing of information from
neighboring x values.

2.3 Priors for Residual Distribution
Motivated by the problem of robust estimation of the regression function η, we consider five
different types of priors for the residual distributions {fx, x ∈  as enumerated below. The
first prior corresponds to the t distribution, which is widely used for robust modeling of
residual distributions (West 1984); Lange et al 1989; Fonseca et al 2008), while the
remaining priors are flexible nonparametric specifications.

P1. Heavy tailed parametric error distribution—Following many previous authors,
we first consider the case in which the residual distributions follow a homoscedastic
Student-t distribution with unknown degrees of freedom. As the Student-t with low degrees
of freedom is heavy tailed, outliers are allowed. By placing a hyperprior on the degrees of
freedom, νσ ~ Ga(aν, bν), with Ga(a, b) denoting the Gamma distribution with mean a/b,
one can obtain a data adaptive approach to down-weighting outliers in estimating the mean
regression function. However, note that this specification assumes that the same degrees of
freedom and tail-heaviness holds for all x ∈  Following West (1987), we express the
Student-t distribution as a scale mixture of normals for ease in computation. In addition, we
allow an unknown scale parameter, letting εi ~ N(0, σ2/ϕi), with ϕi ~ Ga(νσ/2, νσ/2), σ−2 ~
Ga(a, b).

P2. Nonparametric error distribution—Let = ℜ be the response space and be the
covariate space which is a compact subset of ℜp. Let ℱ denote the space of densities on ×

w.r.t the Lebesgue measure and ℱd denotes the space of all conditional densities subject to
mean zero,

We propose to induce a prior on the space of mean zero conditional densities through a prior
for a collection of mixing measures {Px, x ∈  using the following predictor-dependent
mixture of kernels.

(3)
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where πh(x) ≥ 0 are random functions of x such that  a.s. for each fixed x ∈ 

 are iid realizations of a real valued stochastic process, i.e., P0 is a
probability distribution over a function space ℱ . Here P0,σ is a probability distribution on
ℜ+. Hence for each x ∈  Px is a random probability measure over the measurable Polish
space (ℜ × ℜ+, ℬ(ℜ × ℜ+)). Before proposing the prior, we first review the probit stick
breaking process specification and its relationship to the Dirichlet process. Rodriguez and
Dunson (2011) introduce the probit stick-breaking process in broad settings and discuss
some smoothness and clustering properties. A probability measure P ∈ on (  ℬ( )
follows a probit stick-breaking process with base measure P0 if it has a representation of the
form

(4)

where the atoms  are independent and identically distributed from P0 and the

random weights are defined as .
Here Φ(·) denotes the cumulative distribution function for the standard normal distribution.
Note that expression (4) is identical to the stick-breaking representation (Sethuraman 1994)
of the Dirichlet process (DP), but the DP is obtained by replacing the stick-breaking weight
Φ(αh) with a beta(1, α) distributed random variable. Hence, the PSB process differs from the
DP in using probit transformations of Gaussian random variables instead of betas for the
stick lengths, with the two specifications being identical in the special case in which μα = 0,
σα = 1 and the DP precision parameter is α = 1. Rodriguez and Dunson (2011) also
mentioned the possibility of constructing a variety of predictor dependent models e.g., latent
Markov random fields, spatio-temporal processes, etc by using probit transformation latent
Gaussian processes. Such latent Gaussian processes can be updated using data augmentation
Gibbs sampling as in continuation-ratio probit models for survival analysis (Albert and Chib
2001). While we follow similar computational strategies as in Rodriguez and Dunson
(2011), they didn’t consider robust regression using predictor dependent residual density.

Under the symmetric about zero assumption, we propose two nonparametric priors for the
residual density fx for all x ∈  The first prior is a predictor dependent PSB scale mixture of
Gaussians which enforces symmetry about zero and unimodality, and the next is a
symmetrized location-scale PSB mixture of Gaussians, which we develop to satisfy the
symmetric about zero assumption while allowing multimodality.

P2a. Heteroscedastic scale PSB mixtures: To allow the residual density to change flexibly
with predictors, while maintaining the constraint that each of the predictor-dependent
residual distributions is unimodal and symmetric about zero, we propose the following
specification

(5)

where πh(x) = Φ{αh(x)} ∏l<h[1−Φ{αl(x)}] is the predictor-dependent probability weight on
the hth mixture component, and the αh’s are drawn independently from zero mean Gaussian

processes having covariance kernel . This implies

 and is a highly-flexible specification that enforces smoothly
changing mixture weights across the predictor space, so that the residual densities at x and x′
will tend to be similar if x is located close to x′, as measured by κα‖x − x′‖2.
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Clearly, the specification allows the residual variance to change flexibly with predictors, as

we have . However, unlike the previously proposed methods for
heteroscedastic nonlinear regression, we do not just allow the variances to vary, but allow
any aspect of the density to vary, including the heaviness of the tails. This allows locally
adaptive downweighting of outliers in estimating the mean function. Previous methods,
which instead assume a single heavy-tailed residual distribution, such as a t-distribution, can
lead to a lack of robustness due to global estimation of a single degree of freedom
parameter. In addition, due to the form of our specification, posterior computation becomes
very straightforward using a data augmentation Gibbs sampler, which involves simple steps
for sampling from conjugate full conditional distributions. Even under the assumption of
Gaussian residual distributions, posterior computation for heteroscedastic models tends to be
complex, with Gibbs sampling typically not possible due to the lack of conditional
conjugacy.

