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This work introduces molecular nonlinear dynamics (MND) as a new approach for describing

protein folding and aggregation. By using a mode system, we show that the MND of disordered

proteins is chaotic while that of folded proteins exhibits intrinsically low dimensional manifolds

(ILDMs). The stability of ILDMs is found to strongly correlate with protein energies. We propose

a novel method for protein thermal uncertainty quantification based on persistently invariant

ILDMs. Extensive comparison with experimental data and the state-of-the-art methods in the field

validate the proposed new method for protein B-factor prediction. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4861202]

Protein folding produces characteristic and functional

three-dimensional structures from unfolded polypeptides

or disordered coils.1–5 The emergence of extraordinary

complexity in the protein folding process poses astonish-

ing challenges to theoretical modeling and computer sim-

ulations.6,7 The present work introduces molecular

nonlinear dynamics (MND), or molecular chaotic dynam-

ics, as a theoretical framework for describing and anal-

yzing protein folding. We represent the dynamics of

macromolecular particles (i.e., atoms or coarse-grained

superatoms) by a set of intrinsically chaotic oscillators. A

geometry to topology mapping is employed to create driv-

ing and response relations among chaotic oscillators. We

unveil the existence of intrinsically low dimensional

manifolds (ILDMs) in the chaotic dynamics of folded

proteins. Additionally, we reveal that the transition from

disordered to ordered conformations in protein folding

increases the transverse stability of the ILDM. Stated

differently, protein folding reduces the chaoticity of the

nonlinear dynamical system, and a folded protein has the

best ability to tame chaos. Furthermore, we bring to light

the connection between the ILDM stability and the ther-

modynamic stability, which enables us to quantify the

disorderliness and relative energies of folded, misfolded,

and unfolded protein states. Finally, we exploit chaos for

protein uncertainty quantification and develop a robust

chaotic algorithm for the prediction of Debye-Waller fac-

tors, or temperature factors, of protein structures.

I. INTRODUCTION

Protein folding process is one of the most important

processes in life. How exactly a random coil of polypeptide

chain folds into functional structure or conformation after

being translated from a sequence of mRNA remains a mys-

tery. Anfinsen’s dogma of sequence-structure-function,8 in

which a protein’s function depends on its uniquely folded

three-dimensional (3D) structure and its structure is deter-

mined by the amino acid sequence, is challenged due to the

discovery that many partially folded or intrinsically unstruc-

tured proteins remain functional despite of the lack of

uniquely folded 3D structures.3,4,9,10 Kinetically and thermo-

dynamically regulated competing pathways, including disor-

dered aggregation, degradation, folding and unfolding,

convert linear chains of amino acids translated from sequen-

ces of mRNA into degraded fragments, protofibrils, amyloid-

like fribrils, amyloids, intrinsically disordered proteins,

partially disordered proteins, and folded structures.1–5 The

formation of disordered proteins is often exploited by living

systems to perform novel and diverse biological functions.

Unfortunately, aggregated or misfolded proteins are often

associated with sporadic neurodegenerative diseases, such as

mad cow disease, Alzheimer’s disease, and Parkinson’s dis-

ease.11,12 Currently, there is a lack of efficient means for the

characterization of disordered aggregation and the quantifi-

cation of orderliness, which are crucial to the understanding

of the molecular mechanism of degenerative diseases.

The emergence of complexity in self-organizing living

systems, including protein folding, poses fabulous challenges

to their quantitative description and prediction.6,7 Cyrus

Levinthal suggested that there are near 1095 possible confor-

mations for a relatively small polypeptide of 100 residues,13

while an average human protein of 480 residues might have

an astronomical number of conformations. The complexity is

extraordinary since human proteins are coded by over

20 000 genes. The straightforward sampling of the full con-

formational space becomes unfeasible for large proteins. It

takes many months for molecular dynamics (MD) simula-

tions, the main workhorse of computational protein fold-

ing,14 to come up with a very poor copy of what Nature

administers perfectly within a tiny fraction of a second. In

fact, disordered aggregation, unfolding and folding often

occur at slower time scales and involve larger length scales,

which are essentially intractable to full atomic simulations.6,7

Coarse-grained (CG) representations of polypeptides are

employed to reduce the number of degrees of freedom,

extend molecular modeling, and bridge with experimental
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observations. An active research topic is how to improve the

accuracy of CG models so as to differentiate near degenerate

energy landscapes of some conformations generated by the

protein folding process. Elastic network models (ENMs),

including Gaussian network model (GNM) and anisotropic

network model, represent folded proteins as elastic

mass-spring networks to investigate its mechanical flexibility

and long-time stability beyond the reach of molecular

dynamics.15–20 In general, ENMs can be viewed as a

time-independent molecular mechanics derived from their

corresponding time dependent molecular mechanics by using

the time-harmonic approximation. An underlying assumption

adopted in all of the above-mentioned theoretical models is

that protein folding, misfolding, and aggregation are to be

modeled with some deterministic dynamical systems, which

reinforce Anfinsen’s dogma and exclude any unpredictability

and molecular degradation. However, the existence of

degraded fragments, protofibrils, amyloid-like fribrils, amy-

loids, misfolds, and intrinsically disordered proteins high-

lights the fundamental limitation of current simulation

models.

Chaos is ubiquitous in nature. The discovery of the sensi-

tivity of initial conditions, one of three signatures of chaos,

dated to the 1880s by Henri Poincar�e.21 However, little atten-

tion was paid to chaos until Edward Lorenz’s work on nonlin-

ear dynamics and description of butterfly effect in weather

forecasting in the 1960s, which underpin the modern theory

of deterministic chaos.22 Understanding deterministic chaos

is of theoretical and practical importance.23–26 Some detailed

analysis of chaos dynamics can be found in the literature.27,28

Mathematically, a chaotic dynamics also exhibits dense peri-

odic orbits and topologically mixing of its phase space open

sets.27,28 Chaos has been observed in a vast variety of realistic

systems, including Belouzov-Zhabotinski reactions, nonlinear

optics, Chua-Matsumoto circuit, Rayleigh-B�enard conven-

tion, meteorology, population dynamics, psychology, eco-

nomics, finance solar system, protein dynamics,29 and heart

and brain of living organisms.30 Various chaos control strat-

egies have been proposed.23–26 However, the natural ability

of protein folding in controlling chaos has not been unveiled

yet.

