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Abstract
Background—Reliably abstracting outcomes from free-text electronic medical records remains
a challenge. While automated classification of free text has been a popular medical informatics
topic, performance validation using real-world clinical data has been limited. The two main
approaches are linguistic (natural language processing [NLP]) and statistical (machine learning).
The authors have developed a hybrid system for abstracting computed tomography (CT) reports
for specified outcomes.

Objectives—The objective was to measure performance of a hybrid NLP and machine learning
system for automated outcome classification of emergency department (ED) CT imaging reports.
The hypothesis was that such a system is comparable to medical personnel doing the data
abstraction.

Methods—A secondary analysis was performed on a prior diagnostic imaging study on 3,710
blunt facial trauma victims. Staff radiologists dictated CT reports as free text, which were then
deidentified. A trained data abstractor manually coded the reference standard outcome of acute
orbital fracture, with a random subset double-coded for reliability. The data set was randomly split
evenly into training and testing sets. Training patient reports were used as input to the Medical
Language Extraction and Encoding (MedLEE) NLP tool to create structured output containing
standardized medical terms and modifiers for certainty and temporal status. Findings were filtered
for low certainty and past/future modifiers and then combined with the manual reference standard
to generate decision tree classifiers using data mining tools Waikato Environment for Knowledge
Analysis (WEKA) 3.7.5 and Salford Predictive Miner 6.6. Performance of decision tree classifiers
was evaluated on the testing set with or without NLP processing.

Results—The performance of machine learning alone was comparable to prior NLP studies
(sensitivity = 0.92, specificity = 0.93, precision = 0.95, recall = 0.93, f-score = 0.94), and the
combined use of NLP and machine learning shows further improvement (sensitivity = 0.93,
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specificity = 0.97, precision = 0.97, recall = 0.96, f-score = 0.97). This performance is similar to,
or better than, that of medical personnel in previous studies.

Conclusions—A hybrid NLP and machine learning automated classification system shows
promise in coding free-text electronic clinical data.

A well-known barrier to the use of electronic health records (EHRs) for clinical research is
the prevalence of free-text data. Extraction of outcomes of interest requires trained data
abstractors to manually process each report. This can consume significant time and
resources, and extracting another outcome later may require repeating the whole process
again.

Automated classification of free text has been an active area of informatics research.1 This
task is often broken into two steps, namely, the structuring of text using standardized
medical language and identification of outcomes of interest. Linguistics-based natural
language processing (NLP) software for the medical domain has been shown to successfully
perform the first step, although many NLP tools are developed for narrow medical
domains.2–4 Furthermore, NLP traditionally needs to be paired with hand-crafted if–then
rules (expert rules) for the second step of outcome identification.5 This approach is not
easily generalizable because of the narrow scope of some NLP tools and the need to craft a
new set of expert rules for each outcome of interest.

More recently, statistical machine learning techniques have shown promise for outcome
identification, especially when dealing with large volumes of data. However, a number of
machine learning classification techniques are not transparent, making them less likely to be
adopted by clinicians.6 Regardless, more generalizable automated outcome classification
pairing NLP software and machine learning techniques are now possible. This approach has
shown to have the potential to code EHR data,7,8 although most prior studies have been
performed on documents mocked up for NLP testing and never validated on real-world data.

Automated classification of outcomes, such as radiologic findings, could have a substantial
effect on clinical research. A good example would be the project whose data were used for
this study.9 To derive a clinical risk score to predict traumatic orbital fracture, a lengthy
multicenter study was conducted that required physicians to fill out prospective surveys and
research assistants to code the clinical outcomes from orbital computed tomography (CT)
reports retrospectively. Data analysis was delayed by 1 year trying to secure a research
assistant to work full time for 4 months to abstract the necessary information. While
templated EHRs could obviate the need for prospective surveys to collect predictor
variables, automated classification of the radiology reports would still prove crucial to
generate the outcomes data. Furthermore, once clinical decision support tools are
implemented in EHRs, auditing physician performance of CT would need to go beyond
simple numbers of CTs ordered, but examine the positive yield of the CTs. The goal is to
develop a translatable, accurate, and efficient computer system that structures free-text EHR
data stored in clinical data warehouses and extracts outcomes suitable for clinical research
and performance improvement.

