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Data processing, management and visualization are central and critical components of a state of the art high-
throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-
consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of
proteomics has triggered an increase in the development of new software libraries, including freely available
and open-source software. From database search analysis to post-processing of the identification results,
even though the objectives of these libraries and packages can vary significantly, they usually share a number
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Proteomics of features. Common use cases include the handling of protein and peptide sequences, the parsing of results
Databases from various proteomics search engines output files, and the visualization of MS-related information (including

mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries,
open-source frameworks and also, we give information on some of the freely available applications which make
use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification
Era. Guest Editors: Martin Eisenacher and Christian Stephan.
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1. Introduction

Mass spectrometry (MS)-based proteomics has become an increas-
ingly prominent field in the last decade, allowing the identification,
quantification and characterization of peptides and proteins in biologi-
cal samples [1,2]. Developments of technology and methodology in the
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field have been rapid over the last years and are providing improved
and novel strategies for the global understanding of cellular function.
Different strategies for peptide and protein identification are followed
by the different experimental approaches available. In the bottom-up
approaches, complex protein mixtures are enzymatically digested into
potentially very complex peptide mixtures, which are then fractionated
by multidimensional chromatography steps before they are subjected
to tandem MS [3]. Currently, this is the most used strategy. In the
top-down approaches [4], intact proteins are measured and different
isoforms can be isolated before the MS identification and characteriza-
tion are performed. This is especially useful to unravel complex patterns
of splice variations, or post-translational modifications (PTMs) [4].
Finally, the targeted proteomics approaches [5] differ fundamentally
from the previous two approaches, since the mass spectrometer is
here programmed to detect and analyze only pre-selected proteins.
The most popular targeted approach is called SRM (Selected Reaction
Monitoring). In addition, quantification techniques can measure the
differences in protein expression between different physiological states
of a biological system. Nowadays, MS-based techniques comprise some
of the most used quantitative approaches [6].

The advances in the MS proteomics methods are closely related to
the parallel developments that have happened in bioinformatics. Sever-
al computational methods can now be used to identify peptides and
proteins. The most popular ones are based on the use of search engines
[7] and protein sequence databases, but there are other approaches
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such as de novo sequencing (especially used when the genome of the
studied organism is not well known) [8,9] and the spectral library
searches [10,11]. As a result, there are several well established soft-
ware applications like Mascot [12], X!Tandem [13], Sequest [14],
MyriMatch [15], SpectraST [11], OMSSA [16], and Andromeda [17],
among others.

However, there is an increasing demand for high-performance
bioinformatics solutions that can help to address the various data pro-
cessing and data interpretation challenges in the field [18-20]. And
while these tools can vary substantially, a basic set of features can be
shared between many of them. Common MS data processing tasks
comprise theoretical analysis of proteomes, processing of raw spectra,
file format conversions, generation of identification statistics, and the
storage/visualization of raw data, identification and quantitation re-
sults. As a consequence, the number of available open-source software
libraries and frameworks has increased significantly in recent years.
These platforms provide common software infrastructures, features
and algorithms that can help in the development of new applications
and tools. Previous reviews addressed the advances in the field of
software tools and bioinformatics applications for proteomics MS
experiments [18,19,21-23], but open-source frameworks and libraries
were not evaluated in detail. There are now a wide variety of software
solutions covering all aspects of LC-MS/MS data analysis, which are de-
veloped and maintained by an active community of bioinformaticians
and software developers [23]. In this review we focus mostly on open-
source frameworks, software libraries and downloadable tools, so
most of the existing online resources have not been included. The R
programming language will not be considered here either since it is
covered in another manuscript in this special issue. We will follow
the steps of a typical tandem MS proteomics workflow to describe
the available software suitable for each of them. In addition, we
will mention some tools that are specific for targeted proteomics
approaches (SRM).

1. In silico analysis of the proteomes

2. Conversion via open data formats

2. Tandem MS proteomics workflow and open-source software

A typical tandem MS proteomics experiment starts with the isola-
tion of proteins from the sample or samples of interest [24-26]. Differ-
ent approaches are used to reduce the complexity of samples such
as the electrophoresis-based [27-29] and chromatography-based
workflows [30-32]. As the peptides are injected into the mass spec-
trometer, the instrument first acquires a precursor ion scan, wherein
each intact peptide ion produces a peak in the mass spectrum. A mass
spectrum of the fragment ions, known as a tandem mass (MS/MS) spec-
trum, is then obtained for each selected precursor. A typical analysis of
experimental data coming from a MS/MS study will involve most if not
all of the following seven steps (Fig. 1): 1) In silico analysis of proteome/
sequence databases, 2) conversion of raw data to open data formats,
3) mass spectrum pre-processing, 4) peptide and protein identification,
5) peptide and protein identification post-processing, 6) quantification
analysis, and 7) data storage in a LIMS and transfer to public data repos-
itories (Fig. 1).

Some of the most popular and most extensively used open-source
frameworks are OpenMS [33], the Trans-Proteomic Pipeline (TPP)
[34], the Computational Omics (Compomics) suite [35-39], the PRoteo-
mics IDEntifications (PRIDE) database toolsuite [40,41], ProteoWizard
[42] and the Java Proteomic Library (JPL) [43,44]. Other well-known
libraries/frameworks with a more specialized scope include InsilicoSpectro
[45], multiplierz [46], mMass [47], mzMine [48], msinspect [49], MSQuant
and MASPECTRAS [50]. The aims and functionalities of each framework
and library are explored in detail in the following sections.

2.1. Highlights of the main open-source libraries and frameworks
2.1.1. OpenMS

OpenMS is a software framework for enabling rapid application
development in MS. It has been designed to be portable and robust
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Fig. 1. Schema of the possible computational processing steps of a proteomics data set.
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while offering rich functionalities, ranging from the availability of
basic data structures to sophisticated algorithms for data analysis.
OpenMS (http://open-ms.sourceforge.net/) is mainly developed in
C++ and makes use of several external libraries such as: (i) Qt
(http://qt.nokia.com/products/), which provides visualization and
database support; (ii) Xerces (http://xerces.apache.org/xerces-c/)
for XML file parsing; (iii) libSVM (http://www.csie.ntu.edu.tw/
~cjlin/libsvm), for machine learning algorithms; and (iv) the GNU
Scientific Library (GSL, http://www.gnu.org/software/gsl/), used for
mathematical and statistical analysis. The framework architecture
consists of several layers, a core application programming interface
(API), which captures the MS data and complementary metadata, and
a higher-level functionality API that contains database I/0O, file I/O and
other analysis algorithms.

The framework contains a complete set of examples to extend and
use the libraries. In particular, the package for signal processing pro-
vides several filters to reduce the chemical and random noise, as well
as the baseline trends in the MS measurements. In addition, the quanti-
tation package allows the analysis of different samples using SILAC,
iTRAQ and label-free algorithms [33]. Finally, the TOPP (The OpenMS
Proteomics Pipeline) and TOPPView tutorials describe in detail the
OpenMS tools and the user interface. Also, they provide a complete
list and the corresponding command line interfaces of all the TOPP
tools contained in each release.

