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Abstract

Tip-driven growth processes underlie the development of many plants. To date, tip-driven growth processes have been
modeled as an elongating path or series of segments, without taking into account lateral expansion during elongation.
Instead, models of growth often introduce an explicit thickness by expanding the area around the completed elongated
path. Modeling expansion in this way can lead to contradictions in the physical plausibility of the resulting surface and to
uncertainty about how the object reached certain regions of space. Here, we introduce fiber walks as a self-avoiding random
walk model for tip-driven growth processes that includes lateral expansion. In 2D, the fiber walk takes place on a square
lattice and the space occupied by the fiber is modeled as a lateral contraction of the lattice. This contraction influences the
possible subsequent steps of the fiber walk. The boundary of the area consumed by the contraction is derived as the dual of
the lattice faces adjacent to the fiber. We show that fiber walks generate fibers that have well-defined curvatures, and thus
enable the identification of the process underlying the occupancy of physical space. Hence, fiber walks provide a base from
which to model both the extension and expansion of physical biological objects with finite thickness.
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Introduction

The growth and development of biological organisms involves

processes at multiple scales, including regulation of the timing and

location of specific developmental programs. Despite their

structural complexity, many prototypical processes involved in

development have been identified. One such process is the notion

of tip-driven growth in plants [1] that leads to the successive

elongation of plant branches or roots below ground. Plant growth

also involves the process of expansion, e.g., the thickening of plant

roots. The result of such developmental programs in plants are

extended and thickened structures, e.g., complex roots and

crowns. A number of models have been proposed to examine

the growth of extended structures. These vary in complexity. For

example, perhaps the simplest, from a parameterization perspec-

tive, is the self-avoiding random walk (SAW) [2,3]. A SAW is a

sequence of steps along the line segments of grid edges that

connect the locations of crossing grid-lines vertices. Such a grid is a

square lattice in Z2 and the SAW satisfies the constraint that no

vertex is visited twice and all walks are equally likely.

In SAWs and derived models, the elongation and expansion

steps are decoupled. The consequences of such decoupling is that

the resulting shape may be non-physical. In Fig. 1 we show a SAW

thickened to 1=3 and 2=3 of an edge length. In both cases, the

SAW can be associated with a boundary which is exactly the

expansion distance away from any point along the edges in the

SAW. The derived boundary has singular points. Singular points

are associated with vanished curvature, which are problematic

from both geometric and biophysical perspectives. Next, in the

case of an expansion exceeding 1=2 of the edge length, the walk

may intersect with itself, thus the resulting boundary is not a

manifold, because no location can be occupied by two boundary

points. Hence, decoupling elongation and growth raises the

possibility of models generating an elongated object that is feasible

only in the limit of infinitesimal spatial expansion. This violation of

the manifold property leads often to difficulties in current

reconstruction practice from random walks [4,5] and discrete

samples in general [6,7].

Inspired by the growth of the taproot in plants in particular and

by growth processes in biology in general, we introduce here the

fiber walk: a SAW model that includes a notion of lateral

expansion of the path. We consider the simplest case of a

randomly growing line that thickens while elongating into a

random direction. We examine the fiber walk in 2D and 3D, and

note that although plant roots self-evidently grow in 3D, a number

of experimental studies restrict root growth to 2D or quasi-2D

(e.g., [8]). Intuitively, a lattice defines a space in which the fiber

walk grows a fiber along the edges of the lattice. The interaction of

the fiber walk with the lattice is two-fold: 1) the elongation of the

walk is achieved by stepping to unvisited adjacent vertices on the

lattice, and 2) the spatial expansion is accomplished by contracting

certain unvisited vertices adjacent to a visited vertex from the side.

In comparison to the ordinary SAW, our new contraction allows

us to define a discrete approximation of the area that is reserved

for the fiber to expand. Such an expansion implies a boundary,

which is a curve in 2D or a surface in 3D defining an area that
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gives insight into regions of the lattice where no elongation and/or

expansion can occur. Such inaccessible regions are caused by self-

avoidance that results from the elongation and expansion of the

growing object. As we will demonstrate, the fiber walk resolves the

contradictions of decoupled growth models while creating a base

for future studies of the relationship between growth and form.

Method

Overview
We introduce the formal notion of the fiber in n dimensions,

whose process is a walk over the edges of a lattice. First we

introduce the lattice as a graph consisting of vertices connected by

edges. Secondly, we define the fiber as a subset of all possible

graphs on the a lattice whose vertices have at most two incident

edges. The fiber is characterized by the presence of a stopping

configuration on the lattice that we define. After introducing the

two basic notions of lattice and fiber walk, we define fiber walks as

the process that creates the fiber as sequence of steps along lattice

edges. The interaction between the fiber walk and the lattice

extends the class of SAWs. The extension adds the local

contraction of the lattice around the last reached position, which

in turn is the space consuming expansion of the fiber walk. We

illustrate the notions with 2D examples.