Imagine that a folded protein is a Greek chorus where

all particles sing with a synchronized voice on the dramatic

action, while an unfolded protein is an anharmonic chaotic

orchestra where each particle plays its own rhythm with its

own instrument. In this work, we propose a method, called

MND, to describe this chaotic behavior of a protein. The fun-

damental assumption of the MND is that each protein config-

uration (structure) is the direct manifestation of the internal

and external interactions of the protein. Protein functions,

such as stability and flexibility, are entirely determined by

the protein structure or geometry. Therefore, there is no need

to resort to protein interactions to predict thermal fluctua-

tions. Our approach has two basic ingredients: the connectiv-

ity matrix and the nonlinear oscillator representation of

protein particles. The former is constructed by a geometry to

topology mapping and the latter describes the relative

motions of particles. It is found that this model reveals the

role of the protein structure in taming the chaos from two

aspects. First, folded protein structures induce the transition

from chaos to periodicity. Additionally, the protein folding

process restrains high dimensional chaos to achieve synchro-

nization. We also show that MND can be used to success-

fully predict the Debye–Waller factor, which describes

thermal fluctuations of the structure. A comparison with the

GNM further validates our approach.

The rest of this paper is organized as follows. Section II

is devoted to methods and algorithms. The MND method is

discussed in detail, including a kernel function representation

for the connectivity matrix, the construction of MND from

coupled nonlinear oscillators, and the stability analysis of the

ILDM. Numerical results are presented in Sec. III. We dem-

onstrate the protein folding induced control of chaos by

using a model system, the Lorenz equation. It is shown that

folded protein conformations correspond to the ILDM, while

unfolded structures are associated with high-dimensional

chaotic dynamics. We further utilize the persistence of the

invariant ILDM for protein uncertainty quantification, i.e.,

analyzing protein thermal fluctuations. The ILDM based

flexibility analysis is calibrated with a state-of-the-art

method, GNM. Finally, concluding remarks including the

limitation and possible improvement are presented.

II. METHODS AND ALGORITHMS

We assume that the 3D structure or geometry of a pro-

tein contains in all the information regarding to protein-

protein interactions sits, and most importantly the internal

interactions between particles, which can be atom, amino

acid, or superatoms within the protein itself. Therefore, the

final configuration of the protein is the manifestation of bal-

anced interactions. From another perspective, the distance

between two particles is directly associated with their total

interaction strength. Additionally, all the protein functions,

including thermal fluctuations, are solely determined by the

structure. Therefore, functional predictions can be done with

the structural information without resorting to the ultimate

interactions. We build up a connectivity matrix from the

geometry of a protein. Further, we represent the dynamics of

each particle by a nonlinear oscillator, and couple particles

with the connectivity matrix extracted from the geometry. In

this section, we discuss the details of our methods, algo-

rithms, and their further applications to protein folding.

A. Geometry to topology mapping

Topological relations or connectivities among molecular

particles are basic ingredients in MND model. As discussed

above, this topological information can be extracted from the

geometric properties of a given molecule of interest. Let us

consider a molecule of N particles located at r1; r2; � � � ; rN ,

where rj 2 R3, where particles are either atoms, amino acids

residues, or other superatoms in the molecule. The distance

between the ith and jth particles is given by dijðri; rjÞ
¼k ri � rjk2. The connectivity matrix must satisfy the driven

and response relation between two dynamics systems

Additionally, we assume that all particles are mutually con-

nected and their interactions decay as a function of their dis-

tance Aij(dij). The simplest form for the connectivity matrix
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is the Kirchhoff (or connectivity) matrix generated by cutoff

distances rij

Aij ¼
1; 8dij � rij; i 6¼ j

0; 8dij > rij; i 6¼ j

�
X

j 6¼i
Aij; 8i ¼ j:

8>><
>>:

(1)

To account for the distance effect in a more realistic manner,

it is also convenient to employ smooth and monotonically

decreasing radial basis functions or delta sequence kernels of

positive type.31 Here, we consider generalized exponential

functions

Aij ¼
e�dk

ij=krk
ij ; 8i 6¼ j; k ¼ 1; 2; � � �

�
X

j 6¼i
Aij; 8i ¼ j;

8<
: (2)

and power-law functions

Aij ¼
ðdij=rijÞ�t; 8i 6¼ j; t > 1;

�
X

j 6¼i
Aij; 8i ¼ j;

8<
: (3)

where rij are characteristic distances between particles. In

the present model, rij can be used as a set of fitting parame-

ters. Note that some of the above matrix expressions have

also been used in other flexibility analysis approaches.19,32–36

However, the present construction of these functional forms

was based on the driven and response relation of coupled

dynamical systems.27

Expressions (1)–(3) map a molecular geometry into top-

ological relations or connectivities. The connectivity matrix

A is an N�N symmetric, diagonally dominant matrix. Note

that elements in the connectivity matrix are not interaction

potentials among particles. For simplicity, we set character-

istic distances to rij ¼ r for all amino acid residues. Figure 1

illustrates the non-diagonal elements of two connectivity

matrices, one for the native protein structure of 2mcm and

the other for completely unfolded conformation generate

from pulling the structure of 2mcm. It is seen that the native

protein shows a heterogeneity (or small-world property37) in

its connectivity matrix, which contributes to the protein sta-

bility. Whereas the connectivity matrix of the completely

unfolded conformation has little nonlocal connection.