P2b. Heteroscedastic symmetric PSB (sPSB) location-scale mixtures: The PSB scale
mixture in (5) restricts the residual density to be unimodal. As this is a very restrictive
assumption, it is appealing to define a prior with larger support that allows multimodal
residual densities, while enforcing the symmetric about zero assumption so that the residual
density is constrained to have mean zero. To accomplish this, we propose a novel
symmetrized PSB process specification, which is related to the symmetrized Dirichlet
process proposed by Tokdar (2006). We define

(6)

where the atoms (μh, τh) are drawn independently from P0 a priori, with P0 chosen as a

product of a  and Ga(ατ, βτ measure. The difference between the sPSB process
prior and the PSB process prior is that instead of just placing probability weight πh on atom
(μh, τh), we place probability τh/2 on (−μh, τh) and (μh, τh). The resulting residual density

under (6) has the form . Clearly, each
of the realizations corresponds to a mixture of Gaussians that is constrained to be symmetric
about zero. The same comments made for the heteroscedastic scale PSB mixture apply here,
but (6) is more flexible in allowing multi-modal residual distributions, with modality
changing flexibly with predictors. Posterior computation is again straightforward, as will be
shown later.

P2c. Homoscedastic scale PSB process mixture of Gaussians: A simpler homoscedastic
version of (5) is to consider

(7)

where the weights {πh} are specified as in

(8)

This implies that , so that the unknown density of the residuals is
expressed as a countable mixture of Gaussians centered at zero but with varying variances.
Observations will be automatically allocated to clusters, with outlying clusters
corresponding to components having large variance (low τh). By choosing a hyperprior on
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μα while letting σα = 1, we allow the data to inform more strongly about the posterior
distribution on the number, sizes and allocation to clusters.

P2d. Location-scale symmetrized PSB (sPSB) mixture of Gaussians: A homoscedastic
version of (6) is the following.

(9)

where the prior on the weights πh are given by (8) and the prior for (μh, τh) are exactly as in
2b.

3 Consistency properties
Let f ~ Πu and f ~ Πs denote the priors for the unknown residual density defined in
expressions (7) and (9) respectively. It is appealing for Πu and Πs to have support on a large
subset of u and s respectively, where s denotes the set of densities on ℝ with respect to
Lebesgue measure that are symmetric about zero and u ⊂ s is the subset of s
corresponding to unimodal densities. We characterize the weak support of Πu, denoted by
wk(Πu) ⊂ u, in the following lemma.

Lemma 1 wk(Πu) = m, where m = {f : f ∈ u,  is a completely
monotone function}.

A function h(x) on (0,∞) is completely monotone in x if it is infinitely differentiable and

 for all x and for all m ∈ {1, 2, …, ∞}. Chu (1973) proved that if f is a
density on ℝ which is symmetric about zero and unimodal, it can be written as a scale
mixture of normals,

for some density g on ℝ, if and only if , is a completely monotone
function, where ϕ is the standard normal pdf. This restriction places a smoothness constraint
on f(x), but still allows a broad variety of densities.

Definition 1 Letting f ~ Π, f0 is in the Kullback-Leibler(KL) support of Π if

The set of densities f in the Kullback-Leibler support of Π is denoted by KL(Π).

Let 𝒮̃s denote the subset of s corresponding to densities satisfying the following regularity
conditions.

1. f is nowhere zero and bounded by M < ∞

2. | ∫ℜ f (y) log f (y)dy| < ∞

3.

, where ψ1 (y) = inft∈[y−1, y+1] f(t)

4. there exists ψ > 0 such that ∫ℜ |y|2(1+ψ) f (y)dy < ∞
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Lemma 2 KL(Πs) ⊇ 𝒮̃s.

Remark 1 The above assumptions on f are standard regularity conditions introduced by
Tokdar (2006) and Wu and Ghoshal (2008) to prove that f ∈ KL(Π), where Π is a general
stick breaking prior which has all compactly supported probability distributions as its
support. (1) is usually satisfied by common densities arising in practice. (4) imposes a minor
tail restriction e.g., t-density with (2 + δ) degrees of freedom for some δ > 0 satisfies (4).
(1)–(4) are satisfied by a finite mixture of t-densities or even by an infinite mixture of t-
densites with (2 + δ) degrees of freedom for some δ > 0 and bounded component specific
means and variances.