The lattice
A lattice in Zn, on which the fiber walk grows a fiber, is a graph

L(V ,E) of infinite size consisting of a set of vertices V and a set of

edges E. Such a lattice is derived by taking the graph Cartesian

product of n one-dimensional lattices at infinite length in Z, where

n denotes the dimension of the targeted lattice [9]. Beside the

notion of dimension, we define an embedding for the lattice by

assigning unit edge length to every edge of the lattice. A position is

assigned to every vertex, such that the vertex positions are denoted

as n-tuples in Zn (see Fig. 2). The assignment of positions to each

vertex will enable us later to define contractible edges.

Definition 1. Let L be a lattice in Zn. Fix v0 as the origin and assign

unit length to all edges, then the position of each vertex is the n-tuple associated

with Zn.

The fiber
We aim at defining the fiber as a non-branching and loop free

graph F (V ,E) consisting of set of vertices V and a set of edges E

[10], growing on an infinite lattice whose vertices are enumerated

in Zn. The fiber starts at a chosen vertex, the so-called origin. We

start with a narrow definition of a directed path graph, excluding

the trivial case of an ‘empty’ path containing no edges.

Furthermore, we restrict ourselves in the context of this paper to

only one fiber on the lattice.

Definition 2. Let G be a graph with mz1,1ƒmƒ? vertices,

such that exactly two vertices have one incident edge and m{1 vertices have

exactly 2 incident edges. Fix v0 and vm to be the vertices with one incident edge.

Such a graph is called a directed path graph. Also it is said to be directed by the

sequence fv0,v1,:::,vm{1,vmg
In the following two definitions we introduce the fiber as a

subset of possible directed path graphs. First we define self-

avoiding edges to limit ourself to cycle-free directed path graphs

and as a measurable characteristic of self-avoidance of the walk.

Secondly, we use self-avoiding edges to obtain a stopping criteria

of the fiber.

Definition 3. Let L be a lattice and G be a directed path graph on L.

An edge e belonging to the edge set of L is associated with two vertices belonging

to the vertex set of G, is called a self-avoiding edge if e is not in the edge set of

G.

Given self-avoiding edges we can define the stopping configu-

ration of a fiber as a vertex that is only incident to self-avoiding

edges.

Definition 4. Let L be a lattice. Any directed path graph

G~fv0,v1,:::,vmg,1ƒmƒ? is called a fiber if and only if all vi are

distinct. A fiber is said to be stopped if and only if all incident edges of vm are

self-avoiding edges.

The fiber walk
In the following we describe the process that constructs the

fiber. The process of constructing a fiber is called a fiber walk. The

fiber walk is a sequence of steps, each from a vertex vi to an

adjacent vertex viz1 via an edge, that is taken by an equally

random choice of all incident edges to vi to reach viz1.

Consequently, at the newly reached vertex viz1 a new random

choice is executed. The choice is taken under the constraint that

the newly chosen edge does not connect to a previously visited

Figure 1. Example of contradictions arising from decoupling elongation and expansion of a SAW. (A) SAW of 16 steps beginning at the
origin (yellow triangle) with current position marked via the green triangle. (B) Thickened SAW - note the curvature singularity of the resulting surface.
(C) SAW thickened by 2=3 of an edge length - multiple regions in space are ‘‘associated’’ with different steps, leading to an identifiability problem,
which holds for all thickening greater than or equal to 1=2 of an edge length.
doi:10.1371/journal.pone.0085585.g001

The Fiber Walk: Tip-Driven Growth with Expansion
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vertex. The excluded choices prevent the fiber walk from walking

back on itself and forming loops. The process is depicted in Fig. 3.

Definition 5. Let vi be a vertex that belongs to a fiber with at least 2

vertices in its vertex set. One step from a vertex vi to a vertex viz1 along an edge

of a lattice is the equal random choice among edges incident to vi that are not

incident to any vi{k,1ƒkƒi.

Def. 4–5 are equivalent to the notion of a growing self-avoiding

random walk (Fig. 3) on a lattice [11]. It is sufficient for our

purpose to investigate the growing SAW, because its configura-

tions are possible configurations of the traditional SAW used to

study the excluded volume effect.

