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The dynamics and energetics of formation of loops in the 46-residue N-terminal fragment of the
B-domain of staphylococcal protein A has been studied. Numerical simulations have been performed
using coarse-grained molecular dynamics with the united-residue (UNRES) force field. The results
have been analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized
discrete nonlinear Schrödinger (DNLS) equation. In the case of proteins, the DNLS equation
arises from a Cα-trace-based energy function. Three individual kink profiles were identified in the
experimental three-α-helix structure of protein A, in the range of the Glu16-Asn29, Leu20-Asn29,
and Gln33-Asn44 residues, respectively; these correspond to two loops in the native structure.
UNRES simulations were started from the full right-handed α-helix to obtain a clear picture of kink
formation, which would otherwise be blurred by helix formation. All three kinks emerged during
coarse-grained simulations. It was found that the formation of each is accompanied by a local free
energy increase; this is expressed as the change of UNRES energy which has the physical sense
of the potential of mean force of a polypeptide chain. The increase is about 7 kcal/mol. This value
can thus be considered as the free energy barrier to kink formation in full α-helical segments of
polypeptide chains. During the simulations, the kinks emerge, disappear, propagate, and annihilate
each other many times. It was found that the formation of a kink is initiated by an abrupt change in
the orientation of a pair of consecutive side chains in the loop region. This resembles the formation
of a Bloch wall along a spin chain, where the Cα backbone corresponds to the chain, and the amino
acid side chains are interpreted as the spin variables. This observation suggests that nearest-neighbor
side chain–side chain interactions are responsible for initiation of loop formation. It was also found
that the individual kinks are reflected as clear peaks in the principal modes of the analyzed trajectory
of protein A, the shapes of which resemble the directional derivatives of the kinks along the
chain. These observations suggest that the kinks of the DNLS equation determine the functionally
important motions of proteins. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4855735]

I. INTRODUCTION

Proteins come in many shapes. However, the number
of different folds seems to be quite limited. For exam-
ple, the structural classification scheme CATH1 has thus far
identified around 1300 different topologies while in SCOP2

there are today around 1400 unique folds. These figures
have grown very slowly; during the last five years, there
have been only nominal changes. Consequently the number
of different protein conformations must be relatively lim-
ited, and it is possible that the majority have already been
found.3, 4
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The great success of CATH, SCOP, and other similar ap-
proaches such as FSSP5 to classify the structure of proteins is
a manifestation that proteins are built in a modular fashion and
from a relatively small number of different individual modu-
lar elements. It has been proposed6–10 that, mathematically,
the modular building blocks of folded proteins can be de-
scribed by various parameterizations of a kink, or heteroclinic
standing wave solution, of a generalized version of the dis-
crete nonlinear Schrödinger (DNLS) equation.11 The DNLS
equation is one of the most fundamental lattice equations. It
plays a prominent role in the theories of optical waveguides,
photorefractive crystals, Bose-Einstein condensates, particle
physics, and string theory.12–16 The equation describes the sta-
tionary points of a Hamiltonian energy function that, in the
case of proteins, emerges from general geometric considera-
tions. In fact, it has already been shown that over 92% of high
resolution crystals in the Protein Data Bank (PDB)17 can be
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built by combining together no more than 200 different pa-
rameterizations of the kink of the DNLS equation as modular
elements.10

Molecular dynamics (MD) simulations have proven to
be a very powerful tool for studying dynamics of protein
folding.18 The accuracy of such simulations depends on the
force field used to describe physical interactions within and
between peptide units. Force fields range from atomically de-
tailed, in which interatomic interactions are considered ex-
plicitly, to coarse grained, in which a simplified description of
a polypeptide chain is used and only the most important inter-
actions are usually considered in a simple approximate form.
The more detailed the force field is, the more time it takes to
run a simulation. Owing to recent hardware and algorithm de-
velopment such as construction of dedicated machines,19 use
of graphical processing units,20 or massive use of distributed
computing,21 it is now possible to run all-atom simulations
of ab initio folding of up to 100-residue proteins at the mil-
lisecond scale.22 Coarse graining enables us to extend this
time scale by 3-4 orders of magnitude.18, 23 It must be noted,
though, that the present force fields, both atomically detailed
and coarse-grained, are far from being accurate. Even small
errors in the description of protein energy surfaces can accu-
mulate over a polypeptide chain to disfigure the correct fold.