From Lemma 2, it follows that the sPSB location-scale mixture has KL-support on a large
subset of the set of densities symmetric about zero. These conditions are important in
verifying that the priors are flexible enough to approximate any density subject to the noted
restrictions.

We provide fairly general sufficient conditions to ensure strong and weak posterior
consistency in estimating the mean regression function and the residual density,
respectively. We focus on the case in which a GP prior is chosen for η and an sPSB
location-scale mixture of Gaussians is chosen for the residual density as in (9). Similar
results can be obtained for the homoscedastic scale PSB process mixture under stronger
restrictions on the true residual density. Although showing consistency results using
predictor dependent mixtures of normals as the prior for the residual density in (5) and (6) is
a challenging task, one can anticipate such results given the theory in Pati et al (2010) and
Norets and Pelenis (2010). Indeed Norets and Pelenis (2011) showed posterior consistency
of the regression coefficients in a mean linear regression model with covariate dependent
nonparametric residuals using the kernel stick-breaking process Dunson and Park (2008a).
However, showing posterior consistency of the mean regression when we have a Gaussian
process prior on the regression function and predictor dependent residuals is quite
challenging and is a topic of future research.

For this section, we assume xi’s are non random and arising from a fixed design, though the
proofs are easily modified for random xi’s. When the covariate values are fixed in advance,
we consider the neighborhood based on the empirical measure of the design points. Let Qn

be the empirical probability measure of the design points,  . Based on
Qn, we define a strong L1 neighborhood of radius Δ > 0 as in Choi (2005) around the true
regression function η0. Letting ∥η − η0∥1,n = ∫x∈  |η(x) − η0(x)|dQn(x) set,

(10)

We introduce the following notation. Let f0 denote an arbitrary fixed density in 𝒮̃s, η0
denote an arbitrary fixed regression function in ℱ, and

For any two densities f and g, let

where log+ x = max(log x, 0). Set Ki(f, η) = K(f0i, fηi) and Vi(f, η) = V (f0i, fηi) for i = 1, …, n.
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For technical simplicity assume = [0, 1]p, τ = 1 and μ ≡ 0. Denote a mean zero Gaussian
process {Wx : x ∈ [0, 1]p} with covariance kernel c(x, x′) = e−∥x−x′∥2 by W. Rescaling the
sample paths of an infinitely smooth Gaussian process is a powerful technique to improve
the approximation of α- Hölder functions from the RKHS of the scaled process

 with κ > 0. Intuitively, for large values of κ, the scaled process

traverses the sample path of an unscaled process on the larger interval , thereby
incorporating more “roughness”. van der Vaart and van Zanten (2009) studied rescaled

Gaussian processes  for a positive random variable κ stochastically
independent of W and showed that with a Gamma prior on κp/2, one obtains the minimax-
optimal rate of convergence for arbitrary smooth functions.

Assumption1: η ~ Wκ with the density g of √κ on the positive real line satisfying

for positive constants C1, C2, D1, D2 and every sufficiently large x > 0. Next we state the
lemma on prior positivity due to van der Vaart and van Zanten (2009).

Lemma 3 If η satisfies Assumption 1 then P(∥η − η0∥∞ < ε) > 0 ∀ ε > 0, if η0 is
continuous.

In order to prove posterior consistency for our proposed model, we rely on a theorem of
Amewou-Atisso et al (2003), which is a modification of the celebrated Schwartz (1965)
theorem to accommodate independent but not identically distributed data.

Theorem 1 Suppose η as in Assumption 1 with q ≥ p + 2 and f ~ Πs, with Πs defined in (9).
In addition, assume the data are drawn from the true density f0 (yi − η0 (xi)), with {xi} fixed
and non-random, f0 ∈ 𝒮̃s, η0 ∈ ℱ and f0 following the additional regularity conditions,

1. ∫ y4 f0 (y) dy < ∞ and ∫ f0 (y) | log f0 (y)|2 dy < ∞.

2.

 , where ψ1(y) = inft∈[y−1,y+1] f0(t).

Let be a weak neighborhood of f0 and n = Sn (η0; Δ), with n ⊂ 𝒮̃s × ℱ. Then the
posterior probability

Theorem 1 ensures weak consistency of the posterior of the residual density and strong
consistency of the posterior of the regression function η.

4 Posterior computation
We first describe the choice of hyperpriors and hyperparameters for the regression function.
We choose the typical conjugate prior for the regression coefficients in the mean of the GP,
β ~ N(β0, Σ0), where β0 = 0 and Σ0 = cI is a common choice corresponding to a ridge

regression shrinkage prior. The prior on τ is given by . We let κ ~ Ga(ακ,
βκ) with small βκ, and large ακ. Normalizing the predictors prior to analysis, we find that the
data are quite informative about κ under these priors, so as long as the priors are not overly
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informative, inferences are robust. The parameter τ controls the heaviness of the tails of the
prior for the regression function. In fact, choosing a Ga(ντ/2, ντ/2) prior induces a heavy
tailed t-process with ντ degrees of freedom as a prior for the regression function. We chose
ντ to be 3. κ controls the correlation of the Gaussian process at two points in the covariate
space similar to a spatial decay parameter in a spatial random effects model. Although a
discrete uniform prior for κ is computationally efficient in leading to a griddy Gibbs update
step, there can be sensitivity to the choice of grid. A gamma prior for κ eliminates such
sensitivity at some associated computational price in terms of requiring a Metropolis-
Hastings update that tends to mix slowly. We choose the parameters ακ and βκ so that the
mean correlation is 0.1 for two points separated by a distance √p in the covariate space.