B. Molecular nonlinear dynamics

To introduce the MND, let us consider a folding protein

that constitutes N particles and has the spatiotemporal com-

plexity of R3N �Rþ. Assume that the molecular mechanics

of the protein is described by molecular nonlinear dynamics

having a set of N nonlinear oscillators of dimension

RnN �Rþ, where n is the dimensionality of a single nonlin-

ear oscillator. Let us consider an n�N-dimensional nonlin-

ear system for N interacting chaotic oscillators

du

dt
¼ FðuÞ þ Eu; (4)

where u ¼ ðu1; u2; � � � ; uNÞT is an array of state functions

for N nonlinear oscillators, uj ¼ ðuj1; uj2; � � � ; ujnÞT is an

n-dimensional nonlinear function for the jth oscillator, FðuÞ ¼
ðf ðu1Þ; f ðu2Þ; � � � ; f ðuNÞÞT is an array of nonlinear functions

of N oscillators, and E ¼ eA� C. Here, e is the overall inter-

action strength, A is the N� N connectivity matrix defined in

Sec. II A, and C is an n� n linking matrix. Although it is pos-

sible to consider all the physical interactions among protein

particles, we feature the importance of the protein distance

geometry in this work. As such, we map a protein geometry

into a set of topological relations or connectivities.

C. Stability analysis of the ILDM

We use the protein connectivity matrix to define the

driving and response relation of nonlinear chaotic oscillators.

Amazingly, an N-time reduction in the spatiotemporal com-

plexity can be achieved, leading to an ILDM of dimension

Rn �Rþ. Formally, the n-dimensional ILDM is defined as

u1ðtÞ ¼ u2ðtÞ ¼ � � � ¼ uNðtÞ ¼ sðtÞ; (5)

where s(t) is a synchronous state or reference state.

To understand the stability of the ILDM of protein

chaotic dynamics, we define a transverse state function as

w(t)¼ u(t)– S(t), where S(t) is a vector of N identical compo-

nents ðsðtÞ; sðtÞ; � � � ; sðtÞÞT . Obviously, the invariant ILDM is

given by w(t)¼ u(t)– S(t)¼ 0. Therefore, the stability of the

ILDM can be analyzed by
dwðtÞ

dt ¼
duðtÞ

dt �
dSðtÞ

dt , which can be

studied by the following linearized equation:27,28

dw

dt
¼ ðDFðsÞ þ EÞw; (6)

where DF(s) is the Jacobian of F.

To further analyze the stability of Eq. (6), we diagonal-

ize connectivity matrix A

A/jðtÞ ¼ kj/jðtÞ; j ¼ 1; 2; � � � ;N; (7)

where f/jgN
j¼1 are eigenvectors and fkjgN

j¼1 are the associ-

ated eigenvalues. These eigenvectors span a vector space in

which a transverse state vector has the expansion27,28

FIG. 1. The connectivity matrices for two conformations of protein 2mcm

generated by using Eq. (2) with k¼ 2 and rij ¼ 6. Diagonal elements have

been excluded to emphasize non diagonal interactions. (a) The connectivity

matrix of the native structure of 2mcm shown in Fig. 3(a) indicates much

nonlocal interactions. (b) The connectivity matrix of a completely unfolded

conformation shown in Fig. 3(g) demonstrates little nonlocal interactions.
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wðtÞ ¼
X

j

vjðtÞ/jðtÞ: (8)

Therefore, the stability problem of the ILDM is equivalent to

the following stability problem:

dvjðtÞ
dt
¼ ðDf ðsÞ þ ekjCÞvjðtÞ; j ¼ 1; 2; � � � ;N; (9)

where Df (s) is the diagonal component of DF(s). The stabil-

ity of Eq. (9) is determined by the largest Lyapunov expo-

nent Lmax, namely, Lmax < 0, which can be decomposed into

two contributions

Lmax ¼ Lf þ Lc;

where Lf is the largest Lyapunov exponent of the original n
dimensional chaotic system ds

dt ¼ f ðsÞ, which can be easily

computed for most chaotic systems. Here, Lc depends on kj

and C. The largest eigenvalue k1 equals 0, and its corre-

sponding eigenvector represents the homogeneous motion of

the ILDM, and all of other eigenvalues kj; j ¼ 2; 3; � � � ;N
govern the transverse stability of the ILDM. Let us consider

a simple case in which the linking matrix is the unit matrix

ðC ¼ IÞ. Then stability of the ILDM is determined by the

second largest eigenvalue k2, which enables us to estimate

the critical interaction strength ec in terms of k2 and Lf,

ec ¼
Lf

�k2

: (10)

The dynamical system reaches the ILDM when e > ec and is

unstable when e � ec. The eigenvalues of protein connectiv-

ity matrices are obtained with a standard matrix diagonaliza-

tion algorithm.

III. NUMERICAL RESULTS

To demonstrate the full strength of the molecular nonlin-

ear dynamics, we present three major results in this work.

First, we show that the transition from chaos to periodicity can

be induced by protein interactions. Additionally, we demon-

strate the correlation between protein randomness and the

dimensionality of chaos in the protein MND. Finally, we uti-

lize the persistence of the invariant ILDM for the uncertainty

quantification of protein structures due to thermal fluctuations.

In our MND model Eq. (4), the exact expressions of the

nonlinear functions F(u) is not specified. Mathematically, it

is well known that a double well or triple well function can

lead to multiple local minima, which support bistable or mul-

tiple stable states. The system becomes unstable or chaotic

under certain perturbation. In this paper, for simplicity, we

just choose a set of Lorenz attractors22 to illustrate our ideas.

The Lorenz equation is three-dimensional ui ¼ ðxi; yi; ziÞT ,

dxi

dt
¼ aðyi � xiÞ

dyi

dt
¼ cxi � yi � xizi

dzi

dt
¼ xiyi � bzi; i ¼ 1; 2; � � � ;N;

(11)

where parameters a > 0; b > 0 and c > 0 are to be specified

for each given system.