We performed this study to adapt an established broad-coverage medical NLP system and
hybridize it with transparent modern machine learning techniques to enhance acceptability.
We measured the diagnostic accuracy of a hybrid system using NLP and machine learning
tools for automated classification of emergency department (ED) CT imaging reports by
comparing to classification by traditional manual data abstraction.
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METHODS
Study Design

This was a secondary analysis of data from a prior diagnostic imaging study on blunt facial
trauma victims.9 Institutional review board (IRB) approval was obtained for this secondary
analysis, which was a retrospective cohort study comparing automated classification of CT
imaging reports against the reference standard of manual coding by trained data abstractors.

Study Setting and Population
The study setting and population of the original study are discussed in detail elsewhere.9

Briefly, the traumatic orbital fracture project was a prospective cohort study of ED patients
presenting acutely with blunt orbital trauma who underwent CT imaging. The study derived
a clinical risk score to help guide more efficient use of radiologic imaging, to improve the
specificity for identifying trauma patients with orbital fracture using CT imaging, a high-
radiation, time-consuming, and expensive test. Using conventional methods previously
described,9 the investigators prospectively collected clinical data and outcomes on 3,710
consecutive patients, including CT imaging reports. Staff radiologists dictated each CT
report.

The reference standard outcome of acute orbital fracture was extracted manually by a trained
data abstractor, who determined whether an orbital fracture was present acutely, likely
present, not likely present/chronic, or not present. To confirm reliability, a random subset of
approximately 500 reports was checked by a study physician (??) blinded to the outcome.
The binary reference standard outcome of acute fracture (present/not present) was created by
grouping present acutely and likely present into “present” and the remaining two categories
into “not present.”

Study Protocol
System Overview—For the secondary analysis reported here, patient reports were
preprocessed for deidentification and processed by NLP (Figure 1). The NLP output was
filtered to exclude findings with low certainty or negation, as well as findings linked with
patients’ histories. The NLP-filtered findings were combined with the reference standard
outcomes and then randomly divided into 50% training and 50% test sets to evaluate
performance of machine learning classification. We optionally bypassed the NLP processing
step after deidentification to evaluate machine learning classification performance directly
on raw text.

Preprocessing—To secure IRB approval for waiver of consent, we manually removed all
protected health information. This was performed after linking CT reports and the abstracted
outcomes database using a script to replace medical record numbers with a matching unique
sequenced study number.

Medical Language Extraction and Encoding Overview—Medical Language
Extraction and Encoding (MedLEE; Columbia University, New York, NY; and Health
Fidelity, Menlo Park, CA) was chosen as the NLP module because it is one of the most
widely used NLP software packages in the medical research community7 and has previously
successfully interpreted findings from free-text radiology procedure reports, including head
CT imaging for stroke and chest radiography for respiratory diseases.10,11 It is available
under both commercial and academic licenses. Figure 2 depicts MedLEE’s main
components.12,13
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MedLEE parses text using a grammar to recognize syntactic and semantic patterns,
generating structured text with contextual modifiers that are organized in tables and assigned
to codes.13 To adapt MedLEE for new clinical applications, its lexicon, abbreviations, and
section names can be extended dynamically to reflect the terms and organization seen in the
documents to be interpreted. This is necessary because of the need for disambiguation,
where terms have different meanings in different contexts (e.g. “ventricle” in an
echocardiogram report is anatomically different from “ventricle” in a CT head report). For
this study, we randomly sampled a set of 200 reports that had been processed by MedLEE to
identify any problematic terms that would need MedLEE adaptation.

Unified Medical Language System—Unified Medical Language System (UMLS) is a
repository of many controlled vocabularies developed by the U.S. National Library of
Medicine for use in the biomedical sciences.14,15 It is a comprehensive thesaurus and
ontology of biomedical concepts consisting of 6.4 million unique terms for 1.3 million
concepts from more than 119 families of biomedical vocabularies. MedLEE matches its
findings to Concept Unique Identifiers (CUIs) from UMLS, which increases interoperability
of the system (Figure 3).

Feature Selection Filtering—MedLEE output includes problems, findings, and
procedures with associated modifiers that report specific body locations, certainty, and
temporal status (Figure 3). We used the certainty and temporal status modifiers to include
only likely acute findings, filtering out findings associated with negated and low-probability
certainty modifiers, as well as those associated with historical or chronic temporal status
modifiers. We did not plan on limiting the structured output to UMLS codes with body
locations specific to orbital anatomy as we expected the machine learning algorithms to
detect these on their own, and we wanted to minimize human supervision of the study
approach.