Next we describe the hyperprior and associated hyperparameter choices for P1 and P2a-d.

1. P1: Since the responses are normalized and the covariates are scaled to lie in the
interval [0, 1], using a single decay parameter appears to be reasonable. νσ controls
the tail-heaviness of the prior for the scaling ϕ. To accommodate outliers with the
mean being fixed at 1, we assume ϕi ~ Ga(νσ/2, νσ/2) with νσ ~ Ga(αν, βν). We
took Σ0 = 5I, αν = 1, βν = 1. a and b are fixed at 3/2 to resemble a t-distribution
with 3 degrees of freedom without the scaling ϕi.

2.
P2a & P2b: We assume κα ~ Ga(γκ, δκ) and . Assuming yi are
normalized, we can expect the overall variance to be close to one, so the variance

of the residuals, , should be less than one. We set ατ = 1
and choose a hyperprior on βτ, βτ ~ Ga(1, k0) with k0 > 1 so that the prior mean of
τh is significantly less than one. Different values of k0 are tried out to assess
robustness of the posteriors. In Sections 5 and 6, we choose γκ = 1, δκ = 5, να = 1,
k0 = 10, μ0 = 0, σ0 = 1.

3. P2c & P2d: Same choices as above with except k0 = 5, μα = 0, σα = 1.

For brevity, we provide details for posterior computation only for P1, P2a–b.

4.1 Gaussian process regression with t residuals (P1)
Let Y = (y1, … yn)′, η = (η(x1), η(x2), …, η(xn))′ and define a matrix T such that Tij =

e−κ∥xi−xj∥2. Hence . Assume Ω = diag(1/ϕi : i = 1, …, n) and ϕ = (ϕ1, … , ϕn)′.
Then we have

Next we provide the full conditional distributions needed for Gibbs sampling. Due to
conjugacy, η, β, σ−2, ϕ and τ have closed form full conditional distributions, while να and κ
are updated by using Metropolis Hastings steps within the Gibbs sampler. Let Vη = (τT−1 +

σ−2 Ω−1)−1 and .
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4.2 Heteroscedastic PSB mixture of normals (P2a)
We propose a Markov chain Monte Carlo algorithm, which is a hybrid of data augmentation,
the exact block Gibbs sampler of Papaspiliopoulos (2008) and Metropolis Hastings
sampling. Papaspiliopoulos (2008) proposed the exact block Gibbs sampler as an efficient
approach to posterior computation in Dirichlet process mixture models, modifying the block
Gibbs sampler of Ishwaran and James (2001) to avoid truncation approximations. The exact
block Gibbs sampler combines characteristics of the retrospective sampler (Papaspiliopoulos
and Roberts 2008) and the slice sampler (Walker 2007); Kalli et al 2010). We included the
label switching moves introduced by Papaspiliopoulos and Roberts (2008) for better mixing.
Introduce γ1, …, γn such that πh(xi) = P(γi = h), h = 1, 2, … ,∞. Then

where ui ~ U(0, 1). The MCMC steps are given below.

1. Update ui’s and stick breaking random variables: Generate

where πh(xi) = Φ{αh(xi)} ∏l<h[1 − Φ {αl(xi)}]. For i = 1, …, n, introduce latent variables
Zh(xi), h = 1, 2, … such that Zh(xi) ~ N(αh(xi), 1). Thus πh(xi) = P(Zh(xi) > 0, Zl(xi) < 0 for l
< h). Then

Let Zh = (Zh(x1), …, Zh(xn))′ and αh = (αh(x1), … , αh(xn))′. Letting (Σα)ij = e−κα∥xi−xj∥, Zh

~ N(αh, I) and ,
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Continue up to  is the minimum integer satisfying

. Now

while κα is updated using a Metropolis Hastings step.

2. Update allocation to atoms: Update (γ1, … , γn)|− as multinomial random variables with
probabilities

.

3. Update component-specific locations and precisions: Letting nl = #{i : γi = l}, l = 1, 2,
… ; h*,

4. Update the mean regression function: Letting ,

5. Update κ in a Metropolis Hastings step.

4.3 Heteroscedastic sPSB process location-scale mixture (P2b)
We will need the following changes in the updating steps from the previous case.

1. Update allocation to atoms: Update (γ1, … , γn)|− as multinomial random variables with
probabilities

h = 1, … , h*.