Fiber walk contraction of the lattice
In our fiber walk each elongation step causes a contraction on

the lattice, which is a prerequisite to reconstruct the expanded

boundary locally at each time step. The contraction of the lattice

at each step is performed as a set of merges between vertices

adjacent to the last reached vertex on the lattice. A merge is the

union of two adjacent vertices vi and vj , where vi inherits all edges

of vj . A complete contraction at vi is given as a set of merging

operations driven by an edge labeling. We first define the merging

operation of two vertices. We denote the merge between two

vertices as +. The process is depicted in Fig. 4.

Definition 6. Let v1 be the last vertex reached on the lattice of a fiber

walk and let v2 be a vertex connected by a non-self-avoiding edge e to v1. The

merge v1+v2 results in v1 inheriting all edges incident to v2 except for e,

which is discarded.

Each merge is said to cause a new edge to exist on the lattice,

because two previously distant vertices are newly adjacent after

each merge. Therefore, a number of merges are associated with

each edge.

In the following we define an initial edge labeling based on the

vertex positions introduced in Def. 1. After that we give the

mechanism to recalculate labels after each contraction step.

Definition 7. Let v1 and v2 be two vertices on a lattice with positions

p1 and p2 and let both vertices be connected by an edge. The edge connecting v1

and v2 is said to be bi-directed with labels (p1{p2) denoting the direction of

the edge between v1 and v2 and (p2{p1) denoting the direction of the edge

between v2 and v1.

For example, the labels for all 3D-directions are: (+1,0,0),
(0,+1,0), (0,0,+1). The labels of edges incident to a vertex of a

lattice contain only entries of 21,0 and 1, because we initially

assigned unit length to all edges. The characteristic of the

bidirectional labeling is that a vertex vi has an outgoing edge to

all adjacent vertices viz1 and an incoming edge from each viz1 to

vi.

The recalculation of the labels considers the merge of two

vertices vi+vj and is denoted as . Let l1 be the label belonging to

the edge e1 connecting vi to vj . Let the label l2 belong to an edge

e2=e1 incident to vj . The label of a newly created edge is then

calculated for each entry a in the Cartesian n-tuple of the label,

such that:

Figure 2. A growing fiber (green) and its self-avoiding edges (purple). The example shows a fiber on a lattice as defined in Def. 1 and the
vertex positions are assigned to each vertex.
doi:10.1371/journal.pone.0085585.g002

Figure 3. Random choice of a follow up step. A step (green)
shown on a 2D lattice. The possible follow-up steps are represented as a
dotted line.
doi:10.1371/journal.pone.0085585.g003

The Fiber Walk: Tip-Driven Growth with Expansion
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a a~a ð1Þ

a ({a)~({a) (a)~0 ð2Þ

a 0~0 a~a ð3Þ

Equations 1–3 assure that the entries of the direction labels are

always 21,0 or 1. For example, if l1~(1,0,{1) and l2~(1,1,{1),
then l1 l2~(1,1,{1).

We identify edges for contraction by an entry in the n-tuple of

their associated labels. The selection of edges to contract is given

by two rules: A contraction is performed as a set of merging

operations with vertices having an incident outgoing edge e to v,

iff:

1. e is an outgoing edge of v, that differs in its label in more than

one value with the last incoming edge to v added to the fiber.

2. e is not a self-avoiding edge

Edges selected for contraction, are said to be incident from the

side and reflect the directions of lateral expansion. In practice, we

select all edges that do not have an entry in their edge label that

indicates a movement opposite to the current growth direction and

is different from the elongation step taken in the current growth

direction. Recall that edges belonging to the edge set of the fiber

are self-avoiding edges.

The contraction results in edges of different lengths in the edge

set of the fiber and of self-avoiding edges. In the following we show

that a fiber has three edge length classes and self-avoiding edges

have five edge length classes in 2D by investigating the edge set of

the lattice, but the proofing scheme applies to higher dimensions as

well. We make use of two prerequisites; first we consider two cases

of merging results: (1) merges not resulting in self-avoiding edges

(Fig. 5) and (2) merges resulting in self-avoiding edges (Fig. 6). Both

cases are distinguishable, because from Def. 6 it follows that a

contracted edge on the lattice has one vertex in the vertex set of

the fiber and one vertex exclusively in the vertex set of the lattice.

Secondly, we will distinguish between edges with identical edge

label that add up their length if their common vertex is merged

and edges with distinct edge label, whose resulting edge length is

calculated by the Pythagorean theorem. The edge length

calculation follows from the definition of the lattice in Def. 1

and the definition of the edge labels Def. 7.

Theorem 1. The edge set of the fiber has three edge length classes.