2.1.2. Trans-Proteomic Pipeline

The Trans-Proteomic Pipeline (TPP, http://sourceforge.net/projects/
sashimi/) [34] contains several very popular tools in the field. Devel-
oped at the Institute for Systems Biology (ISB, Seattle, USA), the frame-
work comprises a set of components, libraries and tools. They
encompass most of the steps involved in a proteomics data analysis
workflow in a single, integrated software system, including mass spec-
trometer output file conversion, protein identification statistical valida-
tion, quantification by stable isotope ratios, and support for SRM. To
summarize the pipeline, raw mass spectrometer output files are first
converted to open XML standard formats. These files are run through
one or more search engines such as X!Tandem, Mascot, Sequest, or
SpectraST.

PeptideProphet [51], iProphet [52], and ProteinProphet [53] can
then be used to validate the search engine results and to model correct
vs. incorrect peptide-spectrum matches (PSMs) and the protein infer-
ence. The quantification analysis tools XPRESS [54] or SuperHim [55]
may then be applied with data that derive from labeled or label-free
quantitation approaches. In addition, mProphet and mQuest can auto-
mate the analysis of SRM data, and provide probabilistic scoring of
targeted peptide identifications and derived quantification [56].

The TPP components have been developed using different program-
ming languages such as C++, Perl and Java. This fact complicates the
integration with other pieces of code and the development of new
applications using the TPP framework.

2.1.3. Computational Omics (Compomics)

The Compomics framework is an independent platform and pure
Java package with a common core API for all the libraries and tools
[35]. The platform source code, documentation and tools, along with a
complete set of examples are freely available at http://compomics-
utilities.googlecode.com. The framework contains a set of parsers
for popular search engines output files (Mascot, X!Tandem, OMSSA
and Proteome Discoverer (Thermo Scientific)). It also includes a collec-
tion of user-friendly tools, including among others: (i) ms_lims [36]
and DBToolkit [39] for storing and performing different in silico
analysis of proteomics data; (ii) Peptizer [38] for manual validation of
MS/MS search results; (iii) Rover [57], for visualizing and validating
quantitative proteomics data; (iv) FragmentationAnalyzer [37] for
analyzing MS/MS fragmentation data; (v) the new PeptideShaker
(http://peptide-shaker.googlecode.com), for comprehensive MS data

combined analysis of results from multiple search engines (Mascot,
OMSSA and X!Tandem); and (vi) SearchGUI [58], which provides a uni-
fied GUI (Graphical User Interface) for MS identification using multiple
search engines (OMSSA and X!Tandem).

2.1.4. ProteoWizard

The ProteoWizard framework provides a modular and extensible set
of open source, cross-platform tools and libraries [42]. This platform en-
ables rapid tool creation and unifies data file access to perform standard
proteomics and LC-MS analysis computations. Developed in C++, it is
cross-compiled and freely available at http://proteowizard.sourceforge.
net/. ProteoWizard provides multiple independent libraries, which are
grouped together at different levels. The framework includes different
tools for data conversion and a core API for parsing different data for-
mats. In addition to the open mzML [59], mzXML [60], mzldentML
[61], and mzData XML formats, a variety of proprietary formats can
also be handled. As a result, several frameworks/applications such as
TPP and Skyline [62,63] extend and use the ProteoWizard core APIs
and tools. The C++ source code is designed and optimized for high
performance and high throughput analysis, and allows researchers to
implement novel algorithms or to complete other ad hoc tasks.

2.1.5. Java Proteomic Library (JPL)

The Java Proteomic Library (JPL, http://javaprotlib.sourceforge.
net/), developed in Java by the Swiss Bioinformatics Group (Geneva,
Switzerland) provides a strong chemical-based representation of MS
proteomics data. It is composed of several modules and APIs for manip-
ulating peptide or protein sequences, PTMs and mass spectra. It also
provides methods for in silico protein digestion and peptide fragmenta-
tion, which takes into account various ion types and modifications.
Many classes dealing with spectrum processing and filtering, and/or
spectrum matching and clustering, are also provided. The availability
of core classes that represent modifications, peak annotations and
chemical entities in a proteomics context, makes JPL the ideal frame-
work to compute physicochemical properties, such as isoelectric point
(pI), retention time (RT) and gravy index. In addition, it also contains
several standalone tools for performing protein sequence digestion,
creating spectrum and sequence decoy databases [43], and performing
open modification spectrum library searches (QuickMod/Liberator)
[44]. JPL is currently being refactored in order to increase its perfor-
mance, improve structure of classes and the amount of ‘Unit’ tests
available. A new version will be officially released once all this work
has been finished. The JPL is well-documented and contains different
examples about how to use some of its classes.

2.1.6. PRIDE toolsuite

The PRIDE database was developed at the European Bioinformatics
Institute (EBI), as a repository to store the experimental results from
bottom-up MS-based proteomics experiments [40]. The PRIDE toolsuite
(http://pride-toolsuite.googlecode.com) constitutes a set of pure Java
libraries, tools and packages designed to handle MS proteomics experi-
ments from a vast range of approaches, instruments and analysis plat-
forms. The framework contains a set of components such as: (i) the
mzGraph Browser library, for visualizing MS spectra, chromatograms
and MS/MS spectrum annotation; (ii) the QualityChart library provides
a number of charts for performing a quick quality assessment of the MS
experiments; (iii) several APIs for parsing standard data proteomics
formats such as mzML, mzldentML, mzTab and PRIDE XML (the PRIDE
internal data format); (iv) the XXIndex library enables the fast indexing
of large XML files; (v) the PRIDE Utilities library contains classes with
some functionality shared by many of the PRIDE related tools; and
(vi) the PRIDE core library (http://ebi-pride.googlecode.com), for gener-
al data management.

The PRIDE Converter 2 [64] and the PRIDE Inspector [41] are cur-
rently the most popular tools of the framework, and both of them
offer a user-friendly GUI PRIDE Converter 2, recently released, is a
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new submission tool for converting a large variety of popular MS
proteomics formats into PRIDE XML, by guiding the user through a
wizard-like process. A command line mode (CLI) mode is also available
for converting multiple files at once in batch mode. Its predecessor,
the original PRIDE Converter tool [64], is currently being phased out,
since the new software has been made available. Finally, PRIDE Inspec-
tor is a tool that allows the user to efficiently browse, visualize, and
perform an initial assessment of MS proteomics data in the PRIDE
XML and mzML [59] formats, and also allows direct access to a PRIDE
MySQL public database instance. Support for the formats mzldentML
and mzTab is in progress. Finally, the most recent addition to the
PRIDE-toolsuite is the PRIDE spectra clustering API (http://pride-spectra-
clustering.googlecode.com).

2.2. In silico analysis of the proteome and sequence databases

Proteomics experiments targeting specific proteins need to carefully
choose the approaches used in order to maximize the possibility that
the proteins of interest are present and can be identified [23]. For
instance, to perform in silico studies of proteomes and sequence data-
bases can enable the optimization of the experimental settings [65].
Also, the study of the identified proteins is crucial to predict the protein
and peptide properties needed for performing targeted proteomics
experiments such as SRM.