The Lorenz Eq. (11) can be analyzed with the Poincar�e
section and the first return map.38 Parameter c has been used

to classify certain behavior of the Lorenz Eq. (11). The ori-

gin is a fixed point when c < 1. When c ¼ 1, the system is at

the saddle-node bifurcation point. For c > 1, there is a pair

of fixed points given by

u6 ¼ ð6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðc� 1Þ

p
;6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðc� 1Þ

p
; c� 1ÞT :

For a > bþ 1, the above twin fixed points are stable if

c
a
<

aþ bþ 3

a� ðbþ 1Þ :

At a ¼ bþ 1, the twin fixed points are no longer stable due

to the Hopf bifurcation.

By choosing the classical parameter values a ¼ 10;
b ¼ 8=3 and c ¼ 28, almost all points in the phase space go

to a strange attractor—the Lorenz attractor. The Lorenz

equations are solved by using the forward Euler scheme

and/or the fourth order Runge-Kutta scheme in this work.

Note that the Lorenz oscillators used in the present work

do not directly govern the realistic dynamics of protein resi-

dues or atoms. Instead, they just provide a simple representa-

tion of the protein dynamics. It turns out that such a simple

representation is able to capture certain fundamental features

of the protein as described below.

A. Folding induced transition from chaos to
periodicity

As a proof of principle, we first demonstrate that folded

proteins are able to control chaos. To this end, we consider

the MND generated by the coarse-grained representation of

bacteriocin AS-48 (protein data bank (PDB) ID: 1e68) by

using its 70 amino acid residues. As a comparison, we create

a reference dynamical system with 70 weakly coupled

Lorenz attractors. In this case, we set E in Eq. (4) as

E ¼ gB� C, where B is given by

Bij ¼
1; 8dij � rij; j > i

�1; 8dij � rij; j < i

0; otherwise:

8><
>:

(12)

The linking matrix is given as

C ¼
0 0 0

1 0 0

0 0 0

0
B@

1
CA: (13)

In this setting, there is no realistic protein structure informa-

tion in the connectivity matrix. Consequently, the dynamics

of original seventy weakly coupled Lorenz attractors is cha-

otic as shown in Figs. 2(a) and 2(b). In fact, each chaotic

attractor resembles the well-known wings of butterfly as

plotted in Fig. 2(a). Here, g ¼ 7 and rij ¼ 4Å are used. The

Lorenz parameters are set to a ¼ 1; c ¼ 60, and b ¼ 8
3
.
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To appropriately consider protein interactions, we set

E ¼ ðeAþ gBÞ � C, where the connectivity matrix A takes

the form given in Eq. (2) and e ¼ 10. Surprisingly, the MND

of bacteriocin AS-48 exhibits a shocking transition from

chaos to periodicity as depicted in Figs. 2(c) and 2(d). The

chaotic dynamics of each oscillator undergoes a Hopf bifur-

cation as illustrated in Fig. 2(c). It is interesting to note that

there is a constant delay in the dynamics of any two adjacent

oscillators and there is a lag synchronization in the protein

dynamics. As such, the protein dynamics can be described

by an R3 �Rþ dimensional ILDM, which achieves a stun-

ning 70-fold reduction in complexity and dimensionality.

B. High dimensional chaos associated with unfolding
proteins

Having demonstrated the ability of transforming high

dimensional chaos to a three-dimensional periodic orbit by a

folded protein, we further analyze the dynamics of a set of

forty one conformations generated from pulling the structure

of macromomycin (PDB ID: 2mcm) with a constant force. It

is quite standard to create partially folded and unfolded pro-

teins by a pulling force in computer simulations39 and with

experimental means.40 The relation between protein topol-

ogy and energy was discussed in the literature.39 In Fig. 3,

partially folded and unfolded protein conformations are

obtained by using the molecular dynamical simulation tool

NAMD with a constant pulling velocity. In the protein prepa-

ration procedure, a protein structure downloaded from the

PDB is first submerged into a box with a layer of 5 Å water

in each direction from the atom with the largest co-ordinate

in that direction. We use the time interval of 2 ps in our

simulations. A total of 15 000 time steps of equilibration is

performed with the periodic boundary condition after 10 000

time steps of initial energy minimization.

It is no doubt that water molecules are of significant

importance for protein folding pathways and biological func-

tions. However, since the purpose of the present work is to

reveal the relation between protein structures and their cha-

otic dynamics, water molecules, and their impact to the pro-

tein conformations are somewhat irrelevant to our findings.

Therefore, we construct partially folded and unfolded protein

conformations by pulling the relaxed protein structures in

steered molecular dynamics (SMD) simulations with a con-

stant velocity. Basically, we fix the first Ca atom and apply a

constant pulling velocity on the last Ca atom along the direc-

tion that connects these two atoms. We set the spring con-

stant as 7 kcal/(mol Å2), while 1 kcal/(mol Å2/) equals 69.74

pN Å. The constant velocity is 0.005 Å per time step. A total

of 20 000 simulation steps is integrated in generating 1ubq

conformations and a new conformation is extracted after ev-

ery 500 simulation steps. For proteins 7rsa and 2mcm, a total

FIG. 2. Transition from chaos to periodicity in the chaotic dynamics model

(CDM) of bacteriocin AS-48 (PDB ID 1e68). (a) The butterfly wing pattern

for one of 70 chaotic oscillators. (b) The solution of original 70 chaotic

oscillators. (c) The periodic orbit of the ILDM for bacteriocin AS-48. (d)

Bacteriocin AS-48 induced Hopf bifurcation from chaos. All of 70 nonlinear

oscillators are in one lag synchronized periodic orbit.