3. Component-specific locations and precisions: Let nl = #{i : γi = l}, l = 1,2, … , h* and
ml = ∑i:γi=l(yi − ηi). The atoms of the base measure location is updated from a mixture of
normals as
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where .

where  .

4. Update the mean regression function: Let , μ* = (μγ1, μγ2, … ,
μγn) and W = (τT−1 + ∧−1)−1. Hence

where

.

5 Measures of influence
There has been limited work on sensitivity of the posterior distribution to perturbations of
the data and outliers. Arellano-Vallea et al (2000) use deletion diagnostics to assess
sensitivity, but their methods are computationally expensive in requiring posterior
computation with and without data deleted. Weiss (1996) proposed an alternative that
perturbs the posterior instead of the likelihood, and only requires samples from the full
posterior. Following Weiss (1996), let f(yi|Θ̃, xi) denote the likelihood of the data yi, define

, for some small δ > 0 and let pi (Θ̃|Y) denote a new perturbed posterior,

Since the responses are normalized prior to analysis, it is reasonable to assume that the
perturbation is less than 0.1. We vary δ in [0.01, 0.1] over a grid of width 0.01 and obtain the
average of results. Denote by Li the influence measure, which is a divergence measure
between the unperturbed posterior p(Θ̃|Y) and the perturbed posterior pi(Θ̃|Y),
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Li is bounded and takes values in [0, 1]. When p(Θ̃|Y) = pi(Θ̃|Y), Li = 0 indicating that the
perturbation  has no influence. On the other hand, if Li = 1, the supports of p(Θ̃|Y) and
pi(Θ̃|Y) are disjoint indicating maximum influence. We can define an influence measure as

. Clearly L also takes values in [0, 1] with L = 0 ⇒ Li = 0 ∀ i = 1, 2, … , n.
Also L = 1 ⇒ Li = 1 ∀ i = 1, 2, … , n. Weiss (1996) provided a sample version of Li, i = 1,
… , n. Letting Θ̃1, … , Θ̃M be the posterior samples with B the burn-in,

where  . Our estimated influence measure is

 . We will calculate the influence measure for our proposed methods and
compare their sensitivity.

6 Simulation studies
To assess the performance of our proposed approaches, we consider a number of simulation
examples, (i) linear model, homoscedastic error with no outliers, (ii) linear model,
homoscedastic error with outliers (iii) linear model, heteroscedastic errors and outliers, (iv)
non-linear model with heteroscedastic errors and outliers and (v) non-linear model with
heteroscedastic errors and outliers, but with fewer true predictors. We let the heaviness of
the tails and error variance change with x in cases (iii), (iv) and (v). We considered the
following methods of assessing the performance, namely, mean squared prediction error
(MSPE), coverage of 95% prediction intervals, mean integrated squared error (MISE) in
estimating the regression function at the points for which we have data, point wise coverage
of 95% credible intervals for the regression function and the influence measure (L̂) as
described in Section 5. We also consider a variety of sample sizes in the simulation, n=30,
60, 80 and simulate 10 covariates independently from U(0, 1). Let z be 10-dim vector of i.i.d
U(0, 1) random variables independent of the covariates.

Generation of errors in heteroscedastic case and outliers: Let fxi (εi) = pxi N(εi; 0, 1) +

qxi N(εi; 0, 5) where  . The outliers are simulated from the model with error

distribution , which is a mixture of truncated normal distributions as follows. In the
heteroscedastic case,

 where TNℛ(·;μ, σ2)
denotes a truncated normal distribution with mean μ and standard deviation σ over the
region ℛ. We consider the following five cases.

1. Case (i): yi = 2.3 + 5.7x1i + εi, εi ~ N(0, 1) with no outliers.

2. Case (ii): yi = 2.3 + 5.7x1i + εi, εi ~ 0.95N(0, 1) + 0.05N(0, 10).

3. Case (iii): yi = 1.2 + 5.7x1i + 4.7x2i + 0.12x3i −8.9x4i + 2.4x5i + 3.1x6i + 0.01x7i +

εi, εi ~ fxi, with 5% outliers generated from  .
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4. Case (iv):

with 5% outliers generated from .

5. Case (v): yi = 1.2 + 5.7 sin x1i + 3.4 exp(x2i) + 4.7 log |xi3| + εi, εi ~ fxi with 5%

outliers generated from .

For each of the cases and for each sample size n, we took the first  samples as the training

set and the next  samples as the test set. We also compare the MSPE of the proposed
methods with robust regression using M-estimation (Huber 1964), Bayesian additive
regression trees (Chipman et al 2010), and Treed Gaussian processes (Gramacy and Lee
2008). The MCMC algorithms described in Section 5 are used to obtain samples from the
posterior distribution. The results for model P1 given here are based on 20,000 samples
obtained after a burn-in period of 3,000. The results for models P2a–d are based on 20,000
samples obtained after a period of 7,000. Rapid convergence was observed based on
diagnostic tests of Geweke (1992) and Raftery and Lewis (1992). In addition, the mixing
was very good for model P1. For models P2a–d, we use the label switching moves by
Papaspiliopoulos and Roberts (2008), which lead to adequate mixing. Tables 1, 2 and 3
summarize the performance of all the methods based on 50 replicated datasets.