The features needed for analyzing protein sequence databases are
fortunately well represented in the existing software libraries. For
example proteolytic digestion, property estimation (pl, retention time,
hydrophobicity, etc.) and amino acid distribution are some of these
common features. Certain properties can then be used to design a
targeted proteomics workflow to detect proteins, which are often
missed in the typical workflows.

A significant number of theoretical analyses about the relationships
between the pl and different protein properties such as length, taxono-
my or hydrophobicity have been published [65-68]. Also, different
in silico analyses of the proteome for performing accurate mass and
time (AMT) tag [69] approaches, the decoy method studies [70], and
the analysis of different isolation methods combined with accurate
mass [71], are good examples of theoretical proteomics analysis as
well. Table 1 shows a list of software libraries that can be used for the
in silico analysis of proteins.

2.2.1. OpenMS

The OpenMS framework offers functionalities for analyzing both
the protein sequence databases and the identification results. It
provides different functions for predicting sequence properties
(retention time, pl, mass, etc.) and reading protein databases from
FASTA files.

2.2.2. Compomics

The DBToolkit from the Compomics framework (http://dbtoolkit.
googlecode.com) provides a GUI to build sequence databases, after
performing different processing steps such as protease digestion,
decoy and sequence pattern filtering. In addition, the compomics-utilities
library can be used programmatically to read and parse FASTA files,
perform in silico digestion, and predict sequence properties.

2.2.3. Java Proteomic Library (JPL)

The JPL provides different functions for predicting the pI of pep-
tides and proteins with several experimental settings. It also provides:
(i) the MassCalc tool to compute masses for proteins or molecules;
(ii) ProteinDigester to perform digestion of proteins (Supplementary
Information), compute the pl and molecular weight of all the
digested peptides; and (iii) Dig2Mz to perform protein digestion
and compute the m/z values of all digested peptides that passed the
charge filters.

Different libraries for in silico analysis of proteins. Isoelectric point (pl), retention time (RT), Sequence Digestion (SD), Decoy database generation (DDG), consider post-translational modifications (PTM), molecular formula prediction (MFP),

FASTA Sequence Databases Reader (FD).

Table 1

Integration Reference

URL

Supported formats

Custom features

Property prediction

Version

Language

Library

[154]

Maven

http://www.biojava.org

SD FD

pl, Mass, AAlndex

Legacy
1.8.2

Java

BioJava

(2012)
3.6.12

[35]

http://compomics-utilities.googlecode.com Maven

FD, Mascot dat, X!Tandem XML, OMSSA

tern filtering, Decoy DDG  output, Proteome Discoverer/ msf files

SD, PTM

SD, PTM, Sequence pat-

RT, GRAVY index, isotopic

distribution

Java

compomics-utilities

(2012)

[45]

CPAN

http://search.cpan.org/~alexmass/

InSilicoSpectro

FD, Mascot XML output

RT, pI, mass, hydrophobicity

1324
(2008)

Perl

InsilicoSpectro

http://javaprotlib.sourceforge.net

1.0 (2012) pl, mass, hydrophobicity, GRAVY  SD, PTM, MFP FD

Java

Java Proteomic

index, charge and specific pH
Mass, isotopic distribution

Library (JPL)

mspire

[155]

http://github.com/princelab/mspire

FD

SD, MFP

0.8.2

Ruby

(2012)

[46]

63

http://blais.dfci.harvard.edu/index.php?id

http://open-ms.sourceforge.net

FD

SD

Mass

(2011)

Python

C++

multiplierz
OpenMS

[33]

FD, Mascot XML output

FD

SD, PTM, DDG

SD

Mass, RT

1.9 (2012)

1.25

PyPI

http://pypi.python.org/pypi/pyteomics

pl, Mass, charge, isotopic

distribution, RT

Python
pl, mass

pyteomics

(2012)

[156]

http://sourceforge.net/projects/sashimi/files/
Trans-Proteomic%20Pipeline%20%28TPP%29

FD

SD, PTM, Proteotypic

46 (2012)

C++, Java

TPP (Trans Proteomic

Peptide Prediction, DDG

Pipeline)
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2.2.4. Other tools, packages and open-source frameworks

InsilicoSpectro [45] was developed in Perl and offers different sets
of functionalities, for instance protein digestion, sequence database
file readers, property estimation (pl, retention time, mass) and MS
fragmentation prediction. Different groups have used extensively this
library [68,71-73] due the availability of several database file readers,
and the possibility to predict different physicochemical properties in
heterogeneous experimental settings. Database on Demand (http://
www.ebi.ac.uk/pride/dod/) [74] is a Java web application that can be
used to design customized search databases that provide detailed
control over the search space.

Python is not an extensively used programming language in compu-
tational proteomics, but in recent years is gaining popularity. Then,
Multiplierz [46] and Pyteomics (http://pypi.python.org/pypi/pyteomics/)
are frameworks to support proteomics data analytic tasks in this
language. Access to the available functionality is provided via high-
level Python scripts. Already mentioned features such as the availability
of sequence database file readers and the prediction of different physico-
chemical properties (pl, retention time, mass) are present in both
libraries [46,75,76]. Pyteomics is fully integrated and currently indexed
in the Python Package Repository (PyPI).

2.3. MS file parsers and conversion

2.3.1. Mass spectrometry file formats

The primary data content produced in the context of a MS-based
proteomics experiment are the mass spectra. Each mass spectrometer
vendor uses different proprietary file formats to store the spectra pro-
duced [31,77]. The structure of the data varies depending on the instru-
ment and the experiment type, and the files typically consist of MS1
spectra interleaved with multiple MS/MS spectra. The “aging” issue
(as time passes, support for certain formats tends to disappear) and
the “binary” character of the files (proprietary software dependency)

*mgf
*Pkl
Peak files | Ms2

+Dta

*mzXML

Standard +mzidentiL
Result Files  pulEL]

PRIDE Converter 2

are two of the main limitations of these file formats. This led to the
creation of different XML-based open standard formats [78], since it is
impractical for software tools developed for general use to support all
these different formats. Since then, the development of such formats
has enabled a significant increase in MS data sharing [40] and validation
[79].

Fig. 2A shows the evolution of different MS file formats in recent
years. For instance, mzXML [60], developed by ISB, was one of the
first initiatives quickly adopted by the community. In recent years,
the HUPO Proteomics Standards Initiative (PSI) has developed a set
of important community XML file formats such as mzML (for MS
data) [59], mzldentML (for peptide/protein identifications) [61], and
gelML (for gel data) [80], for proteomics data storing, representation
and visualization. Recently, TraML [81] has been developed as a stan-
dard format for encoding transition lists and associated metadata.
Quantitative data can be encoded in the nascent formats mzQuantML
(XML-based, http://mzquantml.googlecode.com) and a text-based
tab-delimited file called mzTab (http://mztab.googlecode.com).