FIG. 3. The spectacular correlation between folded residues and controlled

chaos in the dynamics of macromomycin. Forty partially folded or totally

unfolded conformations are generated by pulling the folded structure (PBD

ID: 2mcm). (a) The Ca atoms of the native folded structure. (b) The synchro-

nous dynamics of a 3D ILDM for the native folded structure. (c) The Ca

atoms of partially ordered Conformation 14. (d) The partial ordered chaotic

dynamics of Conformation 14. The first 30 residues are unfolded, which

leads to the chaotic dynamics in their nonlinear oscillators. The dynamics of

the last two residues are also chaotic for the same reason. Interesting

synchronized domains occur in the middle for partially folded residues. (e)

The Ca atoms of more disordered Conformation 28. (f) The more chaotic

dynamics of Conformation 28 showing a higher degree of randomness.

Unfolded residues are in their chaotic motions. Compared to the dynamical

behavior of Conformation 14, there are fewer synchronized domains and an

average synchronized domain involves fewer oscillators. (g) The Ca atoms

of completely unfolded Conformation 41. (h) The completely chaotic

dynamics of Conformation 41 showing 336-dimensional chaotic motions.
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of 80 000 simulation steps is employed for each protein and

new conformations are extracted at the frequency of every

2000 steps.

We make use of the generalized exponential functions

given in Eq. (2) to construct the connectivity matrix. Related

parameters in the MND are chosen as follows: the character-

istic distance rij ¼ 10Å, k¼ 2, and the interaction strength

e ¼ 0:12. For parameters in the Lorenz dynamic system, we

use a ¼ 10; c ¼ 28, and b ¼ 8
3
. Random numbers of range

[0,1] are used for as initial conditions for all oscillators. The

unit matrix is used for linking matrix ðC ¼ IÞ in this case and

in the rest of this paper. The forward Euler scheme with the

time increment of h¼ 10�2 is used for the time integration.

Our basic results are demonstrated in Fig. 3.

Conformation 1, shown in Fig. 3(a), is the folded structure

obtained by a short period of relaxation of the crystal structure

from the PBD, while Conformations 2 to 41 are increasingly

less folded due to the increase in the pulling force during their

generation, see three typical ones in Figs. 3(c), 3(e), and 3(g).

The same set of random initial data is assigned to all the non-

linear oscillators in all conformations. Figure 3(b) shows the

occurrence of a stable ILDM, a synchronous chaos, in the dy-

namics of the folded structure. What spotlights the uniqueness

and importance of the native structure is that none of any other

conformations that are partially ordered and/or essentially dis-

ordered is able to tame chaos in their nonlinear dynamics

under the same condition. Indeed, the dynamical systems of

Conformations 2 to 41 are unstable, chaotic, and 336-

dimensionally complex due to 112 residues. Consequently,

they are very sensitive to initial values, simulation algorithms,

and time increments. However, it is still possible to extract

some useful physical information from their unstable chaotic

dynamics with well designed numerical experiments. Figures

3(d) and 3(f) indicate synchronized domains in overall non-

synchronized chaotic dynamics. Amazingly, there is a miracu-

lous correspondence between synchronized domains and the

locations of partially folded amino acid residues, which clearly

indicates that protein folding leads to the control of chaos. It is

interesting to note that synchronized domains are strikingly

persistent over time. They appear to be locked in certain

ranges of solution values and show much less fluctuation and

volatility than fully chaotic oscillators do. Finally, as shown in

Fig. 3(h), the dynamics of the completely unfolded conforma-

tion is fully chaotic, which reinforces our observation that pro-

tein folding tames chaos and induces ILDM.

1. Transverse stability of the ILDM

To shed light on the mechanism of protein folding

induced chaos control and ILDM, we analyze the transverse

stability of the synchronous state. It turns out that the stabil-

ity problem of the n�N-dimensional nonlinear dynamics

system is determined by its maximal Lyapunov exponent

(MLE). Consequently, the ILDM is invariant with respect to

a transverse perturbation if the MLE is smaller than zero.

The MLE of a protein dynamics consists of two independent

parts, i.e., the contribution from the single nonlinear attractor

and that from the connectivity matrix obtained from the pro-

tein distance geometry or the negative gradient of the protein

interaction potential in general. The MLE of the single non-

linear attractor can be easily analyzed and is all known for

the Lorenz attractor used in this work, while the contribution

from protein distance geometry depends on the product of

the interaction strength and the largest nonzero eigenvalue of

the protein connectivity matrix. The latter can be easily com-

puted by a matrix diagonalization. As a result, there is a criti-

cal interaction strength for the chaotic dynamics of each

protein conformation to arrive at its stable and invariant

ILDM.

2. Protein orderliness

Interestingly, the above ILDM analysis gives rise to a

new chaotic dynamics model for the characterization of the

disordered aggregation and the quantification of disorderli-

ness in protein confirmations. A more disordered protein

conformation requires a larger critical interaction strength to

establish the synchronous state; whereas the uniquely folded

protein is, in principle, associated with the smallest critical

interaction strength. To quantify orderliness and disorderli-

ness in protein conformations, we define an order parameter

�n
c=�c, where �c and �n

c are the critical interaction strengths of

a given conformation and the native conformation, respec-

tively. Therefore, the order of the native protein conforma-

tion is 1 and that of a disordered protein is smaller than 1.

Figures 4(a), 4(c), and 4(e) illustrate the order parameters of

three sets of conformations generated from ubiquitin (PDB

ID: 1ubq), phosphate-free bovine ribonuclease A (PDB ID:

7rsa), and macromomyci (PBD ID: 2mcm). Forty partially

folded or unfolded conformations are generated for each pro-

tein. Their order parameters exhibit a fast decay as their

structures become less folded.