Postprocessing Using Waikato Environment for Knowledge Analysis—Waikato
Environment for Knowledge Analysis (WEKA; Waikato University, Hamilton, New
Zealand) is an open-source collection of machine learning algorithms for data mining tasks
written in Java.16 WEKA 3.7.5 contains tools for data preprocessing, classification,
regression, clustering, association rules, and visualization, although we used it solely for
postprocessing. It is capable of importing multiple forms of data, including the deidentified
raw-text reports and the filtered feature sets from NLP output. These were separately
compiled with the reference standard outcomes of acute orbital fracture (Figure 1) into
individual files in attribute relation file format (arff), where each line represents one report
with its associated outcome. These arff files underwent conversion into word vector
representations.17 The word vector representations for the raw text were unigram words. The
word vector representations for the NLP-processed reports combined unigram words and
UMLS CUI phrases. We justified this approach to allow the machine learning classification
to utilize the NLP-processed UMLS CUIs, yet also allow it to identify simple key words that
could potentially perform highly as well.

Decision Tree Classification—We used decision trees for classification because of their
explicit rule-based output, which can be easily evaluated for content validity. We used the
Classification and Regression Trees (CART) module of Salford Predictive Miner 6.6
(Salford Systems, San Diego, CA) to generate decision trees using the word vector attributes
as predictors, without explicit constraints, minimum performance cutoffs, or maximum
number of nodes. The goal was to generate a parsimonious tree that was robust to varying
misclassification costs. We opted to use training and testing sets to evaluate performance
instead of cross-validation because we wanted to see how decision tree classifiers would
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work in a real-world scenario of training an automated classifier using a subset of data to
then be applied to the remaining testing subset.

RESULTS
Of the 3,710 CT imaging reports, 460 (12.4%) were coded positive for orbital fractures by
the trained data abstractor. A random subset of 507 CT reports were double coded, and
interrater analysis revealed excellent agreement between the data abstractor and study
physician, with Cohen’s kappa of 0.97 (95% = confidence interval [CI] = 0.94 to 0.99).
Random screening of initial MedLEE output identified only minor lexical modifications
(Data Supplement S1, available as supporting information in the online version of this
paper) that were incorporated into the final MedLEE command line to extend the lexicon
(Data Supplement S2, available as supporting information in the online version of this
paper). After association with the reference standard outcome files, the raw text and NLP
outputs were converted to word vector representations using WEKA using the
StringtoWordVector filter with OutputWordCounts option set to true. The word vector
representations consisted of 1,296 raw-text attributes and 1,371 NLP attributes.

Decision tree modeling using CART was successfully performed using either the attributes
from the raw-text word vector representations or the attributes from the NLP word vector
representations. Using the binary outcome of fracture/no fracture, both test sets had high
classification accuracies, exceeding 90% on almost all measures (Table 1). Decision trees
were qualitatively selected to balance improving classification performance (i.e. maximizing
the area under the receiver operating characteristic curve) and minimizing relative cost and
tree complexity. Final decision trees were parsimonious at eight nodes and nine nodes,
respectively, and were robust to varying misclassification costs increasingly favoring
sensitivity (Data Supplements S3 and S4, available as supporting information in the online
version of this paper). The training and testing data sets were confirmed to include similar
proportions of positive and negative fracture CT reports.

Misclassified CT reports, both false positives and false negatives, were reviewed in both the
training and the test sets and the causes of error were categorized (Table 2). Of 102 total
misclassified reports (2.7%), the main sources of classification error were nonorbital
fractures being classified as orbital fractures and disagreement between radiologists. The
latter classification error stems from the fact that the next-day radiology overread is
appended to the preliminary reading to create the final CT report of record.

DISCUSSION
The results of this study support our hypothesis that a hybrid automated classification
system can perform comparably to medical personnel. The performance of our system is
similar to that of physician raters in previous studies (Table 3).2,18–21 Furthermore, the
classification performance was comparable to the high interrater reliability between the
trained data abstractor and study physician in this study. Even though this study was
performed using data from real-world settings, the automated classification performance was
similar to the performance in simulated conditions in previous studies.1

