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Abstract
Geometric sensitivity for single photon emission computerized tomography (SPECT) is given by a
double integral over the detection plane. It would be useful to be able to explicitly evaluate this
quantity. This paper shows that the inner integral can be evaluated in the situation where there is
no gamma ray penetration of the material surrounding the pinhole aperature. This is done by
converting the integral to an integral in the complex plane and using Cauchy’s theorem to replace
it by one which can be evaluated in terms of elliptic functions.
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1 Introduction
Nuclear-medicine imaging provides images that assess how the body is functioning [1, 2], as
opposed to anatomical modalities (e.g., x-ray computed tomograpy, commonly known as a
CT or ‘CAT’ scans) that provide little or no information about function, but great detail of
the body’s structure. Nuclear-medicine images the biodistribution of radiolabeled molecules
that are typically intravenously injected into the patient in tracer (i.e., non-pharmacological)
quantitites. The compounds may have different biochemical properties that affect the
biodistribution and, hence, the choice of pharmaceuticals used to assess the disease state of a
patient.

Two common nuclear-medicine techniques are single photon emission computed
tomography (SPECT) and positron emission tomography (PET). Molecules labeled with a
SPECT tracer emit a single photon. PET tracers emit a positron, which annihilates with a
nearby electron to produce two nearly back-to-back photons at 511 keV, the rest energy of
an electron. The line of these two photons contains the emission point of the positron. Many
photon pairs are detected in coincidence and reconstructed into a three-dimensional (3D)
image of the tracer’s distribution.

Since SPECT tracers emit only one photon, the detection of the photon itself gives little
information about the location of the emission since neither the direction nor origin of the
emission is known. Consequently, SPECT uses collimation that allows only photons along
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certain lines to be detected. The origin is still unknown, but the 3D image may be
reconstructed when photons from numerous angles are detected [3, 4]. Pinhole collimation is
often used when a small organ (e.g., the thyroid) is imaged by a large detector with a SPECT
tracer. Figure 1 is a diagram of the apparatus. It is not hard to see that the pinhole
collimation’s geometric efficiency, namely, the fraction of emitted photons that pass through
the circular aperture of the collimator, is approximately given by:

(1.1)

where d is the diameter of the pinhole, h is the perpendicular distance, and θ is the incidence
angle of the photon on the aperture plane at the center of aperture. This formula becomes

exact in the limit that d goes to zero. Also, an exact formula is easily obtained when :

(1.2)

We derive stronger versions of these two results in the next section. But the main goal of
this paper is to simplify the integral representation for the geometric sensitivity without
taking d or θ − π/2 to be small. We are concerned with the case where there is no penetration
in the sense that not all gamma rays are stopped by the attenuating material surrounding the
pinhole aperture. We take θ ≠ π/2. The geometric sensitivity, as defined above, is given by
the integral over the aperture of the flux times the sine of the incidence angle at that point on
the aperture:

(1.3)

where ρ and β are polar coordinates on the aperture plane and θa is the incidence angle of the
photon at a particular value of ρ and β, and is given by [6]:

where ϕ is the third coordinate of the point source. For integrals over 2π the difference β − ϕ
can be replaced with only β without loss of generality. This yields

Applying this to (1.3),

(1.4)

When there is penetration the above would be modified to
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(1.5)

where the path length through attenuating material, ΔL, is zero for  and is otherwise
given by (11) in Ref. [6].

Thus, (1.5) can be re-written as

where gPEN is the efficiency due to penetration and gNP, the efficiency under the assumption
of no penetration, is given by (1.4).

In this paper we use complex variable methods to calculate the β integral in (1.4).

2 Two approximations for gNP

The special form of gNP makes it easy to derive approximations for d/h small and for θ − π/2
small which generalize equations (1.1) and (1.2). Before doing this, we observe that only
even powers of d and of θ − π/2 can occur in the expansion of gNP. We see this by writing
the integral as the sum of integrals from 0 to π and from π to 2π.

2.1 The expansion for d small

Let us, in this section, denote gNP by g. Upon substituting  and  into (1.4) we
obtain

Clearly, g(0, θ) = 0. Since

we have gr(0, θ) = 0. Differentiating (2.1) three more times with respect to r we obtain

and then setting r = 0 in each of the resulting equations we obtain
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For convenience let us write

so ϕ becomes

Then

We substitute into the Taylor expansion

and obtain

Since

and u−1 = sin2 θ we obtain

Finally we replace cos2 θ by 1 − sin2 θ and r by d/2h and obtain.

(2.1)
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2.2 The expansion for  small
To start we let

and compute its Taylor expansion at ,

Since

and since we know that only even powers of θ − π/2 occur, we obtain

3 The Contour Integral
We have

(3.1)

and

I may be re-cast as a contour integral by setting z = eiβ:

where
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We note that a > b and so 0 < x0 < 1 < x1.

In this section we take ρ, θ, and h to be constant. We write

and

We need to be careful because of the square roots. We use the usual convention that

We wish to show that F(z) is holomorphic (and single-valued) in

To isolate the square root factor in F we set

We take ∣z∣ ≤ 1. If in addition Re z < 0 and ∣Im z∣ << ∣z − x0∣ then Re (z − x0)(x1 − z) < 0.
This implies that g(z) never takes on negative real values and so has a single-valued square
root in Re z < 0. Similarly, if ∣z∣ ≤ 1, and Re z > x0 (no condition on Im z now) then Re (z −
x0)(x1 − z) > 0 and g(z) has a single-valued square root Re z > x0.