3. Critical interaction strength

It remains to understand why the critical interaction

strength in Eq. (10) is able to determine the transverse stabil-

ity of the chaotic dynamics of a given molecular conforma-

tion. It is seen that the critical interaction strength is an

inverse function of the second largest nonzero eigenvalue of

the molecular connectivity matrix. The latter is a manifesta-

tion of the molecular structure. As shown in Fig. 1, the struc-

ture of a folded protein gives rise to a “small-world”

connectivity network,37 while the structure of completely

unfolded conformation has little nonlocal interactions. This

implies that the transverse stability of the ILDM of a mole-

cule is ultimately determined by its structure. Since the

thermodynamical stability of a molecular structure is charac-

terized by its total energy, there must be a one-to-one corre-

spondence between the critical interaction strength and the

total energy. As such, we can estimate the relative energies

of protein folding conformations based on their second larg-

est nonzero eigenvalue of their connectivity matrix. To ver-

ify this hypothesis, we analyze the nonlinear dynamics of

protein structures 1ubq, 7rsa, and 2,mcm. For each structure,

we create a set of unfolded confirmations by molecular

dynamics. Figures 4(b), 4(d), and 4(f) show good agreements

between energies estimated by using the largest eigenvalues

and those obtained from molecular dynamics simulations.
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Various procedures of conformation generation are also

considered, including using different initial structure prepa-

rations, number of integration steps, and pulling velocities,

which lead to different sets of conformations. However, our

findings presented in Figs. 3 and 4 are not affected by these

variations.

C. ILDM based B-factor prediction

In this section, we introduce a new approach for protein

flexibility analysis. The proposed method is based on trans-

verse stability of the ILDM for the prediction of atomistic

B-factors, or temperature factors of a given molecular struc-

ture. B-factor is a measure of the mean-squared atomic dis-

placement due to thermal motion and possible experimental

uncertainties. In general, an atom with a larger B-factor

implies it is more flexible and atoms with smaller B-factors

are relatively rigid. The analysis of B-factors provides

insights on the large-scale and long-time functional behav-

iors of native state macromolecules. This information is

complementary to that obtained from atomic detail simula-

tion techniques.

There are many other interesting approaches for the flexi-

bility analysis in the literature. For example, normal mode

analysis (NMA) has been proposed to uncover the intrinsic

structural flexibility of the protein15–17,41,42 and study biomo-

lecular systems like lysozyme.17,43 NMA approach has a large

number of variations. Tirion proposed ENM by simplifying

the interaction potential in the NMA.18 By introducing the idea

from polymer science,44 Bahar et al. use GNM to describe pro-

tein flexibility.19,32 They employed the Ca atom representation

of proteins based on local packing density and contact topol-

ogy. Anisotropic fluctuations are considered in anisotropic

network model (ANM).33 Parameters in these models are cali-

brated with Debye-Wallers factor or B-factors. Crystal struc-

tures have been also taken into considerations.45–48 Due to

the simplified potential and reduced representation, these

coarse-grained based ENM and GNM approaches19,20,32–36

gain popularity and have been applied to the study of macro-

proteins or protein complexes, such as, hemoglobin,49 F1

ATPase,50,51 chaperonin GroEL,52,53 viral capsids,54,55 and

ribosome.56,57 More applications can be found in a few good

review papers.42,58–60 Our ILDM based method should be

potentially useful for solving these problems as well.

It is interesting to note that the intriguing dynamics of a

protein ILDM is exponentially stable and persistently invari-

ant. It will be wonderful if one can take advantage of such

properties in practical biophysical studies. To this end, we

propose an ILDM based new method for protein rigidity

analysis. Our essential idea is to perturb the dynamics of

each particle in a macromolecule in the transverse direction.

Because of the stability of the ILDM, the nonlinear system

must return to its original orbit, just like the free induction

decay of the spin dynamics in nuclear magnetic resonance

(NMR) experiments. Similar to the T2 and T1 relaxations in

an NMR experiment, the total relaxation time after the trans-

verse perturbation, defined as the time used to recover the

original state within a factor of 1/e, is a measure of the

strength of its particle-particle and particle-environment

interactions. For a given particle, stronger interactions with

neighboring particles and environment lead to a shorter

relaxation time, which translates into higher rigidity and

lower B-factor. Therefore, the direct connection between the

thermodynamical stability and the ILDM stability enables us

to quantitatively estimate atomic temperature factors in a

molecule.

Figure 5(a) illustrates the relaxation process of a per-

turbed nonlinear dynamics of protein 2nuh. The instantane-

ous perturbation is propagated from the nearest neighboring

amino acid residues to a wider region over a time period

before gradually fades off. By recording the relaxation time,

one is able to predict the B-factor of an amino acid residue

and compare it to the experimental data given by X-ray crys-

tallography. Figures 5(b)–5(d) provide such comparisons for

FIG. 4. The orders and energy compar-

isons of three sets of protein conforma-

tions predicted by the stability analysis

of the ILDM. All conformations are

generated from pulling native protein

structures. (a) The predicted orders of

41 conformations for ubiquitin. (b)

Comparison of relative energies of 41

conformations for ubiquitin. (c) The

predicted orders of 41 conformations

for phosphate-free bovine ribonuclease

A. (d) Comparison of relative energies

of 41 conformations for phosphate-free

bovine ribonuclease A. (e) The pre-

dicted orders of 41 conformations for

macromomycin. (f) Comparison of rel-

ative energies of 41 conformations for

macromomycin.
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three protein structures, namely 2nuh, 1aru, and 4dr8. It is

seen that our results obtained from the perturbation of the

ILDM are in a very good consistency with those of X-ray

data.

The parameter details used in our B-factor prediction

are as follows. The chaotic dynamical system parameters are

chosen as a ¼ 1; c ¼ 12, and b ¼ 8
3
. Both forward Euler

scheme and the fourth order Runge-Kutta scheme are used in

the time integration to validate each other. Appropriate time

increment that satisfies the stability requirement under given

interaction strength is used. Initially, all oscillators rest in

their steady states. A perturbation is then employed on the

jth particle: zj ! 2zj. The perturbation procedure is repeat-

edly carried out for all particles in the protein to compute

their relaxation time values, which are converted to B-

factors by linear regressions. For the predictions of B-factors

in Figs. 5(b)–5(d), rij ¼ 20Å is employed for 2nuh,

rij ¼ 20Å is used for 1aru, and rij ¼ 5Å is chosen for 4dr8.