In this paper, we propose to consider protein folding
from another, complementary point of view. Instead of ana-
lyzing individual interactions that contribute to the formation
of folded structure, we are looking for model-independent
principles which are based on symmetry. We suggest that
all the physical forces, no matter how strong or weak they
are, combine together to give rise to a particular type of
protein dynamics, described by a generalized version of the
DNLS equation.6–10 This approach, to much extent, is mo-
tivated by methods developed in quantum fields and string
theory, in which gauge symmetry was successfully used to
derive Hamiltonians of many fundamental forces.16 We use
the united residue (UNRES) force field developed in our
laboratory24–32 to run simulations, to test and confirm our
general considerations.

We selected the N-terminal part of the B-domain of
staphylococcal protein A as the test case (PDB code: 1BDD).
The fold of this protein is a three-α-helix bundle.33 The fold-
ing and energy landscape of this protein were subject to a
variety of experimental34–36 and theoretical37–45 studies. The
version of UNRES used in our study folds α-helical proteins
in unrestricted folding simulations,27 including protein A. Our
extensive studies of the free-energy landscape of this protein44

simulated with the force field used in this study have repeat-
edly shown that the native three-α-helix bundle is its free-
energy minimum and forms a large basin in the free-energy
landscape. Another reason to use protein A as the test case
was that it was not used in force-field parameterization27 and
the force field is, therefore, not biased to reproduce its na-
tive structures (as opposed to the Gō-like models, which are
constructed to locate the native structure of the protein under
study as the global energy minimum).

The article is organized as follows. In Sec. II A, the
geometry of coarse-grained polypeptide chains is defined and
new visualization techniques, which are exploited further in

the article, are introduced. In Sec. II B, it is argued that protein
secondary structures can be described by a kink of the gen-
eralized DNLS equation, similar in shape to the hyperbolic-
tangent function. This solution of the DNLS equation is the
basic modular element that is used here to describe the ge-
ometry of a folded protein. An entire protein loop structure is
obtained by joining together several kinks in a modular fash-
ion, one after the other, and in combination with those sta-
tionary points of the DNLS Hamiltonian that have a well de-
fined secondary structure (such as α-helices and β-strands). In
Sec. III A, the previously developed technique is used to de-
scribe protein A. In Secs. III B 1 and III B 2, the kink is stud-
ied based on the results of coarse-grained simulations with the
UNRES force field. In Sec. III C, the behavior of side chains is
interpreted as that of spins in spin-chain models. In Sec. III D,
mechanisms that cause loop formation are proposed. Finally,
in Sec. III E, the profiles of the kinks are compared to those of
the principal modes in principal-component analysis (PCA).

II. METHODS

A. Protein backbone geometry and local
conformational states

In this paper, protein-backbone geometry is described in
terms of Frenet frames.46 The frames depend only on the
positions of the Cα carbon coordinates ri where i = 1, . . . ,
n labels the residues. At a given residue, the frame is de-
fined by the unit backbone tangent (t), binormal (b), and nor-
mal (n) vectors, which are defined by Eqs. (1), (2), and (3),
respectively; see Figure 1 for graphical illustration:

ti = ri+1 − ri

|ri+1 − ri | , (1)

bi = ti−1 × ti
|ti−1 × ti | , (2)

ni = bi × ti , (3)

where ri is the position of the Cα atom of ith residue.
Because the distance between the consecutive Cα atoms

is nearly constant so that |ri + 1 − ri| ≈ 3.8 Å for trans peptide
groups, the backbone geometry can be described in terms of
virtual-bond-valence angles θ and virtual-bond-dihedral (tor-
sion) angles γ . These angles are the discrete versions of the

FIG. 1. Definition of Frenet frame. Vector t (the transversal or tangent vec-
tor) points from a given polymer-chain bead to the next bead. Vector n (the
normal vector) is perpendicular to t and lies in the plane of the preceding,
current, and next polymer-chain bead, pointing towards the preceding bead.
Vector b (the binormal vector) forms the right-handed coordinate system with
the transversal vector and the normal vector.
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FIG. 2. Definitions of the backbone virtual-bond angle (θ i, i + 1) and virtual-
bond-torsion angle (γ i, i + 1) in terms of the Cα atoms.

intrinsically geometric curvature and torsion of a continuous
space curve. The complements of the angles θ and the angles
γ are defined by Eqs. (4) and (5), respectively:

θi+1,i ≡ θi = arccos(ti+1 · ti), (4)

γi+1,i ≡ γi = ω arccos(bi+1 · bi), (5)

with

ω = sgn[(bi−1 × bi) · ti]. (6)