Proof 1. Let vi be the last vertex reached by the fiber on the lattice and

vi{1 be the previously reached vertex on the lattice connected by the edge evi{1,vi

with label lvi{1,vi
. Furthermore, let fviz1g be the set of vertices incident to vi

and fviz2g be the set of vertices reachable after contraction via fevi ,viz2
g with

corresponding labels flvi ,viz2
g.

vi+viz1 is performed if lvi{1,vi
lvi ,viz1

=lvi{1,vi
, from which follows,

that

if lvi{1,vi
lvi ,viz1

~lvi{1,vi
no merge is performed, evi ,viz1

~evi ,viz2
with

unit length of 1.

If lvi ,viz1
=lvi{1,vi

and lvi ,viz1
~lviz1,viz2

, evi ,viz2
has length 1z1~2.

If lvi ,viz1
=lviz1,viz2

and lvi ,viz1
=lviz1,viz2

, then evi ,viz2
has lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12z12
p

~
ffiffiffi
2
p

.

Proof 1 exhausts all combinations of the introduced prerequi-

sites. It is trivial, that each of the three edge length classes of the

fiber are possible edge length classes of self-avoiding edges,

because the fiber walk has a non-contracting edge that can

connect to each of the edge length classes of the fiber and to the

fiber directly. This occurs if viz1 belongs to the vertex set of the

fiber and no merge is performed. The edge length is therefore 1,2

or
ffiffiffi
2
p

. The edge length classes of the fiber were shown as possible

follow up steps. The follow-up step itself is a random choice and

therefore only one of the possible follow-up steps are chosen.

Hence, the edge length classes also apply to non-self-avoiding

edges incident to the walk, which may become self-avoiding. In the

following we use the edge length classes of Proof 1 as a starting

point to exhaust all possible 2D cases of self-avoiding edge lengths.

Theorem 2. Self-avoiding edges have five edge length classes.

Proof 2. Let vi be the last vertex reached by the fiber on the lattice and

vi{1 be the previously reached vertex on the lattice connected by the edge evi{1,vi

with label lvi{1,vi
. Furthermore, let fviz1g be the set of vertices incident to vi

and fviz2g be the set of vertices reachable after contraction via evi ,viz2
with

label lvi ,viz2
. We consider the cases of a self-avoiding edge to be formed by

vi+viz1 from the configuration of evi ,viz1
having a vertex viz2 incident to

viz1 that belongs to the vertex set of the fiber.

If eviz1,viz2
has length

ffiffiffi
2
p

and lviz1,viz2
=lvi ,viz1

it follows that evi ,viz2

has length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p 2

z12

q
~

ffiffiffi
3
p

.

If eviz1,viz2
has length 2 and lviz1,viz2

=lvi ,viz1
it follows that evi ,viz2

is of

length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22z12
p

~
ffiffiffi
5
p

.

If eviz1,viz2
has length 2 and lviz1,viz2

~lvi ,viz1
it follows that evi ,viz2

is

of length 2z1~3.

If eviz1,viz2
has length 1 and lviz1,viz2

=lvi ,viz1
, it follows that evi ,viz2

is

of length
ffiffiffi
2
p

.

Figure 4. Fiber walk on a 2D lattice. Elongation occurs as the first
step which is chosen randomly between the edges incident to the
origin v0 (compare Fig. 3). Here the chosen edge to reach v1 is shown in
green. Selection of vertices incident to the walk from the side
correspond to the expansion. The vertices selected to be merged with
v1 are shown in grey. Contraction of the selected vertices and its result
after merging the selected vertices to v1 . Another step, including
elongation and expansion, is shown as a second step on the lattice. The
second step reaching v2 uses the same color schema as before.
doi:10.1371/journal.pone.0085585.g004

The Fiber Walk: Tip-Driven Growth with Expansion
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If eviz1,viz2
has length 1 and lviz1,viz2

~lvi ,viz1
, it follows that evi ,viz2

is

of length 2.

The expansion of the fiber walk boundary
In the following we note that a face is bounded by edges that

connect vertices. Our central interest is to define the spatial

expansion of the fiber walk as represented by a boundary. We

introduce the fiber walk boundary for simplicity in 2D, but the

principle extends naturally to higher dimensions. Based on Def. 3,

we can distinguish three kinds of faces, which share an edge or a

vertex with the walk: 1.) self-avoiding faces, whose bounding edge set

contains only edges that are self-avoiding or belonging to the fiber

walk, 2.) non-self-avoiding faces, having no self-avoidend edges in

their bounding edge set or belong to the fiber walk and 3.) mixed

faces, bounded by edges that are self-avoiding, not self-avoiding or

belonging to the fiber walk.