1. Comparison with GNM

To demonstrate the robustness of the present chaotic

dynamics model, a set of 60 protein structures downloaded

from the PDB is considered. All the structures are obtained

by the X-ray diffraction with resolution about 2.0 Å, and

they are free from multiple conformations, which mean

that for each protein, all the atomic occupancies equal 1.0.

The correlation coefficient Cc is used to measure the con-

sistency between theoretical predictions and experimental

data

FIG. 5. Protein flexibility analysis by the present ILDM method. (a) The

impact and relaxation of the transverse perturbation of the ILDM at a given

amino acid residue (the 52th Ca). The residues in horizontal axis are listed

in the descending order according to their distances with respect to the per-

turbed residue. (b)-(d) The experimental B-factors and ILDM predictions for

protein 1aru, 2nuh, and 4dr8. The correlation coefficients are respectively

0.913, 0.866, and 0.751 for three predictions.

FIG. 6. The optimal parameter search for exponential type of probability

density estimators in Eq. (2). A set of 60 proteins is used and their correla-

tion coefficients are averaged over the set. The averaged correlation coeffi-

cients are plotted with respect to the change of parameter rij and k. It is seen

that except for k¼ 0.5, all other kernels achieve their maximal correlation

coefficient in the range rij 2 ½4; 10�.

TABLE I. Comparison of B factor prediction by parameter free MND and

Gaussian normal mode (GNM) for small-sized data set.61 The asterisk sign

indicates improved prediction with modified protein data.

PDB ID N MND GNM

1AIE 31 0.405 0.155

1AKG 16 0.223 0.185

1BX7 51 0.679 0.706

1ETL 12 0.833 0.628

1ETM 12 0.683 0.432

1ETN 12 0.007 �0.274

1FF4 65 0.676 0.674

1GK7 39 0.718 0.821

1GVD 52 0.618 0.591

1HJE 13 0.681 0.616

1KYC 15 0.860 0.754

1NOT 13 0.801 0.523

1O06 20 0.886 0.844

1OB4 16 0.764 0.750*

1OB7 16 0.637 0.652*

1P9I 29 0.569 0.625

1PEF 18 0.915 0.808

1PEN 16 0.267 0.270

1Q9B 43 0.762 0.656

1RJU 36 0.391 0.431

1U06 55 0.350 0.434

1UOY 64 0.690 0.671

1USE 40 0.097 �0.142

1VRZ 21 0.633 0.677*

1XY2 8 0.181 0.562

1YJO 6 0.344 0.434

1YZM 46 0.815 0.901

2DSX 52 0.298 0.127

2JKU 35 0.854 0.656

2NLS 36 0.580 0.530

2OL9 6 0.565 0.689

2OLX 4 0.794 0.885

6RXN 45 0.559 0.594
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Cc ¼
RN

i¼1 Be
i � �B

e� �
ðBt

i � �B
tÞ

RN
i¼1ðBe

i � �B
eÞ2RN

i¼1ðBt
i � �B

tÞ2
h i1=2

; (14)

where fBt
i; i ¼ 1; 2; � � � ;Ng are theoretical prediction of

B-factors and fBe
i ; i ¼ 1; 2; � � � ;Ng are a set of experimental

B-factors obtained directly from the PDB. Here, �B
t

and �B
e

the statistical averages of theoretical and experimental

B-factors, respectively.

Through the calculation of correlation coefficients aver-

aged over 60 proteins, we search the optimal value of param-

eter rij for a set of k values (k¼ 0.5, 1.0, 1.5, 2.0, 2.5). It is

seen from Figure 6 that the best average correlation coeffi-

cient is achieved around rij 2 ½4; 10�, except when k¼ 0.5.

Based on this analysis, we create a parameter free version of

our MND model by setting rij ¼ 4Å and k¼ 1. This version

is employed in all of our comparison with GNM.

We validate our method by the comparison with the

GNM. The code for the GNM is adopted from Jernigan

Laboratory (http://ribosome.bb.iastate.edu/software.html).

The cutoff distance used is 7 Å and some minor modification

is done to enhance its performance on the coarse-grained

PDB data. Three sets of protein data utilized by Park,

Jernigan, and Wu61 are considered in our work. We careful

go through these data to delete the multiple conformations

and add in the missing residues. The modified data lead to

improved GNM predictions compared to those in the litera-

ture.61 Tables I–III list our results for three date sets, respec-

tively. Figure 7 plots the results of the comparison over

three data sets. Apparently, the proposed MND method out-

performs GNM for most proteins. The average correlation

coefficients are listed in Table IV. It is seen that the

proposed method achieves about 8% improvement over the

GNM.

TABLE II. Comparison of B factor prediction in terms of correlation coeffi-

cients by parameter free MND and Gaussian normal mode (GNM) for

medium-sized data set.61 The asterisk sign indicates improved prediction

with modified protein data.