These angles are also illustrated in Figure 2.
The frame vectors can be expressed in terms of

the virtual-bond-valence angles θ and virtual-bond-dihedral
angles γ by Eq. (7) and then the Cα-trace geometry can be
calculated from Eq. (8):⎛
⎜⎝

ni+1

bi+1

ti+1

⎞
⎟⎠ =

⎛
⎜⎝

cos θ cos γ cos θ sin γ − sin θ

− sin γ cos γ 0

sin θ cos γ sin θ sin γ cos θ

⎞
⎟⎠

i+1,i

⎛
⎜⎝

ni

bi

ti

⎞
⎟⎠ ,

(7)

rk =
k−1∑
i=0

|ri+1 − ri | · ti . (8)

We may assume that the distance between two consecutive Cα

atoms is constant, and given by

|ri+1 − ri | = � ≈ 3.8 Å.

This is a good approximation, as long as there are no cis-
residues.

It should be noted that, unlike the tangent vector ti , the
normal and binormal vectors (ni , bi) do not appear in Eq. (8).
Therefore, if these vectors are simultaneously rotated around
the vector t, they constitute a good reference system. In par-
ticular, rotation by π constitutes the discrete Z2 gauge trans-
formation [Eq. (9)], which was used extensively in our earlier
work6–10, 46 and will also be utilized in this work:

θi → θi − π,

γk → − γk for all k ≥ i.
(9)

If the (θ , γ ) angle pairs are identified with polar coordi-
nates, local conformational states of amino-acid residues can
be mapped onto a sphere and then stereographically projected

FIG. 3. Two-sphere with its stereographic projection onto the plane. The
point (θ , γ ) on the surface of the sphere is mapped onto the point (x, y) on
the plane, as expressed by Eq. (10). N and S are the north and south poles,
respectively.

onto a disk, as shown in Figure 3. The stereographic projec-
tion is obtained by projecting the (θ , γ ) coordinates onto the
north-pole tangent plane of the two-sphere. If (x, y) are the
coordinates of this tangent plane, the projection is defined by
Eq. (10):

x + iy = tan

(
θ

2

)
· e−iγ . (10)

The statistical distribution for all PDB proteins in the
stereographically projected two-sphere, for those conforma-
tions that have been determined at resolution higher than
2.0 Å is shown in Figure 4. Two regions corresponding to the
right-handed α and to the β structure can be distinguished. In
Figure 4(b), a generic loop is depicted that connects two right-
handed α-helical structures. A generic loop is a pathway that

FIG. 4. (a) The distribution of bond and torsion angles on the stereograph-
ically projected two-sphere (θ , γ ); see Figure 3 for definition of the projec-
tion. The color intensity is (logarithmically) proportional to the number of
PDB entries (red > yellow > green > blue > white). (b) An example of a
circular path (corresponding to a loop structure), as an oriented trajectory on
the stereographically projected two-sphere. The circular path starts from the
right-handed α-helical region (A), proceeds to the β-strand region (B), to the
left-handed α region (C), followed by steps (D) and (E), and terminates in
region of the right-handed α-helical region (A).
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connects the adjacent regular secondary structures; the latter
corresponds to point-like structures in the map, i.e., constant
values of (θ i, γ i). For example, parameter values (in radians)
for which {

θi ≈ π
2

γi ≈ 1
(11)

describe a right-handed α-helix, and parameter values for
which {

θi ≈ 1

γi ≈ ±π
(12)

describe a β-strand.
A notable property of the trajectory drawn in Figure 4(b)

is that it encircles the north-pole of the two-sphere. It turns out
that this kind of encircling is quite generic for loops. Conse-
quently, each loop can be assigned a winding number termed
folding index, Indf,47 which is defined by Eq. (14):

Indf =
[

	

π

]
, (13)

	= 1

π

n2−2∑
i=n1+2

⎧⎪⎨
⎪⎩

γi,i+1−γi−1,i − 2π if γi,i+1−γi−1,i >π

γi,i+1−γi−1,i + 2π if γi,i+1−γi−1,i <−π

γi,i+1−γi−1,i otherwise

,

(14)

where [x] denotes the integer part of x, and 	 is the total
rotation angle (in radians) that the projections of the Cα atoms
of the consecutive loop residues make around the north pole.
The folding index is a positive integer when the rotation is
counterclockwise and a negative integer when the rotation is
clockwise. The folding index classifies loop structures and en-
tire folded proteins in terms of its values. The value is equal
to twice the number of times the ensuing pathway encircles
the north-pole in the map of Figure 4.