It follows from Cauchy’s Theorem that the integral of F(z) over the unit circle Γ is equal to
the integral over the “ barbell” γ around 0 and x0. More explicitly, γ is the boundary of

where B∊(x) is the ball of radius ∊ and centered at x and R is the rectangle
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with δ << ∊. See Figure 2.

The curve γ decomposes into smooth pieces which we describe using the angle α = arcsin(δ/
∊).

To bound the integral over γ1 we set z = ∊eiθ.

To evaluate ∫γr F(z)dz we set z = x0 + ∊eiθ. Then

with

(3.2)

and so

Since α = O(∊), we may set α = 0 and absorb the error in the O(∊1/2) term. We then do the
integration and obtain

(3.3)

We want to compute the integral of F over γ+. We need to be careful about the square root.
Recall that we are assuming

Lemma 3.1
On γ+
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and on γ−

Proof—This is a consequence of the branching of the square root function. Let

and

We see that

Recall that δ is replaced by −δ on γ− and that 0 < x < x0 < x1. So Re H(z) < 0 on both γ+ and
γ− while Im H(z) < 0 on γ+ and Im H(z) > 0 on γ−. Thus on γ+

while on γ−

Since

the Lemma follows.
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We also need to be careful about the orientation. The curve γ is oriented counter-clockwise.
This means that the integration over γ+ goes in the direction of x0 to 0. We need to reverse
its sign in order to write it in the conventional way.

We let x = x0t and  and use δ << ∊ to obtain

Now let

We have

We may let Δ → 0 in the lower limit, but not in the upper limit. So we now have

(3.4)

Here Δ = ∊x0
−1 cos α. We may let δ → 0 and redefine Δ to be ∊x0

−1.

We get the same value for the integral over γ−. This is because the integrand is the negative
of that in (3.4) but the orientation is reversed and so the two negatives cancel.

For any function g(t), continuously differentiable on the interval [0, 1], we have

as can easilly be seen by an integration by parts.

We apply this to g(t) = t1/2/(Γ − t)3/2 as in (3.4). This yields

We now take twice this quantity and add to it the results of (3.2) and (3.3),
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We substitute the value for C from (3.2) and let ∊ → 0

Finally, we evaluate this integral using Mathematica® and obtain

where K and E are the complete elliptic functions of the first and second kind

We now have

(3.5)

and

(3.6)

with

(3.7)

(3.8)
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4 Limiting cases
We validate (3.5) by consider two limiting cases.

4.1 Expansion for Small d

We look for an expansion of gNP under the assumption that  is small and rederive (2.1) The
dependence of x0 on ρ is given in (3.8). The two-term Taylor expansion of x0 as a function
of ρ is

(4.1)

with

(4.2)

Since

we have

(4.3)

and

(4.4)

It is convenient to work with the quantity ρ2Γ, so we note, using (4.1)

(4.5)

We start with

(4.6)

Substituting the expression for b from (3.7) and for (Γ − 1)2 from (4.4) we obtain, after some
manipulation

We now use the expansions (as given by Mathematica®)
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So

From the expression for ρ2Γ in (4.5), we derive

and this leads to

We now substitute for A and B using (4.2) and also for Γ−1 using (4.3)

Substituting this into (3.6) and integrating, we again derive (2.1).

4.2 An expansion for θ near π/2
We show how (4.6) also gives the expansion of Section 2.2. We start with

From (3.7) we see that

(4.7)

(4.8)

So from (3.8) we have
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Thus

(4.9)

and

These expansions let us write (4.6) as

Using (4.8) and (4.9) we obtain a substitute for (4.1)

This gives, in light of (4.7),

Finally, we integrate term-by-term.
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5 Numerical Confirmation
The result of (3.5) is further validated in this section with numerical integration of (3.1). In
this original formulation, the integral depends on the ratio of ρ/h and on the value of θ. We
analytically considered one limiting case for each of these quantities in the previous section.
We consider these and other values for these quantities in this section using numerical
methods. For fixed values of ρ/h, the numerical integration (solid lines) is shown with the
results of the residue calculation (open circles) in Fig. 3 as a function of θ. Fig. 4 shows the
numerical integration and residue results for fixed values of θ as a function of ρ/h. All
corresponding values of the residue calculation and the numerical integration agree.

6 Conclusions
The accuracy of collimator efficiency is important for design and for quantitative
reconstruction programs. Analytic forms obviate the need for numerical models, which do
not readily offer insight into the interplay of collimator parameters. This paper approaches
the problem by re-casting one of the integrals in terms of contour integration. This
integration was completed, but the authors were unable to execute the second integral to
yield a complete analytic solution. The result was studied for special cases with known
outcomes for validation. Future efforts may be able to build on this validated result to find a
complete analytic solution.
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Figure 1.
Perspective View of the Knife-edge Pinhole Collimator. A point source at z = h and angle θ
emits a photon that intersects the z = 0 plane at (ρ cos β, ρ sin β, 0) with an incident angle θa.
The acceptance angle of the collimator is α and the diameter of the aperture is d. ΔL is the
path length of the photon in the attenuating medium. Reproduced from [6] with permission
(© 2001 IEEE).
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Figure 2.
The curve γ
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Figure 3.
Numerical integration of (3.1) (solid lines) and residue calculation of (3.5) (open circles) as
a function of θ for fixed values of ρ/h: 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
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Figure 4.
Numerical integration of (3.1) (solid lines) and residue calculation of (3.5) (open circles) as
a function of ρ/h for fixed values of θ: 50, 60, 70, 80, and 90 degrees.
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