PDB ID N MND GNM

1ABA 87 0.757 0.613

1CYO 88 0.729 0.741

1FK5 93 0.590 0.485

1GXU 88 0.702 0.421

1I71 83 0.332 0.549

1LR7 73 0.684 0.620

1N7E 95 0.451 0.497

1NNX 93 0.761 0.631

1NOA 113 0.601 0.615

1OPD 85 0.315 0.398

1QAU 112 0.665 0.620

1R7J 90 0.365 0.368

1UHA 83 0.709 0.638*

1ULR 87 0.612 0.495

1USM 77 0.794 0.798

1V05 96 0.582 0.632

1W2L 97 0.638 0.397

1X3O 80 0.536 0.654

1Z21 96 0.545 0.433

1ZVA 75 0.604 0.690

2BF9 36 0.541 0.680*

2BRF 100 0.768 0.710

2CE0 99 0.619 0.529

2E3H 81 0.663 0.605

2EAQ 89 0.750 0.695

2EHS 75 0.722 0.747

2FQ3 85 0.720 0.348

2IP6 87 0.564 0.572

2MCM 112 0.803 0.820

2NUH 104 0.794 0.771

2PKT 93 0.220 �0.193*

2PLT 99 0.461 0.509*

2QJL 99 0.548 0.594

2RB8 93 0.650 0.517

3BZQ 99 0.484 0.466

5CYT 103 0.440 0.331

TABLE III. Comparison of B factor prediction in terms of correlation

coefficients by parameter free MND and Gaussian normal mode (GNM) for

large-sized data set.61 The asterisk sign indicates improved prediction with

modified protein data.

PDB ID N MND GNM

1AHO 64 0.617 0.562

1ATG 231 0.606 0.497

1BYI 224 0.464 0.552

1CCR 111 0.562 0.351

1E5K 188 0.751 0.859

1EW4 106 0.596 0.547

1IFR 113 0.684 0.637

1NKO 122 0.561 0.368

1NLS 238 0.634 0.523*

1O08 221 0.410 0.309

1PMY 123 0.646 0.685

1PZ4 113 0.859 0.843

1QTO 122 0.378 0.334

1RRO 108 0.334 0.529

1UKU 102 0.650 0.742

1V70 105 0.409 0.162

1WBE 204 0.531 0.549

1WHI 122 0.407 0.270

1WPA 107 0.542 0.417

2AGK 233 0.687 0.512

2C71 205 0.662 0.560

2CG7 90 0.477 0.379

2CWS 227 0.659 0.696

2HQK 213 0.793 0.365

2HYK 237 0.583 0.515

2I24 113 0.380 0.494

2IMF 203 0.615 0.514

2PPN 107 0.637 0.668

2R16 176 0.461 0.618*

2V9V 135 0.580 0.528

2VIM 104 0.375 0.282

2VPA 204 0.771 0.576

2VYO 206 0.705 0.761

3SEB 238 0.777 0.826

3VUB 101 0.638 0.607
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2. Improvement of the flexibility prediction by
considering co-factors

Protein structures downloaded from the PBD typically

contain many cofactors, i.e., coenzymes and prosthetic groups,

which are important for proteins’ biological functions.

Cofactors also contribute to protein structural rigidity.

Therefore, the inclusion of cofactors in the present chaotic

dynamics model will improve the prediction of protein

B-factor. In the present work, we consider a simple treatment

of cofactors in which the nonlinear oscillators of cofactors are

used as part of driven sources while those of residues are

treated as a response system. This treatment reduces computa-

tional cost if the MND is on a stable fixed point, because one

does not need to actually compute cofactors’ dynamics.

Figure 8 depicts the improvement in the theoretical

prediction of protein 1fac B-factors due to the consideration

of two metal clusters, i.e., Fe4S4 clusters. We plot the inter-

action strength of cofactors with respect to the correlation

coefficient. Clearly, the consideration of cofactors leads to a

five percent improvement in our prediction.

IV. CONCLUDING REMARKS

Protein folding and the related structure function rela-

tion are of fundamental interest and importance to scientific

community. The present work proposes MND to represent

the protein folding process and illustrate the structure func-

tion relation. We unveil the ability of folded protein struc-

tures for controlling the chaos in the underlying MND and

show the existence of an ILDM for each folded protein. We

demonstrate that protein unfolding leads to high dimensional

chaotic states. The orderliness of unfolded protein configura-

tions generated by using steered molecular dynamics simula-

tions directly correlates with the dimensionality of chaotic

states. We further utilize the transverse stability of the ILDM

for protein uncertainty quantification, i.e., the prediction of

protein temperature factors due to thermal fluctuations. By a

comparison with cutting edge method in the field, namely,

the GNM, it is found that the proposed ILDM based

approach works well for protein flexibility analysis.

A discussion of several aspects is in order. First, although

the Lorenz system is employed in our study, our findings

about the protein control of chaos and the existence of ILDM

associated with the folded protein conformation are general

and can be regenerated by using other nonlinear dynamical

systems. The ability of the ILDM for protein flexibility analy-

sis can also be realized by using other nonlinear dynamical

systems because it is the connectivity matrix, rather than the

specific dynamical system, that captures the fundamental

physics of protein dynamics. Secondly, a simple method for

steered molecular dynamics simulations is utilized in the pres-

ent work to generate partially folded and unfolded protein

conformations. However, our findings about the order of

unfolded proteins and eigenvalue analysis of protein orderli-

ness are independent of the method used in generating

unfolded conformations and protein unfolding pathways.

Similar results are obtained by analyzing unfolded protein

conformations generated by a different steered molecular

dynamics approach. Finally, the prediction of the B-factor can

be further improved by the consideration of different types of

the residues and the crystal structure of a given protein.
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TABLE IV. The comparison of average correlation coefficients calculated

by MND and GNM over three data sets.

PDB set MND GNM Improvement wrt GNM (%)

Small 0.580 0.541 7.21

Medium 0.603 0.555 8.65

Large 0.584 0.530 10.2

FIG. 7. The comparison of the B-

factor predicted by MND and GNM in

terms of correlation coefficients. (a)

GNM vs MND for the small-sized pro-

tein set. (b) GMA vs MND for the

medium-sized protein set. (c) GNM vs

MND for the large-sized protein set.

FIG. 8. The improvement of B-factor prediction by considering cofactors. (a)

The impact of the interaction strength of two Fe4S4 clusters in 1fca to the pre-

dicted correlation coefficient. (b) The structure of ifca showing two Fe4S4

clusters. Amino acid residues are colored according to B-factor values.
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