We first introduce the basic definition of the boundary by

assuming that no self-avoiding edges are present on the lattice. In a

second step we will extend this notion to self-avoiding edges. Fig. 7

shows the derived boundary of the fiber walk on the minimal

example given before in Fig. 4.

Definition 8. Let L be a lattice, then the dual lattice Ld of L has

vertices v each of which corresponds to a face of L and each of whose faces

corresponds to a vertex of L. Each vertex vi is connected via an edge to the

vertex viz1 if the corresponding faces of L are adjacent.

Figure 5. The lattice contraction of the fiber walk. Left: The fiber (green) on a lattice and its edges selected for contraction. Right: The
contracted edges which are possible follow up steps of length 1,

ffiffiffi
2
p

and 2. In both figures the edge labels involved in the contraction and their
direction, indicated as arrows are shown.
doi:10.1371/journal.pone.0085585.g005

Figure 6. Edge length classes of the fiber walk. Case 2a shows a self-avoiding edge (purple) of length
ffiffiffi
3
p

and Case 2b shows a self-avoiding
edge of length 3. The fiber on a lattice is colored green and its edges selected for contraction are shown in grey. The dotted green line denotes an
unknown fiber walk that is not affecting the given configuration. In both figures the edge labels involved in the contraction and their direction
indicated as arrows are shown.
doi:10.1371/journal.pone.0085585.g006

The Fiber Walk: Tip-Driven Growth with Expansion
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As a final component of our setting we extend Def. 8 to achieve

validity in the presence of self-avoiding edges based on an

intermediate lattice. The intermediate lattice defines the faces

adjacent to the walk by placing vertices at a certain fraction of the

edge length of incident edges to the walk. This essential definition,

as we see later on, is depicted in Fig. 8.

Definition 9. Let L be a lattice and F be a fiber on the lattice.

Additionally, let E be the set of lattice edges ei incident to the walk and

belonging to the same face and c be the number of contractions causing ei to

exist. The intermediate lattice has vertices at maximal distance d(ei)~
1

2|c
along ei.

Def. 9 defines a maximal distance to compensate for self-

avoiding edges of length
ffiffiffi
5
p

and 3, that are the result of two

merges; here the compensation is defined in terms of cv1.

Without this compensation the fiber would expand at previously

reached locations whenever a self-avoiding edge of length
ffiffiffi
5
p

and

3 is formed. These two self-avoiding edge length classes result in a

distance between the fiber boundary, which is less than needed for

a fiber to grow in-between and expand.

Def. 9 refines the lattice such that Def. 8 applies to all faces

incident to the fiber. We finalize this section with actual

computations of the introduced fiber walk in 2D and 3D (Fig. 9).

An example of a computed SAW and the fiber walk in 2D and 3D

is given in Fig. 9. Fig. 9 (a) and (b) show a SAW on a lattice

including the self-avoiding edges. In comparison, Fig. 9 (c) and (d)

show a fiber walk and the lattice resulting from the contraction.

We note that analysis of transient dynamics involve the following

caveat: direct comparisons of time-steps (and corresponding

Figure 7. The fiber walk boundary. The boundary (blue) of the fiber walk is derived from the face dual of the lattice (red) in 2D. The shown
configuration corresponds to the example given in Fig. 4. Here, dotted line segments denote non-unique edges, which do not belong to the
boundary.
doi:10.1371/journal.pone.0085585.g007

Figure 8. Recovering the surface. (left) The original lattice with grey edges and orange vertices. The walk is shown in green and self-avoidend
edges are shown in purple. The black line denotes the half-edge length of edges incident to the walk. (right) The intermediate lattice consisting of the
black half edge line and the grey edges incident to the green walk. Small orange vertices are placed at half-edge distance while the bigger orange
vertices are the original vertices belonging to the walk.
doi:10.1371/journal.pone.0085585.g008

The Fiber Walk: Tip-Driven Growth with Expansion
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statistics) with and without self-avoidance may depend on details of

the growth process.

Results

Fiber boundary does not have curvature singularities
In the introduction we gave 2D examples of singularities on the

boundary if only the symmetric expansion around the vertices of

the walk is considered. It is trivial to observe that each vertex

contributes to the boundary wherever a vertex of the fiber has an

incident edge belonging to the edge set of the lattice. On an

uncontracted lattice, a vertex does not contribute to the boundary

on both sides of the walk at locations where the walk turns 900. We

compare here the case of a right angle turn for the fiber walk to

demonstrate the influence of the intermediate lattice. Fig. 10 shows

the four possible local configurations of a fiber walk that cause a

right angle in 2D. We can distinguish two configurations of right

angles within the four cases: configurations containing self-

avoiding edges, and configurations containing no self-avoiding

edges.