2.3.2. ProteoWizard

The main tools included in ProteoWizard are: (i) msConvert, for data
conversion from vendor proprietary formats to mzML and mzXML;
(ii) msDiff, to compare two data files; and (iii) msAccess, providing
command line access to MS data files (such as mzML, Supplementary
Information).

The msConvert tool is a very popular application that can convert MS
data in several proprietary formats such as .WIFF (ABI/Sciex), .BAF
(Bruker), .RAW (ThermoFisher Scientific), .D (Agilent) and others, into
a mzML, mzXML, mz5 [82] (a reimplementation of mzML, based on
the efficient, industrial storage backend HDF5, http://www.hdfgroup.
org/HDF5), and the text based formats MGF (Mascot Generic Format)
and ms2. Annotation in the mzML files is encoded using ‘CVParam’ ele-
ments, which refer to the terms present in a given controlled vocabulary
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Fig. 2. (A) Evolution of Mass Spectrometry file formats. (B) Schema of the PRIDE toolsuite tools PRIDE Converter 2 and PRIDE Inspector.
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(CV) or ontology. ProteoWizard parses the CV/ontology file at compile
time and generates C4++ code, which allows convenient, typesafe
handling of the CV terms.

2.3.3. PRIDE toolsuite

PRIDE Converter 2 supports the conversion from different popular
data formats into PRIDE XML. The PRIDE Converter 2 framework, as
part of PRIDE toolsuite, consists of four different components: PRIDE
Converter 2, PRIDE mzTab Generator (to generate mzTab files), PRIDE
XML Merger (to merge results from different PRIDE XML files into a
single file) and PRIDE XML Filter (to filter out some of the data present
in the files). At present, the PRIDE Converter 2 supports several file
formats: Mascot, X!Tandem, OMSSA, mzldentML, SpectraST [83],
CRUX [84], MSGF [85], Proteome Discoverer, mzML, dta, MGF,
mzData, mzXML, and pkl. New file formats can be supported simply
by implementing the Java DAO (Data Access Object) interface. Fig. 2B
shows how the PRIDE toolsuite tools (PRIDE Converter 2 and PRIDE
Inspector) can be combined.

As mentioned before, the PRIDE toolsuite also contains several Java
APIs for read/write several standard formats, some of which are used
in PRIDE Converter 2 and PRIDE Inspector, but also in other external
software: jmzML [86] for mzML, jmzidentML [87] for mzldentML, and
the new jmzTab (http://mztab.googlecode.com) to read and write
mzTab files. Both jmzML and jmzldentML use the XXindex library
(http://pride-toolsuite.googlecode.com), an indexing system for large
XML files retrieving, allowing a random access to the data.

Recently, the jmzReader [88] library was developed providing a
common programming interface for different XML based and/or
peak list formats such as: MGF, ms2, dta, mzData, mzXML, pkl, and
mzML. This Java library provides functions to randomly access spectra
within the files without the need to load the whole file into memory,
and allows easy integration with mzldentML.

2.3.4. Compomics

The Compomics framework provides different Java-based parsers
for well-known search engines: MascotDatfile [89], OMSSA Parser
[90], XTandem Parser [91], and Thermo-MSF-Parser [92], for Proteome
Discoverer. It also provides the jTraML [93] library for the TraML
standard file format. Also, PeptideShaker supports the creation of a
well-annotated PRIDE XML file from the combined search result
files from Mascot, OMSSA and X!Tandem.

2.3.5. Other packages and open-source frameworks

Table 2 shows different libraries that can be used to read and write
MS files formats (both peak list and peptide/protein identification
files). The JRAP (http://sashimi.sourceforge.net/software_glossolalia.
html#JRAP) library was written in Java at the ISB, and has been
historically the most extensively used library to handle mzXML files.

Other well-focused libraries are MGFp [94], pyMzML [95], which
enable read/write operations in MGF and mzML files, respectively. In
addition, the OpenMS and TPP frameworks support mzML, mzXML,
MGF and output files from the search engines Mascot, Sequest and X!
Tandem.

2.4. Mass spectrum pre-processing

Mass spectrum preprocessing algorithms can increase the number
of identified peptides and improve the reliability of the peptide iden-
tifications. Five types of pre-processing methods are widely used:
spectrum normalization, spectrum clustering, precursor charge deter-
mination, spectrum de-noising, and spectrum quality assessment
[96]. It is worth noticing that these algorithms are also applicable to
MS-based metabolomics approaches, which are also being increasingly
applied to characterize biological systems.

The basic aim of the data pre-processing steps is to transform the
raw MS data files into a file format that facilitates an easy access to

Software libraries to read (r) and write (w) MS-based information from different file formats.

Table 2

Integration Reference

URL

Language File formats

Library

mzldentML mzTab FASTA PRIDE

Search engine output files

mzML mzXML mzData Peak list files
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the characteristics of each observed ion. These characteristics include
m/z values, retention time and ion intensity measurements present in
the original raw data files. In addition to these basic features, data pre-
processing can extract additional information like the isotope distribu-
tion of the ions. Table 3 shows some of the most useful libraries for
MS proteomics and metabolomics data preprocessing.

2.4.1. OpenMS

OpenMS provides several filters for noise reduction (also called
smoothing filters). Among them, a Gaussian filter, the Savitzky-Golay
filter and the baseline correction (Supplementary Information). Com-
bining the possibility to read several MS file formats and several prepro-
cessing peak algorithms make the OpenMS framework a versatile and
complete environment for MS preprocessing.

2.4.2. Java Proteomic Library (JPL)

JPL implements many MS processing methods, ranging from peak
intensity transformations to noise reduction filters. The library also
supports peak annotations and different file formats such as mzML,
mzXML, and MGF.

2.4.3. Other packages and open-source frameworks

mMass [47], is a cross-platform software library that can be used for
the precise analysis of individual mass spectra. Even when the library
was not designed for high-throughput MS analysis, its Python API offers
the foundation to develop new tools for MS preprocessing. The software
library covers a wide range of processing tasks such as smoothing, base-
line correction, peak picking, deisotoping, charge determination, and
recalibration. Especially developed for analyzing MS experiments of
lipids, a leading feature is the implementation of the lipid database
obtained from LIPID MAPS [97].

MZmine2 [48] and msinspect [49] are Java libraries mainly imple-
mented for MS preprocessing purposes. They implement solutions for
several stages of MS processing such as spectral filtering, peak detection,
chromatographic alignment and normalization. Mzmine2 also provides
several data mining algorithms (principal component analysis, clustering
and log-ratio analysis) to reduce the dimensionality of the data. Also, the
msinspect platform includes utilities for calculating various summary
statistics in Java, and for performing linear regression using an interface
with the R statistical language. Finally, the ‘Modular Application Toolkit
for Chromatography Mass-Spectrometry’ (maltcms) library [98], written
in Java, provides reusable, efficient data structures, and the capability to
abstract information from the data formats mzXML, mzData and mzML,
giving a consistent access to data features like mass spectra, chromato-
grams and metadata.