A few prior studies have examined the use of classification algorithms to interpret radiology
report free text data from real-world sources. Two early studies used MedLEE for chest
radiograph reports, but used expert rules for the classification step.18,19 Although less
generalizable in approach, these early studies suggested that a hybrid approach to automated
classification was comparable to medical personnel. A more recent study by the same
authors used MedLEE and expert rules on a random selection of 150 chest radiographs to
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identify 24 different pathologic conditions and demonstrated an average sensitivity of 0.81
and an average specificity of 0.99.22 The largest real-world study examined 7,928 chest
radiographs on a consecutive cohort of 1,277 neonates to detect pneumonia.12 Although this
meant each unique patient was the source of multiple reports and there was a low prevalence
of positive cases (seven cases, 0.5%), MedLEE and expert rules identified pneumonia with a
sensitivity of 0.71 and specificity of 0.99. The best performance was found in a study
comparing the precision and accuracy of NegEx (negative identification for clinical
conditions, https://code.google.com/p/negex/) and SQL Server 2008 Free Text Search
(Microsoft Corp., Redmond, WA) to identify acute fractures in 400 randomly selected
extremity and spine radiograph reports.23 Although the expert rules were constructed to
broadly identify any acute fractures and there was a low prevalence of positive cases (13
cases, 3.25%), NegEx performance was perfect, while modified SQLServer also did well
(precision = 1.00, recall = 0.92; F-score = 0.96).

This study improves on previous work in two ways. First, we achieved similar performance
using data sourced from real-world clinical settings despite being the first to use machine
learning for outcome identification. Second, we analyzed the largest number of unique
patients to date.

In selecting MedLEE for our hybrid approach, we did consider other available NLP tools.
Alternative medical NLP tools, such as the open-source Clinical Text Analysis and
Knowledge Extraction System (cTAKES; Mayo Clinic, Rochester, MN), are still being
developed to understand temporality, among other features.24 More general NLP tools, such
as Stanford NLP,25 are not customized for medical terms and often lack contextual
modifiers. MedLEE, on the other hand, produces modifiers to determine the validity of the
findings and also codes them to UMLS medical terms, which provides semantic
standardization.

Other techniques for machine learning can be faster than decision trees, but they do not
provide readily interpretable output that would be important to clinicians. When reviewing
the decision tree splitting criteria (Data Supplements S3 and S4), it should be noted that the
classification algorithms used clinically sensible terms. Most criteria were words or UMLS
CUIs that describe facial fractures or orbital anatomy. Support Vector Machines (SVM)
have been previously shown to be very successful in text classification,26 including the
medical domain,8 but provide no way of verifying the sensibility of the algorithm. Although
we planned to perform only decision trees as a transparent form of machine learning, we did
confirm that the results of classification using SVM (using the WEKA SMO classifier)
showed similar performance.27

For this study, an unexpected finding was the high classification performance of machine
learning techniques applied to raw text. The high performance of the decision tree classifiers
without NLP processing may be due to the fact that certain anatomical terms were present in
CT reports only when describing orbital fractures without modifiers (Data Supplement S3).
The notable exception was the use of the modifier “associated” as the final splitting criteria
after the term “orbital” was found. It was likely serving as a surrogate for complex concepts
like fluid in a sinus or overlying soft tissue swelling. The persistence of simple key anatomic
terms for a few of the splitting criteria in the NLP decision tree supports this observation
(Data Supplement S4). Previous examples of machine learning classification performing
well without the benefit of NLP exist in the literature, although the identified research all
used simulated data sets.4,21,28 However, one of the goals of applying a hybrid system is to
take advantage of the pattern-matching benefits of machine learning to identify key words,
while leveraging the power of NLP to understand more complex prose. For a given
outcome, one approach may be better than the other, but combining them will be better.8 We
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expect a hybrid approach to excel when associating complex findings with outcomes of
clinical importance. For instance, a hybrid automated classification system should perform
better for conditions in which the outcome itself may be described by multiple synonyms or
findings of varying severity (e.g., degree of injury or volume of blood).

One of the challenges of developing an automated classification system using NLP is the
need to adjust the system for a particular task. For explicit rule-based systems, this may
involve actually changing the rules themselves. In the case of MedLEE, the adjustments
required were simply lexical in nature, to address disambiguation and add missing
anatomical terms (Data Supplement S2). Regardless, there are no methodologic standards
for conducting this adjustment, and a large number of classification errors were related to
anatomic terminology errors (Table 2). In this study, we conducted a random sampling of
reports for the study physician to review and analyze. More comprehensive methods may be
needed when conducting multicenter studies. Content analysis, a well-established qualitative
research methodology, could be used to exert rigor to the process of identifying and
categorizing important terms and concepts.29 Content analysis would involve multiple raters
and require defining a structured, inductive approach to evaluation that would afford a
measure of objectivity, reliability, and reproducibility.