Let vr be a vertex at which the two incident walk edges connect

to vertices v1 and v2 respectively.

Configuration 1 has one edge connecting v1 and v2 at the side

of the right angle. Hence, Def. 9 applies for reconstructing the

boundary, where the intermediate lattice forms triangular faces

having vr in their vertex set at the side of the right angle.

Configuration 2 has an edge e incident to vr at the side of the

right angle that does not belong to the fiber and connects to a

vertex that exclusively belongs to the lattice. Hence, Def. 8 applies

for reconstructing the boundary. The edge e guarantees that vr

contributes to the boundary on the side of the right angle.

Configuration 1 demonstrates the case where our boundary

construction guarantees that the expansion around vr contributes

to the boundary at the side of the right angle. Configuration 2 is

the standard case resulting from the contraction. The two

configurations are shown for a computed fiber walk in Fig. 11A,

along with the constructed intermediate lattice in Fig. 11B.

Fig. 11C has varying curvature along the entire boundary, even

when the walk undergoes a right angle turn. The boundary

inhibits right angles at the these locations because of the

contraction at each step given in Def. 6. We can also refine the

computed boundary in Fig. 11C with a Catmull-Clark subdivision

scheme [12] to recover an ‘‘organic’’, i.e. curved, shape. The

Catmull-Clark scheme obtains a fine B-spline approximation of

the boundary, which is valid because no right angles have to be

approximated.

Fiber walks define a region of occupied space
Each step of a fiber walk elongates the fiber and expands its

boundary, which defines a region occupied by each step on the

lattice. The fiber walk contains three edge length classes in 2D of

length 1,
ffiffiffi
2
p

and 2, which are interpreted as a step forward on

uncontracted lattice edges, a diagonal step resulting from the

contraction of the lattice and a step over previously contracted

lattice edges. Each edge length can be interpreted in terms of the

distance the walk must cross through the expanded region before

elongation can occur again. Each forward step starts at a point

inside the actual growing object and has to pass through an

expanded region. See Fig. S1, S2, S3 for 2D, 3D and 4D for

computed statistics of the observed edge length classes.

Fiber configurations are constrained by spatial expansion
Fiber walks generate self-avoiding edges. Self-avoiding edges

correspond to directions of growth that are inaccessible as a direct

result of the spatial expansion of the fiber. There are five length

classes of self-avoiding edges for a fiber grown on a 2D square

lattice: 1,
ffiffiffi
2
p

,2,
ffiffiffi
5
p

and 3. See Fig. S1, S2, S3 for 2D, 3D and 4D

for computed statistics of the observed self-avoiding edge length

classes. Although these length classes vary with lattice-type, the

fact that they are heterogeneous and can be linked to spatial

expansion is generic. In particular, self-avoiding edges of lengthffiffiffi
5
p

and 3 in 2D represent locations where expanded fibers are

closer to each other than needed for expansion. Hence, lateral

expansion alter the possible configurations of a resulting fiber.

Spatial expansion inhibits elongation steps of fiber walks
The stopping time describes the probability of a walk to

generate a stopping configuration (compare Def. 4). We give here

the stopping times for the 2D growing SAW and fiber walk (Fig. 12)

as the cumulative density function of the walk length (see SI for

computation results). For the computation of the 2D stopping

times we considered 100,000 walks of a maximum length of 300

steps. For the growing SAW the walks stopped after 50 steps with

50% chance. In contrast the fiber walk reached the 50% mark at

approximately 29 steps. We found evidence that the two

distributions are distinct from each other by performing a two-

sample Kolmogorov-Smirnov test (pv0:001,D~0:25454). The

stopping times allow the conclusion that fiber walks have on

average less steps until termination then their dimensionally

reduced equivalent. The computation of exact stopping times in

3D and 4D is beyond scope of this paper.