2.5. Peptide and protein identification post-processing
Several post-processing strategies have been developed to refine the

initial peptide/protein identification list, often relying on orthogonal
information not used by the identification software. These software

libraries/applications, including the well-known PeptideProphet/
ProteinProphet [51,53] (part of the TPP), Percolator [99,100], and
Peptizer [38], essentially attempt to emphasize the score differences
between correct and incorrect matches by examining various proper-
ties of the PSM assignments. This step is necessary to increase the
confidence on the final reported results.

2.5.1. OpenMS

OpenMS can improve the identification accuracy for several search
engines and consensus identifications can be calculated from the initial
results. The identifications can also be validated using retention time
prediction algorithms and the IDFilter package can be used to filter out
false positive identifications.

2.5.2. TPP

TPP provides PeptideProphet, iProphet and ProteinProphet: three
tools for peptide and protein identifications validation. The C++ source
code of the applications is also available. These tools use the expectation
maximization algorithm to separate correct from incorrect identifica-
tions based on a limited set of rules (one of the dominant properties,
for instance, is the tryptic correctness of the peptide termini). The inte-
gration of the tools in TPP increases the number of correctly identified
peptides at a constant false discovery rate (FDR). ProteinProphet is
used to address the protein inference problem by applying a mixture
model based on the number of distinct peptides per protein (sibling
peptides) to boost the probabilities of peptides with multiple siblings,
while penalizing peptides without siblings. Each protein is then
assigned a probability of being present in the sample, based on the
number of sibling peptides. ProteinProphet creates a list of proteins
that can explain all the peptide observations. Recently, iProphet was
added in combination with PeptideProphet to TPP. It combines the evi-
dence from multiple identifications of the same peptide sequences
across different spectra, experiments, precursor ion charge states, and
modified states. It also allows accurate and effective integration of the
results from multiple database search engines applied to the same data.

2.5.3. PRIDE toolsuite

Very recently, the PRIDE spectra clustering API (http://pride-spectra-
clustering.googlecode.com) has been added to PRIDE toolsuite [101].
The clustering algorithm is a modification of MS-cluster [102] and has
been used to cluster all identified spectra in PRIDE. The idea behind is
to give quality assessments of the PSMs stored in PRIDE and the gener-
ation of spectral libraries from highly heterogeneous data (http://www.
ebi.ac.uk/pride/cluster/libraries).

2.5.4. Compomics

Peptizer [38] (http://peptizer.googlecode.com) is an expert system
that relies on user defined and configured expert rules to pick out sus-
pect identifications which can then be manually evaluated or automat-
ically rejected. Expert manual validation of the identifications is a more
commonplace strategy for quality control in those cases where a subset

Table 3
Different software packages to pre-processing the MS proteomics and metabolomics data.
Library Language File formats Processing Methods URL Reference
Spectrum Spectrum Deconvolution Spectrum  Spectrum
normalization clustering alignment quality
assessment
maltcms  Java mzML, mzXML, mzData X X http://maltcms.sourceforge.net/home/ [98]
index.html
mMass Python mzML, mzXML, X X http://www.mmass.org [47]
mzData, MGF,
mslnspect Java mzXML X X http://proteomics.fhcrc.org/CPL/ [49]
msinspect/index.html
mzMine2 Java mzML, mzXML. mzData X http://mzmine.sourceforge.net [48]
OpenMS  C++ mzML, mzXML, mzData X X X http://open-ms.sourceforge.net [33]
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of all peptide identifications obtained is of relevance to the biological
system (Supplementary Information). PeptideShaker merges the identi-
fications from multiple search engines (Mascot, OMSSA and X!Tandem)
into a single result, and validates the protein, peptides and PSMs at
1% FDR. This approach dramatically increase the number of validated
identifications compared to using a single search engine or using a
consensus hit. The user can also analyze and alter the statistics in
various ways to tailor the results. All the functionality is accessed via a
simple and user-friendly GUL

2.5.5. Java Proteomic Library (JPL)

The QuickMod [44] tool as part of the JPL estimates the occurrence of
PTMs after careful analysis of an extensive list of spectral similarity
measures. The authors have showed how spectra from peptides carry-
ing distinct modification types have different scoring characteristics,
and evaluated the final scoring scheme per modification type. This
tool, based on spectral clustering techniques, can be used after or in
combination with database search approaches. The performance of
the QuickMod algorithm was compared with the InsPecT-PTMFinder
[103] software and the results showed a significant improvement in
the number of identified PTMs with QuickMod [44].

2.5.6. Other packages and open-source frameworks

The determination of the peptide false discovery rate using decoy
databases is the most common approach used to identify false positive
assignments. An alternative approach is to use machine learning
methods [51,52,104] to re-rank the PSMs, based on peptide properties
and search engine scores. The Percolator [ 104] approach first developed
for the search engine Sequest, trains a machine learning algorithm
called support vector machine (SVM) to discriminate between positive
and negative PSMs. The algorithm, developed in C++, is open source
(http://per-colator.com) and several examples are provided with the
tool.

Mascot Percolator [100] is a Java library and tool designed for the
validation of Mascot identified peptide/protein identifications. The
algorithm, as the original percolator algorithm [104], is based on a
semi-supervised SVM approach, and is able to discriminate between
correct and incorrect identifications by assigning weights to a number
of features such as: Mascot score, precursor mass error, fragment
mass error, number of variable modifications used in the search, etc.
The self-boosted Percolator [105] Java package (http://self-boosted-
percolator.googlecode.com) is an extension of the original algorithm.
The main improvement is the application of a cascade learning proce-
dure to boost the algorithm to an optimal and stable state. Self-boosted
Percolator is specifically designed for X!Tandem results coming from
the TPP.

Using the msinspect framework, Damon and coworkers [106]
presented a complete set of new algorithms and a software imple-
mentation for assigning confidence to peptide sequence assignments
obtained through classic accurate mass and retention time (AMT)
matching techniques. The algorithms increased the number of pep-
tides and proteins identified among related proteomics experiments
that use high-resolution MS instrumentation.

Finally, The FDRAnalysis [107] (http://web-based-multiplesearch.
googlecode.com) is a Java library which enables the upload of peptide
identification results from target/decoy searches carried out by three
different search engines: Mascot, OMSSA and X!Tandem. Importantly,
FDRAnalysis can import native format search results, and supports
mzldentML.

Several other algorithms and libraries have been developed to
solve the protein inference problem [108]. IDPicker [109] (http://
fenchurch.mc.vanderbilt.edu/) is an open source protein assembly
tool that derives a minimum protein list from peptide identifications
filtered to a specified FDR and increase confident peptide identifica-
tions combining multiple search engine scores. The latest version is
more robust against false positive proteins, especially in searches

using multispecies databases, by requiring additional novel peptides
in the parsimony process. PeptideClassifier [110] is a novel, determin-
istic peptide classification and protein inference scheme that takes into
account the gene model-protein sequence-protein identifier relation-
ships. Each peptide sequence is classified according to its information
content with respect to protein sequences and gene models. The corre-
sponding algorithm and open source library (http://www.mop.unizh.
ch/software.html) were developed in Java. PeptideClassifier can classify
shotgun proteomics data from any organism presented on popular da-
tabases such as FlyBase [111], Ensembl [112] and RefSeq [113].