Tables 1, 2 and 3 clearly show that in small samples both of the heteroscedastic methods
(P2a and P2b) have substantially reduced MSPE and MISE relative to the heavy tailed
parametric error model in most of the cases, interestingly even in the homoscedastic cases.
This may be because discrete mixture of Gaussians better approximate a single normal than
a t-distribution in small samples. Methods P2a and P2b also did a better job than method P1
in allowing uncertainty in estimating the mean regression and predicting the test sample
observations. The homoscedastic versions 4 and 5 perform better than the parametric models
but worse than the heteroscedastic models. In some cases, the heavy tailed t-residual
distribution results in overly conservative predictive and credible intervals. As seen from the
value of the influence statistic, the heteroscedastic PSB process mixtures result in more
robust inference compared to the parametric error model, the sPSB process mixture of
normals being more robust than the symmetric and unimodal version. As the sample size
increases, the difference in the predictive performances between the parametric and the
nonparametric models is reduced and in some cases the parametric error model performs as
well as the nonparametric approaches, which is as expected given the Central Limit
Theorem.

Table 1 shows that, in the simple linear model with normal homoscedastic errors, all the
models perform similarly in terms of mean squared prediction error, though the methods P2a
and P2b are somewhat better than the rest. Also, in estimating the mean regression function
in case (i), methods P2a and P2b performed better than all the other methods. In case (ii)
(Table 1), methods P2a and P2b are most robust in terms of estimation and prediction in
presence of outliers. However, there is no significant difference between methods P2a and
P2b and methods P2c and P2d in cases (i) and (ii). In cases (iii) and (iv), when the residual
distribution is heteroscedastic, methods P2a and P2b perform significantly better than the
parametric model P1 and the homoscedastic models P2c and P2d in both estimation and
prediction, since the heteroscedastic PSB mixture is very flexible in modeling the residual
distribution. This is quite evident from the MSPE values under cases (iii) and (iv) in Table 2.
Huber’s M-Estimation method performs similarly to methods P2a–d in cases (i) and (ii) but
did not do as well in estimation and prediction in cases (iii) and (iv) when the underlying
mean function is actually non-linear with heteroscedastic residual distribution. Also BART
failed to perform well in estimating the mean function in small samples in these cases. On
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the other hand, GP based approaches perform quite well in these cases in estimating the
regression function with methods P2a and P2b performing better than the rest. Treed GP
performed close to method P1 in estimation and prediction as both the methods are based on
GP priors on the mean function and have a parametric error distribution. In not allowing
heteroscedastic error variance, BART and Treed GP underestimate uncertainty in prediction,
leading to overly narrow predictive intervals.

In case (v)(Table 3), where the true model is generated using comparatively less number of
true signals, BART performed slightly better in terms of prediction than other methods in
small samples. However, as the sample size increased, BART performed poorly while the
GP prior on the mean can accommodate the non-linearity resulting in substantially better
predictive performances.

7 Applications
7.1 Boston housing data application

To compare our proposed approaches to alternatives, we applied the methods to a commonly
used data set from the literature, the Boston housing data. The response is the median value
of the owner-occupied homes (measured in 1000$) in 506 census tracts in the Boston area,
and there are 13 predictors (12 continuous, 1 binary) that might help to explain the variation
in the median value across tracts. We predict the median value of the owner occupied homes
of which the first 253 is taken as the training set and the remaining 253 as the test set. Out of
sample predictive performance of our three methods is compared to competitors in Table 4.
The parametric model P1, and the mixture models P2a–d and the M-Estimation methods
perform very closely to each other in terms of prediction and did better than BART and
Treed GP. Methods P1 and P2a even perform slightly better than method P2b, P2c and P2d.
As in the simulation examples, BART and Treed GP underestimate the uncertainty in
prediction. On the other hand, the predictive intervals of the methods P1, P2a–d are more
conservative and accommodate uncertainty in predicting regions with outliers quite flexibly.
Also the model P2b appears to be more robust compared to models P1, P2a, P2c & P2d in
terms of the influence measure.

7.2 Body fat data application
With the increasing trend in obesity and concerns about associated adverse health effects,
such as heart disease and diabetes, it has become even more important to obtain accurate
estimates of body fat percentage. It is well known that body mass index, which is calculated
based only on weight and height, can produce a misleading measure of adiposity as it does
not take into account muscle mass or variability in frame size. As a gold standard for
measuring percentage of body fat, one can rely on under water weighing techniques, and age
and body circumference measurements have also been widely used as additional predictors.
We consider a commonly-used data set from Statlib (http://lib.stat.cmu.edu/datasets/
bodyfat), which contains the following 15 variables; percentage of body fat(%), body
density from underwater weighing (gm/cm3), age (year), weight (lbs.), height (inches), and
ten body circumferences (neck, chest, abdomen, hip, thigh, knee, ankle, biceps, forearm,
wrist, all in cm). Percentage of body fat is given from Siri’s (1956) equation:

We predict the percentage of body fat(%) taking the first 126 as the training set and the
remaining 126 as the test set. We summarize the predictive performances in Table 4.
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Table 4 suggests that the nonparametric regression procedures with heteroscedastic residual
distribution P2a and P2b perform better than the parametric models P1 and models P2c and
P2d, BART, M-Estimation and Treed GP in predicting the percentage of body fat.