Expansion lets the fiber walk initially reach further
From the previous paragraph it follows that we need an

indication of how the fiber walk expansion affects the growth of

the fiber. We compare the end-to-end distance per step to evaluate

how far the growing SAW and the fiber walk are on average away

from the origin. The classic property to characterize this behavior

is the scaling obtained as the average Euclidean mean-square-

displacement (MSD) from the origin as a function of the number of

steps on the lattice [2]. The scaling of the MSD R(N) in relation to

the number of steps N taken on the lattice is denoted as:

R(N)!N2q ð4Þ

Figure 9. Computed comparison of SAW and fiber walk. (A) A
growing SAW in 2D and (B) a Fiber Walk in 2D. All walk edges are
colored in green, the lattice is shown in (grey) and the self avoiding
edges are colored in purple for all images. (C) A growing SAW in 2D and
(D) a fiber walk 3D.
doi:10.1371/journal.pone.0085585.g009
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2q~ lim
N??

log(R(N))

log(N)
ð5Þ

The scaling exponent q for a walk is determined as the slope of the

best fit line where the function R(N) reaches an asymptotic slope

and is called the scaling region. In contrast the region before

reaching an asymptotic slope is called the transient region. For

example, a standard diffusive process, such as the ordinary

random walk, corresponds to q~0:5. In order to estimate the

scaling exponent we computed 1,000 fiber walks and growing

SAW’s in dimensions 2,3,4 using simple sampling. Trapped walks

were restarted by removing the last edge until a walk length of 200

steps was reached to assure that all 1,000 walks represent

configurations with in the scaling region. Note that this restarting

technique overrides stopping configurations that occur naturally.

We selected walks of a certain minimum length to obtain the

scaling of the MSD over the number of steps on the lattice. The

exponents for all scaling exponents given in this sections are

derived from the least-square fit of a line into the scaling region of

the averaged MSD values per number of steps. We have chosen a

change of less than 0.1 in the asymptotic slope as a threshold to

determine the scaling region from 30 steps onwards and used

bootstrapping to evaluate the error of the slope. We obtained for

q, Fig. 13(left), a value of 0.5560.05 and 0.5560.06 for the 2D

fiber walk and the 2D growing SAW respectively. For dimensions

3 and 4 we obtained 0.5360.04 and 0.5360.03 for the fiber walk

and the 0.5260.04 and 0.5360.03 for the growing SAW

respectively. For computation results in 3D see Fig. S4 and Fig.

S5 for the 4D computation. Our main observation is that our fiber

walk diverges further away from the origin before reaching the

scaling region than the growing SAW, which is visible in the

higher absolute MSD value compared to the SAW. This stronger

divergence in the transient region suggests that expansion makes

fiber walks initially more ballistic because of different step length

resulting from the contraction.

A measure for the overall expanded area
In alignment with the scaling behaviour of the self-avoiding

edges, the number of merges defines the amount of occupied space

on the lattice. Nevertheless, the unique characteristic of the fiber

walk is the contraction, which defines the boundary describing the

spatial expansion of the fiber walk. Here we give the scaling of the

number of contractions for the fiber walk as a measure for the for

the size of the boundary (See Fig. S6, S7, S8). In 2D this resulted in

a scaling exponent of 1.13, whereas for the 3D and 4D cases a

similar exponent of 0.98 and 0.98 was obtained. The similar

exponent means that not all edges incident from the side result in a

merge. Fig. S6, S7, S8 show the actual computation results.

Discussion

In this paper we introduced the fiber walk, which is a growing

SAW that includes lateral expansion. The expansion of the fiber

walk is modeled as a local contraction around the last vertex

reached on the lattice. We have shown that the fiber walk process

constitutes a mechanism by which physical space is reserved, yet

does not imply the expansion of the object into this space. We have

found that the expansion lets a walk diverge initially further away

Figure 10. Avoiding right angles. The four cases of right angle configurations of the fiber walk. Configuration 1 shows possible right angle
configurations containing a self-avoiding edge. Configuration 2 shows the possible configurations of right angles without self-avoiding edges.
doi:10.1371/journal.pone.0085585.g010
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from the origin before entering the scaling region and that the

fiber walk takes, on average, fewer steps until termination than the

SAW. Self-avoidance as proposed in our model causes encapsu-

lated regions on the lattice that inhibit further exploration by the

fiber unless a branching mechanism is added.

One benefit of modeling the contraction is that local object

thickness larger than the step size is possible. Although we have

shown only the difference between modeling elongation (alone)

and elongation with expansion, our fiber walk is capable to

perform more than one contraction while growing. A practical

variation of the principal fiber walk would be to assign

probabilities to the selection of walk edges. Such probabilities

should allow the simulation of more ballistic walk behaviour. As

far as we are aware, the connection between self-avoidance and

contraction in SAW-derived models has not been established in

the study of random walks in biology (see [13] for an overview). In

particular, the correlated random walk on a lattice has been

studied to explain solely the elongation and the direction in root

development on the example of spruce trees [14]. Recently the

importance of spatial expansion for modeling plants has been

highlighted in [15] and L-Systems might be a suitable formalism to

express the fiber walk mechanisms underlying the emergence of

root shapes [16]. Simulations of the root growth have been

developed that include rich information on root physiology and

biology [17–19] and many underlying models have been derived

from measured empirical data [20]. We see the fiber walk as a

complementary development in the sense that it models a simple

but abstract mechanism with explicit walk geometry and that

could be integrated into models that incorporate greater realism.