Finally, Barista [84,114] is a protein identification algorithm that
combines two different steps (PSM verification and protein inference)
into a single learning algorithm. The algorithm produces as output
three ranked lists of proteins, peptides and PSMs, based on how likely
the proteins and peptides are to be present in the sample and how likely
the PSMs are to be correct. The algorithm was implemented in C+-+
and the source code and binaries are available at http://noble.gs.
washington.edu/proj/crux/barista.html.

2.6. Quantification

2.6.1. Quantification methods

Traditional MS-based quantification methods employ differential
stable isotope labeling to create a specific mass tag that can be recog-
nized by a mass spectrometer, which provides the basis for quantifi-
cation [115,116]. In these methods mass spectrometers recognize
the mass difference between the labeled and unlabeled forms of a
peptide, and quantification is achieved by comparing their respective
signal intensities. They can be introduced as an internal standard into
aminoacids either (i) metabolically, or (ii) chemically (Fig. 3).

In contrast, label-free methods aim to compare two or more ex-
periments by (i) comparing the mass spectrometric signal intensity
for the identified peptides, or (ii) using the number of acquired spec-
tra matching to a peptide/protein (spectral counting).

It is not trivial to choose an appropriate software package for the
analysis of quantification data generated by a specific instrument
[117]. There are three main issues: (i) the limited applicability of a
program to different MS platforms; (ii) practical factors such as file
compatibility and data visualization; and (iii) the variations in the
sample preparation protocols are critical aspects that drive the choice
of a data analysis program [115]. Fig. 3 shows the open-source pack-
ages that are available for the different quantification methods.

2.6.2. OpenMS

OpenMS includes several software packages to perform quantitative
analysis for a particular technique, such as the SILACAnalyser [118], and
iTRAQAnalyser, using the mzML data standard as a common input to all
modules. In addition, the OpenMS team made improvements to the
existing label-free quantification methods and algorithms, for the ad-
justment of the time scales and for the intelligent merging of related
measurements of peptide and protein abundances.

2.6.3. TPP

The TPP also provides different tools such as ASAPRatio [119] (for
ICPL, ICAT, and SILAC techniques), SuperHirn [55] and SpecArray [120]
for label-free methods, Libra [121], designed for iTRAQ approaches,
and XPRESS [122] used for N'°, ICPL, ICAT, and SILAC. The TPP package
contains solutions and tools for most of the quantitation methods. In
contrast with other TPP components, all the quantitation related libraries
are written in C/C++ and have cross-platform support, which is impor-
tant for their potential integration with other tools.

2.6.4. Compomics

Rover [57,123] is a Java tool that facilitates the validation of regu-
lated proteins found in MS-driven quantitative proteomics studies. The
Mascot Distiller Quantitation toolbox creates by default a .rov file for
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Fig. 3. Classification of MS-based quantification methods including the open-source packages available for each of them.

each LC-MS/MS run analyzed, but only one .rov file can be opened and
analyzed by MASCOT Distiller at a time, making it difficult to obtain a
general view on protein quantification. Also, MaxQuant [124] creates
text files as output that can open in Microsoft Excel, but analysis of re-
sults is generally difficult since no protein-specific visualization can be
created. Rover accepts quantitative data from different sources such as
Mascot Distiller and MaxQuant. In an intuitive environment, Rover
visualizes these data such that the user can select and validate
algorithm-suggested regulated proteins in the frame of the whole
experiment and in the context of the protein inference problem.

2.6.5. ProteoWizard and Skyline

Skyline [62,63] is a C# client tool and open-source framework for
targeted proteomics and label-free quantitative methods. The frame-
work uses the ProteoWizard libraries to import native output files
from Agilent, Applied Biosystems, Thermo Fisher Scientific and
Waters triple quadrupole instruments. The Skyline repository (http://
proteowizard.svn.sourceforge.net/viewvc/proteowizard/trunk/pwiz/
pwiz_tools/Skyline/) contains well-document examples about how to
use the library. Another important feature of the tool is the vast commu-
nity behind the platform, supported by the number of publications and
the rich array of graphs available for inspecting data integrity.

2.6.6. Other packages and open-source frameworks

MSQuant [125] (http://msquant.sourceforge.net/) is a Microsoft NET
software framework designed for quantification studies. It supports rel-
ative protein quantification based on precursor ion intensities, includ-
ing element labels (N'®), residue labels (SILAC and ICAT), termini
labels (0'®), functional group labels (mTRAQ), and label-free intensity
approaches. Different proprietary file formats are supported, such as

.RAW, .DAT, and .WIFF from Thermo, Waters, and Applied Biosystems,
respectively. The library and tool allow the linking of Mascot result
files with the corresponding raw data files. It also enables the user to
specify the quantification mode used, or to set various filters for the
parsing of the Mascot files, among many others parameters.

MFPaQ [126] is a Perl package dedicated to parse, validate, and quan-
tify proteomics data coming from Mascot results. It supports data quan-
tification using isotopic labeling methods (SILAC/ICAT) or label free
approaches (spectral counting, MS signal comparison). The library pro-
vides the methods and functions to retrieve Mascot protein lists, sort
them according to different Mascot parameters (such as the score and
the rank order of the identified peptides), and to validate the results.

X-Tracker (http://www.x-tracker.info/) and ProteoSuite [127] (http://
www.proteosuite.org/) are Java frameworks for the analysis of quantita-
tive proteomics data. X-Tracker is able to support quantitation data com-
ing from many different approaches, both at the MS or MS/MS level and
its analysis workflow can be divided in four main steps: (i) loading of raw
data and protein identifications; (ii) peak selection; (iii) computation of
quantities; and (iv) reporting of the results. The software is distributed
together with some pre-implemented modules to perform quantification
using approaches like metabolic labeling, iTRAQ and label free tech-
niques. X-Tracker is different from other platforms in the sense that it
provides a plug-in based framework to support and extend some of the
most common quantification methods (iTRAQ, TMT, N'°> and emPAI
[128]). The recently developed ProteoSuite tool is based on the plug-in ar-
chitecture of X-Tracker and most of the features of the library come from
X-Tracker itself. One of the key advantages of this tool is that can take as
input files the standards mzML and mzldentML. IsobariQ [129] is a soft-
ware that employs the statistical software package R and variance stabi-
lizing normalization (VSN) algorithms for relative quantification, which


http://proteowizard.svn.sourceforge.net/viewvc/proteowizard/trunk/pwiz/pwiz_tools/Skyline/
http://proteowizard.svn.sourceforge.net/viewvc/proteowizard/trunk/pwiz/pwiz_tools/Skyline/
http://proteowizard.svn.sourceforge.net/viewvc/proteowizard/trunk/pwiz/pwiz_tools/Skyline/
http://msquant.sourceforge.net/
http://www.x-tracker.info/
http://www.proteosuite.org/
http://www.proteosuite.org/
image of Fig.�3

72 Y. Perez-Riverol et al. / Biochimica et Biophysica Acta 1844 (2014) 63-76

can be either based on the relative intensities of reporter ions in the low
mass region (iTRAQ and TMT) or on the relative intensities of quantifica-
tion signatures throughout the spectrum due to isobaric peptide termini
labeling (IPTL).