While this study adds to a growing body of research demonstrating the utility of automated
classification to support outcomes research, further studies are needed. It remains to be seen
if this hybrid system will outperform simple machine learning in identification of clinical
outcomes of interest from medical free text. We are currently testing this system on the more
complex findings of traumatic brain injury in head CT imaging reports from several sites to
see if the NLP processing aspect of the hybrid demonstrates superior performance over
exclusive use of machine learning.

LIMITATIONS
As a representative corpus of radiology reports, this data set may not have enough
challenging text to demonstrate NLP’s dexterity, such as lacking more of a variety of
temporal or conditional modifiers. However, this was a real-world data set, consisting of 2
years of consecutive CT reports. It may not reflect a “typical” radiology corpus that is used
to test automated classification systems by informatics researchers, but it does represent a
typical data set that could have used automated classification for clinical application.

Another limitation was the nature of documentation at the sites that generated the CT
reports, namely, combining preliminary and final findings into the final CT report of record.
While this is likely not common practice, it created a challenge for automated classification
as contradictory findings and impressions existed in a single CT report. We are not aware of
established techniques to overcome this problem. In the meantime, careful consideration
should be made in applying this approach in future studies if the reporting behavior is
similar at a participating institution.

CONCLUSIONS
Combining natural language processing and machine learning techniques shows promise in
automating outcome classification from free-text electronic clinical data. This hybrid
approach should be broadly applicable to outcomes of clinical interest, whereas relying on
machine learning alone likely is not. Future work will address creating robust approaches to
refining natural language processing tools, as well as validating that a hybrid approach
provides more consistent performance for complex outcomes. Validated performance, when
tested on data from other real-world settings, could lead to potentially streamlining data
collection for clinical research and performance improvement.
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Figure 1.
Overview of hybrid automated classification system approach. CART = Classification and
Regression Trees; MedLEE = Medical Language Extraction and Encoding; NLP = natural
language processing; WEKA = Waikato Environment for Knowledge Analysis.
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Figure 2.
Main components of MedLEE. MedLEE = Medical Language Extraction and Encoding.
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Figure 3.
Example of MedLEE structured output. MedLEE = Medical Language Extraction and
Encoding.
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Table 1

Classification Performance of Decision Trees on Test Sets

Test Raw Text NLP

Sensitivity (95% CI) 0.925 (0.883–0.954) 0.933 (0.897–0.959)

Specificity (95% CI) 0.933 (0.928–0.937) 0.969 (0.964–0.973)

PPV (95% CI) 0.650 (0.621–0.671) 0.816 (0.785–0.839)

NPV (95% CI) 0.989 (0.983–0.993) 0.990 (0.985–0.994)

Weighted precision 0.949 0.968

Weighted recall 0.932 0.964

Weighted F-score 0.940 0.966

Weighted performance scores are commonly reported in the information retrieval literature. Weighted precision is the weighted average of PPV
and NPV, weighted recall is the weighted average of sensitivity and specificity, and the weighted F-score is the weighted average of precision and
recall for positive cases and negative cases.

NLP = natural language processing; NPV = negative predictive value; PPV = positive predictive value.
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Table 2

Classification Errors (Combination of Training and Test Sets)*

Cause Frequency (%)

Nonorbital fracture 32 (31.4)

Final reading disagrees with preliminary reading 19 (18.6)

Vague certainty 9 (8.8)

Fracture acuity 9 (8.8)

Recent facial fracture surgery 6 (5.9)

MedLEE miscoding 5 (4.9)

Other† 22 (21.6)

*
Total sample of 3,710. Errors total 102 instances (2.7%).

†
Includes dictation error, filtering error, fracture implied but not stated, and miscellaneous poor wording.

MedLEE = Medical Language Extraction and Encoding.
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Table 3

Performance of Automated Classification Compared to Physician Raters

Study and Coding Method Sensitivity Specificity

This study, hybrid automated (95% CI) 0.933 (0.897–0.959) 0.969 (0.964–0.973)

Hripcsak 1995,18 7 internists*† 0.839 0.983

Hripcsak 1995,18 7 radiologists*† 0.854 0.986

Hripcsak 1998,19 12 physicians* (95% CI) 0.87 (0.84–0.90) 0.98 (0.98–0.99)

Chapman 1999,2 1 physician (95% CI) 0.900 (0.812–0.956) 0.811 (0.753–0.848)

Fiszman 2000,20 4 physicians*† 0.94 0.91

Solti 2009,21 11 physicians*† 0.85 0.95

*
Average.

†
95% CI not reported or not calculable from published results.
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