8 Discussion
We have developed a novel regression model that can accommodate a large range of non-
linearity in the mean function and at the same time can flexibly deal with outliers and
heteroscedasticity. Based on preliminary simulation results, it appears that our methods P2a
and P2b can outperform contemporary nonparametric regression methods, such as Huber’s
M-Estimation method, BART and treed Gaussian processes. We also provide theoretical
support for the proposed methodology when both the mean and the residuals are modeled
nonparametrically.

One possible future direction is to relax the symmetry assumption on the residual
distribution and introduce a model for median regression based on conditional PSB mixtures
for allowing possibly asymmetric residual densities constrained to have zero median.
Conditional DP mixtures are well known in the literature (Doss 1985); Burr and Doss 2005)
and it is certainly interesting to extend our approach via a conditional PSB. In that way we
can hope to obtain a more robust estimate of the regression function. It is challenging to
extend our theoretical results to conditional PSB and develop a fast algorithm for
computation. Another possible theoretical direction is to prove posterior consistency using
heteroscedastic mixtures. Currently we only have results for the homoscedastic PSBP
mixture.
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A Proofs of main results
Proof of Lemma 1

It follows from Chu (1973) that

for some density g on ℝ+. Recall from Ongaro and Cattaneo (2004) that a collection of

random weights  with  a.s. is said to have a full support if for any m ≥ 1,
(π1; …, πm) admits a positive joint density with respect to Lebesgue measure on the simplex

. Ongaro and Cattaneo (2004) showed that if πh’s have a full
support, the weak support of

is the set of all probability measures whose support is contained the support of G0. Since

Pati and Dunson Page 18

Ann Inst Stat Math. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



πh’s have a full support and hence the weak support of  defined in (7) is all
probability measures on ℝ+. It follows that the weak support of the induced prior Πu on u,
denoted by wk(Πu), is precisely m.

Proof of Lemma 2

It follows from Tokdar (2006) that if we can show that the weak support of Πs contains all
probability measures symmetric about zero and having compact support, then f ∈ S̃s ⟹ f ∈
K L(Πs). The argument given in Lemma 1 shows that the weak support of the PSB prior in
(4) is the set of all probability measures on ℝ × ℝ+. Now we will show that an arbitrary Ps is
in a weak neighborhood of Ps if P ̃ is in a weak neighborhood of P. We state a lemma to
prove our claim.

Lemma 4 Let P̃n be a sequence of probability measures and P̃ be a fixed probability

measure. Then , with  and P ̃s the symmetrised versions of P̃n
and P̃, respectively, where the symmetrizing operation is as defined in (9).

Proof Assume P̃n ⟹ P̃. We have to show that for any bounded function ϕ on ℝ × ℝ+,

Now,

Since  is also a bounded continuous function and P̃n ⟹ P̃,

as n → ∞. This completes the proof of Lemma 4.

Lemma 4 in fact shows that the weak support of Πs contains all probability measures
symmetric about zero. With an appeal to Tokdar (2006), f ∈ S̃s ⟹ f ∈ K L(Πs).

Proof of Theorem 1

In order to prove the theorem we need the following variant of Theorem 2.1 of Amewou-
Atisso et al (2003) and Theorem 1 of Choi and Schervish (2007) which we state as Lemma
5. Existence of exponentially consistent tests is a typical tool in showing strong consistency.

Definition 2 Let ⊂ 𝒮̃s × ℱ. A sequence of test functions  is said to be
exponentially consistent for testing
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if there exists constants C1, C2, C > 0 such that

1.

2.

Lemma 5 Let Π̃ = (Πs × π) be the prior on S̃s × ℱ. Let Un be a sequence of subsets of S̃s ×

ℱ. Suppose that there exists test functions , sets Θn ⊂ S̃s × ℱ, n ≥ 1 and constants
C1, C2, c1, c2 > 0 such that

1.

2.

3.

4. For all δ > 0 and for almost every data sequence ,

Then .

In this case Un = n = × Sn (f0, Δ) ∀ n ≥ 1. As in van der Vaart and van Zanten (2009), we
construct Θn = ℱ × Θ1n where  where ℍ1 and 1 are unit ball of the
RKHS of Wa and unit ball of the Banach space of C[0, 1]p respectively, rn, Mn are
increasing sequences to be chosen later. The nth test is constructed by combining a
collection of tests one for each of the finitely many elements of Θn. It follows from the proof
of Theorem 3.1 in van der Vaart and van Zanten (2009) that under Assumption 1, there
exists constants d1, d2, K > 0 such that

1.