2.7. Data storage and transfer to public data repositories

Although storing a few files on a file system is no longer a challenge
for a small laboratory, with the increasing size of the data generated in
each average experiment, it is crucial to organize and annotate data
within local laboratory information management systems (LIMS),
and/or in a public data repository. This can potentially solve four differ-
ent problems: (i) files are poorly annotated experimentally; (ii) files are
“organically” distributed across laboratory file systems in an ad hoc
manner; (iii) files formats become obsolete; and (iv) searching the
data and comparing results across separate experiments is very ineffi-
cient [21,130].

The common functionalities and use cases covered by a LIMS can
be divided in: (i) how the framework acquires, presents, stores, and
analyzes the data; (ii) they can have a one or two-way communica-
tion with a variety of other software components or instruments to
receive the data; and (iii) they can have varying levels of privilege
and access, which helps to prevent accidental modification or data
loss, but external connections can also be enabled [131].

Once the experimental results are processed and can support the
results described in a manuscript, it is considered to be a good prac-
tice to submit the data to a proteomics data repository [132]. This is in-
creasingly recommended by several journals in the field like Proteomics
or Molecular and Cellular Proteomics (MCP), among others. The main
publicly available databases for MS proteomics data are the Global Pro-
teome Machine Database (GPMDB) [133], PeptideAtlas [134], the PRIDE
database [135] and Tranche (http://www.tranche.proteomecommons.
org). PRIDE is a centralized, standard compliant, public data repository.
It has been developed to provide the proteomics community with a
public repository for protein and peptide identifications (also quantifi-
cation is now supported), together with the mass spectra and the avail-
able metadata. It is important to highlight that data in PRIDE is not
reprocessed in any way, while PeptideAtlas and GPMDB reprocess the
data using the very popular pipelines TPP and X!Tandem, respectively.

PRIDE and PeptideAtlas are leading the ProteomeXchange consor-
tium (http://www.proteomexchange.org) [136]. They are implementing
a system to enable the automated and standardized submission and dis-
semination of MS-based proteomics data between the main existing MS
proteomics repositories. PRIDE acts as the initial submission point for
MS/MS data in the first implementation of the data workflow [137],
while PeptideAtlas/PASSEL (PeptideAtlas SRM Experiment Library)
[138] has an equivalent role for SRM data.

2.7.1. Compomics

ms_lims [36] is a LIMS part of the compomics framework. It facili-
tates the import of mass spectra acquired from different mass spec-
trometers in MGF format and then stored in a relational database. It
supports the parsing and storage of the results obtained from Mascot
and it is completely integrated with the Mascot Daemon software, and
also provides access to a Mascot server. The package (http://ms-lims.
googlecode.com/) implements different filters and processing steps
for peptide/protein identifications, and supports SILAC and iTRAQ ap-
proaches. ms-lims is currently undergoing a redevelopment process,
and will soon be released with a new name: colims (http://colims.
googlecode.com). The new colims application will result in a fully
self-contained, freely available system for end-to-end MS based proteo-
mics identification pipelines.

2.7.2. PRIDE toolsuite
The PRIDE core Java API (http://ebi-pride.googlecode.com) can also
be used as a basic LIMS using the pride-core and the pride-web source

code libraries. In addition, using the PRIDE Converter 2 and PRIDE In-
spector tools, the researcher can convert different files formats and do
a basic analysis of the data locally.

The PRIDE Inspector tool can be used by the researchers to check the
data before it is submitted to PRIDE. At present it supports mzML and
PRIDE XML, but work to support mzldentML is in progress. It contains
different views on the data: (i) ‘Experiment overview’ includes uniform
experimental metadata; (ii) ‘Protein view’ shows the information about
the identified proteins and contains a powerful sequence viewer;
(iii) ‘Peptide View’ shows the peptide identified highlighting the
PTMs. In the Protein and Peptide views it is possible to vizualize MS/MS
fragment ion annotations from each spectrum responsible of the identifi-
cation; (iv) in the ‘Spectrum and Chromatogram’ view also unidentified
spectra and chromatograms can be browsed (chromatograms are only
present in mzML); (v) ‘Quantification view’ allows the visualization of
quantification values for both protein and peptides. It is also possible to
generate histograms where the expression values of up to ten proteins
can be compared; and (vi) the ‘Summary charts view’ provides a collec-
tion of charts for assessing the overall properties of the data set, such as
number of tryptic peptides, overall delta mass, number of missed cleav-
ages sites, etc. Fig. 2B shows how the PRIDE Inspector tool can be used
in combination with PRIDE Converter 2, before the submission to PRIDE
is performed.

2.7.3. Other packages and open-source frameworks

The Proteios Software Environment (ProSE) [139] is a web-based
local data management system. ProSE has support for data coming
from several quantitative proteomics workflows (TMT, iTRAQ), and
integrates results from several search engines (Mascot, X!Tandem,
OMSSA). The MS data is stored in the mzML and mzData formats,
and can be exported to the PRIDE XML format. Additionally, it also
provides a programming interface to enable local extensions, as well
as database access using web services.

Finally, MASPECTRAS [50] is a web-based framework for the manage-
ment and analysis of LC-MS data, which supports annotation standards
like MIAPE (Minimum Information About a Proteomics Experiment).
Some of the functionality included is: (i) importing and parsing of the
results from the search engines Sequest, Mascot, Spectrum Mill, X!Tan-
dem, and OMSSA,; (ii) peptide validation using a linear discriminant
score based on the database search scores; (iii) clustering of proteins
based on Markov Clustering and multiple alignments; and (iv) quantifi-
cation using the Automated Statistical Analysis of Protein Abundance
Ratios algorithm (ASAPRatio).