Future work on the fiber walks will be targeted towards the

creation and simulation of physical networks including the spatial

interactions between several fiber that walk on the same lattice. In

Figure 11. A computed fiber walk example with boundary.
(A)The illustrated fiber walk (green) is shown on a grey lattice, with two
locations marked where curvature singularities are avoided. (B) The
intermediate lattice (orange). (C) The filled boundary (brown) smoothed
with a B-Spline in 2D.
doi:10.1371/journal.pone.0085585.g011

Figure 12. Stopping times of SAW and fiber walk. Comparison of the growing SAW (blue) and fiber walk (red) stopping times. The figure shows
the computed walk length at termination of 100.000 single walks.
doi:10.1371/journal.pone.0085585.g012
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our opinion the fiber walk has the potential to parallel

geometrically the apical tip-driven growth of individual branches

in many plants at the apical meristem. Morphogens within the

apical meristem regulate the extension of individual branches

[21–23] which may find an analogue in the tip of the growing

fiber. Examples include root growth in plants whose extension is

tip-driven [24–26]. Above-ground plant and tree structure is tip-

driven [27] and, again morphogens regulate the branch extension

at the apical meristem. Similarly, the long and branching

filamentous structure of fungi (hypha) extend from the ‘Spitzen-

körper’ [28]. Also hyphae growth is simulated via a tip-driven

growth emerging from a ‘vesicle supply center’ within the tip

[29].

Many such networks face the problem of being below the

maximum resolution of sensing technologies in non-laboratory

conditions (e.g. roots in real soil). The fiber walk enables us to

develop localized descriptors or measures that may serve as the

basis for models in efforts to identify adaptive growth rules in

complex organisms. Finally, the current definition and implement

of the fiber walk best describe the growth of sessile objects.

However, extensions to the model could also include the

possibility of movement of edges within the fiber and further

coupling of physical mechanisms of growth influenced by surface

properties. The method is available within the supporting

material of this paper, for download on the web pages of the

authors and on git hub (https://github.com/abucksch/

FiberWalk).

Materials

The results of this paper were produced with the python

program that we provide together with the paper. This software is

suitable for developers to use as a template to integrate our fiber

walk into their software. An end user should follow the

requirements provided in the ‘‘readme’’ file to execute the

program.

Supporting Information

Figure S1 Comparison of edge length classes of the
walk (green) and the self-avoiding edges on the lattice
(purple) for the fiber walk in 2D.

(TIFF)

Figure S2 Comparison of edge length classes of the
walk (green) and the self-avoiding edges on the lattice
(purple) for the fiber walk in 3D.

(TIFF)

Figure S3 Comparison of edge length classes of the
walk (green) and the self-avoiding edges on the lattice
(purple) for the fiber walk in 4D.

(TIFF)

Figure S4 The average MSD scaling for the 3D growing
SAW (blue) and the 3D fiber walk (green). The scaling

exponent for the growing SAW is q~0:52+0:04 and for the fiber

walk q~0:53+0:04 based on 1000 walks of length 200.

(TIFF)

Figure S5 The average MSD scaling for the 4D growing
SAW (blue) and the 3D fiber walk (green). The scaling

exponent for the growing SAW is q~0:53+0:03 and for the fiber

walk q~0:53+0:03 based on 1000 walks of length 200.

(TIFF)

Figure 13. Scaling of the fiber walk and SAW. The summarized overview of the MSD scaling of the growing SAW (blue) and the fiber walk
(green) is shown. For both, the fit line in the scaling region is shown in red.
doi:10.1371/journal.pone.0085585.g013
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Figure S6 The number of contractions indicating the
size of the area enclosed by the region for the 2D fiber
walk resulting in the scaling exponent of 1.13 for 1000
walks of length 200.
(TIFF)

Figure S7 The number of contractions indicating the
size of the area enclosed by the region for 3D fiber walk
resulting in the scaling exponent of 0.98 for 1000 walks
of length 200.
(TIFF)

Figure S8 The number of contractions indicating the
size of the area enclosed by the region for the 4D fiber

walk resulting in the scaling exponent of 0.98 for 1000
walks of length 200.

(TIFF)
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