2.

Choosing Mn = O(n1/2), , we observe that

1.

2. log N (ε, Θ1n, ‖·‖∞) = o(n).

for some constant d2 > 0.

In order to verify 1 and 2 of Lemma 5, we will write n as a disjoint union of two easily
tractable regions. The particular form of n that is of interest to us is 1n ∪ 2n, where for
any Δ > 0,
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We will establish the existence of a consistent sequence of tests for each of these regions by
considering the following variants of Proposition 3.1 and Proposition 3.3 of Amewou-Atisso
et al (2003).

Proposition 1 There exists an exponentially consistent sequence of tests for

Proof Let 0 < t < Δ/2 and assume Nt = N(t, Θ1n, ‖·‖∞). Let η1, …, ηNt ∈ Θ1n be such that for
each η ∈ Θ1n there exists j such that ‖η − ηj‖∞ < t. If ‖η − η0‖1,n > Δ, ‖ηj − η0‖1,n > Δ/2. It

follows from Lemma 3.2 Amewou-Atisso et al (2003) that there exists a set  and a

constant C > 0 depending on f0 such that . and

. If i ≤ n and i ∉ Kn, set Ai = ℝ, so that . Thus

From Lemma 3.1 and Lemma 3.2 of Amewou-Atisso et al (2003), it follows that there exist

test functions  based on  such that  and

 for constants C1, C2 > 0 Now define .

Then

for some constant C3 > 0. Clearly .

Next we consider the type II error probability. The type II error probability of Θn is no larger

than the type II error probability of any of the  and hence exponentially
small.

Proposition 2 There exists an exponentially consistent sequence of tests for

Proof Without loss of generality take

where 0 ≤ Θ ≤ 1 and Θ is Lipschitz continuous. Hence there exists M > 0 such that |Θ(y1) −
Θ(y2)| < M|y1 − y2|. Set Θ̃i(y) = Θ{y − η0(xi)}. Notice that 𝖤f0i Θ̃i = 𝖤f0Θ. Now
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Hence  for any f ∈ Uc. Now choosing Δ < ε/M and
applying Lemma 3.1 of Amewou-Atisso et al (2003) we complete the proof.

It remains to verify the second sufficient condition of Theorem 1. Under the assumptions, it
follows from Lemma 2 that f0 ∈ K L(Πs). We will present an important lemma which is
similar to Lemma 5.1 of Tokdar (2006). It guarantees that K(f0, fθ) and V(f0, fθ) are
continuous at θ = 0. First we state and prove some properties of the prior Πs described in (9)
which will be used to prove the lemma.

Lemma 6 If Πs is the prior described in (9) and , with
ατ > 0 and βτ > 0. Then,

(11)

Proof

The proofs of ∫ t2dPs(t,τ) < ∞ a.s. and ∫ τt2dPs(t,τ) < ∞ a.s. are similar. Since ατ > 0,

choose an integer m large enough such that .
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since τ1/m log τ is bounded in [0, 1]. Also ∫τ>0 (log τ)τατ−1 e−βττ dτ ≤ ∫τ>0 ττατ−1 e−βττ dτ <
∞.

Lemma 7 Under the conditions of the Theorem 1, if f(·) = ∫ N(·; t, τ−1)dPs(t,τ) and fθ(y) =
f(y − θ), then

1.

2.

Proof Clearly τϕ{τ(y−θ−t)} → τϕ{τ(y−t)} as θ → 0. Since

, so by DCT fθ(y) → f(y) as θ → 0.
Hence

To apply DCT again, we have to bound the function |log fθ(y)|by an integrable function.

Let c = ∫ τdPs(t,τ) < ∞. Then

Now since

.
Hence, by Jensen’s inequality applied to −log x, we get,

.

Now since θ → 0, w.l.o.g assume |θ| ≤ 1. Hence

Pati and Dunson Page 23

Ann Inst Stat Math. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which is clearly f0-integrable according to the assumptions of the lemma and from the
properties of Πs proved in Lemma 6. Similarly |log fθ(y)|2 can be bounded by an f0-
integrable function. The conclusion of the lemma follows from a simple application of DCT.

Lemma 2 together with the assumption (2) of the Theorem 1 guarantees Π{f : K(f0, f) < δ,
V(f0, f) < ∞} > 0 for all δ > 0. Since (11) holds, we may assume

(12)

Now for every f(·) = ∫ N(·; t, τ−1)dPs(t,τ) ∈  using Lemma 7, choose δf such that for |θ| <
δf,

Now if ‖η − η0‖ < δf, |η(xi) − η0(xi)| < δf, for i = 1, …, n. So if f ∈ and ‖η − η0‖ < δf, we
have

From (12) and Lemma 3 we have,

Hence

This ensures weak consistency of the posterior of the residual density and strong consistency
of the posterior of the regression function η.
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