2.8. Targeted proteomics: SRM.

Targeted proteomics approaches such as SRM constitute an attrac-
tive method to monitor a given set of proteins over various experimen-
tal conditions [140]. SRM, originally used for small-molecule MS, it is
becoming the reference method for protein quantification in complex
biological samples. Unlike LC-MS/MS, which requires computationally
intensive bioinformatics post-analysis, targeted proteomics approaches
require pre-acquisition bioinformatics analysis to determine: (i) the
proteotypic peptides (peptides that have good ionization properties
and are often detected in MS experiments), and (ii) optimal transitions
(characteristic precursor and fragment ion combinations for a given
peptide) to uniquely identify and to accurately quantify the proteins
of interest. Extensive sets of bioinformatics tools, both web-based and
stand-alone, have been developed to assist researchers to determine
optimal peptides and transition sets. The proteotypic peptides and tran-
sitions are often selected based on the preferred precursor charge state,
peptide sequence and molecular weight, hydrophobicity, fragmenta-
tion pattern at a given collision energy, and instrumentation used. In
the next subsections we are going to give a brief overview of some of
the existing tools. We recommend the following review focused on
SRM computational resources [141], for getting more information.
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2.8.1. OpenMS

OpenMS contains a set of classes and components suited for SRM
approaches. It can perform an optimal selection of transitions for a
given set of proteins based on their sequence information alone or in
conjunction with the already existing databases containing experimen-
tally validated transitions. The method enables a rapid and fully-
automated initial development of assays. The “PTModel” application is
used to train a model for the prediction of proteotypic peptides. The
input consists of two files: one file contains the positive examples (the
peptides which are proteotypic) and the other contains the negative
examples (the non-proteotypic peptides) [142]. The function is based
on a support vector machine approach. “PTModel” will then perform a
cross-validation to find the best combination of parameters, and then
the resulting model is stored.

“PrecursorlonSelector” is a tool for precursor ion selection based on
MS/MS identification results. The application uses the “FeatureFinder”
module to identify “features” in a LC/MS map, where a feature is a
peptide in a MS sample that reveals a characteristic isotope distribution.
Given the map of features of the LC-MS run and the identification
results, “PrecursorlonSelector” determines the next precursors [143].

2.8.2. TPP

To compute accurate error rates, mProphet [56], a semi-supervised
learning algorithm, is used for the identification of optimal target
peptides. mProphet uses the “decoy transition concept” to maximize
the separation of target and decoys peptides, thereby improving the
confidence of the identifications.

mQuest [56] and ATAQS (Automated and Targeted Analysis with
Quantitative SRM) [144] generate parameters for transition properties
(e.g. retention time deviation, dot product of transition intensity
between the light and heavy forms of the peptides, etc.) as a tool used
before mProphet (Supplementary Information). As a unique feature to
ATAQS, it provides an interface useful not only to select optimum tran-
sitions of given peptides, but also to select biologically relevant proteins
using PIPE2 [145].

AuDIT [146] can automatically detect imprecise transitions for each
peptide using the t-test and coefficient of variation between endoge-
nous analytes and internal standard peptide transitions, if applicable.
Both mProphet and AuDIT are automated modules that can be used to
generate probability estimates for observed peptides and transition
level accuracy. Another tool, SRMStat [147] employs user-filtered tran-
sitions and takes the transition quantification values to infer protein-
level abundance changes by comparing the protein quantification
level among classes of samples.

Finally, MaRiMba [148] is a framework to automate the creation of
explicitly defined SRM transition lists required for triple quadrupole
mass spectrometers. MaRiMba creates transition lists from spectral
libraries, restricts the output to specified proteins or peptides, and
filters the information based on precursor peptide and product ion
properties. This open-source application is operated through a GUI in-
corporated into the TPP.

2.8.3. Compomics

Sigpep (http://compomics-sigpep.googlecode.com) [149] provides
transition redundancy analysis while calculating unique peptide signa-
tures. The open-source software package retrieves all protein sequences
from Ensembl and subsequently performs an in silico digestion using a
protease of choice, allowing up to one missed cleavage. Then, all pep-
tides are ordered by mass range and sequence uniqueness in order to
select detectable proteotypic peptides for each protein of interest.
Based on user-specified target proteins or peptides, the library will sub-
sequently construct the expected transition background by in silico frag-
mentation of all isobaric peptides from the selected Ensembl database.
The Sigpep application will then analyze and return a set of transitions
that provide a unique signature against the expected background for
each target peptide. Sigpep can be accessed using a web application.

2.8.4. ProteoWizard and Skyline

Skyline is an application originally designed for the creation of
methods for targeted proteomics. The Skyline user interface simplifies
the development of MS methods and the analysis of data of SRM exper-
iments. It supports the export of transition lists and imports the native
output files from Agilent, Applied Biosystems, Thermo and Waters
triple quadrupole instruments, seamlessly connecting the mass spec-
trometer output back to the experimental design document using the
ProteoWizard package. The fast and compact Skyline file format is easy
to share. As a key feature, multiple graphs are generated for inspecting
data integrity during the data acquisition process, helping instrument
operators to identify problems early.

Skyline provides several ways of building and editing SRM methods
and models. Users can copy the protein sequences or lists of peptides,
precursors and product ion transitions either into a dialog, or directly
into the document. Additionally, transition lists and results, for private
and published experiments on MRMer (see next section) [150] are eas-
ily recreated in Skyline.

2.8.5. Other packages and open-source frameworks

MRMer [150] allows users to accept and/or reject transitions by
manual selection and automated analysis of transitions. Additionally,
it allows users to interactively select the start and stop retention times
that can be used for quantification for a given transition, and to manu-
ally select/unselect verified transitions for a given peptide ion. MRMaid
[151] offers an alternative for the design of SRM transitions using a com-
bination of knowledge of the properties of optimal SRM transitions
taken from expert practitioners, data stored in PRIDE [152] and litera-
ture with MS/MS evidence. The tool also predicts retention time values
using a published model, since transition candidates are ranked based
on a novel transition scoring system. Users may then filter the results
by selecting optional stringency criteria, such as taking into account fre-
quently modified residues, constraining the length of peptides, or omit-
ting missed cleavages.

3. Conclusions

Open-source frameworks and libraries play an important role in the
development and growth of the new MS-based proteomics tools. As a
matter of fact, they can greatly simplify the implementation of the
basic features needed in most tools and allow the developers to focus
on the novel aspects, rather than on the basic functions, which can con-
tribute substantially to achieve a faster development. Basic and complex
functionalities are both supported, such as protein sequence digestion,
sequence feature predictions, file format readers and converters, spec-
trum preprocessing and peptide/protein post-processing, among others.

OpenMS [33], Trans Proteomic Pipeline (TPP), Compomics [35,38,
39,89-91], ProteoWizard [42], the Java Proteomic Library [43,44], the
PRIDE toolsuite [40,41,64,86-88] and msInspect [49] contain some of
the most extensively and complete libraries used by the proteomics
community. Most of them are written in Java, C++, Perl, and Python.
Finally, it is worth mentioning that msCompare [153] is a good example
of the use and integration of different MS software packages such as
OpenMS, SuperHim and mzMine. Further improvements in the integra-
tion, development and documentation must be considered by the com-
putational proteomics community in order to facilitate the reuse of the
current software libraries available.

The open-source libraries and frameworks described in this review
have been fundamental in building new bioinformatics tools. In fact,
there has been a big progress in the development of new libraries,
allowing them to be folded into other applications and pipelines as re-
usable building blocks, and answer different research questions. One
of the reasons behind is that the development of open source software
offers the potential for a more flexible technology and potentially,
quicker innovation. One of the known downsides is the lack of a thor-
ough documentation in some cases, which may cause that the software
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cannot be easily reused. Since bioinformatics has become such a funda-
mental part of proteomics research, future work will continue to
expand these libraries and frameworks to provide more powerful and
robust analysis tools.
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