Using the Frenet frame, the Cβ atoms can also be visu-
alized in the unit two-sphere system centered at the Cα atom
with the axis t chosen as the polar (z) axis and the axes n and
b chosen as the x and y axes, respectively, to define a right-
handed coordinate system. The canonical spherical coordi-
nates (ϑ i, ϕi) are introduced, which are essentially the bond
angle θ and torsion angle γ , respectively. Like the angle θ ,
the angle ϑ ∈ [0, π ] measures the latitude from the positive
z-axis and the angle ϕ ∈ [0, 2π ] now measures the longitude
in a counterclockwise direction from the x-axis, i.e., from the
direction of n towards that of b. Then the coordinates of a
unit vector si pointing from Cα in the direction of Cβ can be
computed from Eq. (15):

si =

⎛
⎜⎝

cos ϕi sin ϑi

sin ϕi sin ϑi

cos ϑi

⎞
⎟⎠ . (15)

As shown in Figure 5, the direction of the vector si ,
computed from PDB structures, is quite well defined, with
one major and one minor cluster subdivided into regions cor-
responding to αR and β structures and one minor region corre-
sponding to the left-handed α-helical (αL) structures. For the

FIG. 5. Statistical distribution of the Cβ direction in the PDB, as seen from
the corresponding Cα , located at the center of the sphere. The vector t points
towards the next Cα . The regions of right-handed αR-helices, β-sheets, and
left-handed αL are displayed, the rest being non-regular structures (including
loops). The (average) vector s is also shown.

major cluster, the average latitude angle ϑ i is 〈ϑ〉 ≈ 1.98 rad
and the average value of the longitude angle ϕ is 〈ϕ〉 ≈ −2.43
rad; these values undergo only small fluctuations. The average
values of the spherical angles for the αL region are 〈ϑ〉 ≈ 2.25
rad and 〈ϕ〉 ≈ − 1.90 rad, respectively. Thus, the orientation
of the Cβ atom is quite well defined in a given frame of three
consecutive Cα atoms and, consequently, the positions of Cβ

atoms can be determined quite accurately given the Cα trace.

B. Kink of the DNLS equation and protein geometry

As noted in Sec. II A, the Cα trace geometry can be
described in terms of the virtual bond and virtual torsion an-
gles [Eqs. (4) and (5)]. For a coarse-grained description of the
side-chain orientations, the vector from the Cα to the ensu-
ing side-chain centroids can be utilized. These variables are
present in the UNRES energy function.24–32 Alternatively, the
vector from the Cα atom to its side-chain Cβ atom [vector s of
Eq. (15)] can be used. As follows from Figure 5, the direction
of vector s is essentially constant and independent of amino-
acid type. Consequently, the backbone geometry largely de-
termines the side-chain orientations and, thus, the complete
geometry of polypeptide chains at the coarse-grained level.

In the case of a protein, the variables θ i and γ i are
mutually connected by the equations of motion, determined
by the atomic level interactions along the protein chain. In
Refs. 6, 7, 9 and 10 (see also Ref. 48 in the present context),
the following Landau energy has been introduced to approxi-
mate the Helmholtz free energy F of the protein backbone in
terms of the discrete virtual bond and torsion angles:

F = −
N−1∑
i=1

2 θi+1θi +
N∑

i=1

{
2θ2

i + λ (θ2
i − m2)2

+ q

2
θ2
i γ 2

i − p γi + r

2
γ 2

i

}
. (16)

In addition, the excluded volume (steric) constraint

|ri − rk| ≥ 3.8 Å for |i − k| ≥ 2 (17)
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is imposed, for the distance between the backbone Cα atoms.
This condition is well respected by folded protein structures
in the PDB. In Eq. (16), λ, q, p, r, and m are parameters. The
free energy, Eq. (16), has been derived and motivated in detail
in Refs. 6, 7, 9 and 10. Here it suffices to state that this free
energy can be shown to relate to the long-distance limit that
describes the full microscopic energy of a folded protein in the
universal sense of Refs. 49–52. As such, it does not explain
the details of the (sub)atomic level mechanisms that give rise
to protein folding.

A Cα backbone conformation is constructed by seeking
the minimum of F in Eq. (16).6, 7, 9, 10 The necessary condition
for the minimum is to find the zero of the gradient of F in the
virtual-bond angles θ and in the virtual-bond dihedral angles
γ . The solution of this problem is the solution of a system of
2N − 5 nonlinear equations in 2N − 5 unknowns (where N is
the number of residues). In order to obtain this solution, the
virtual-bond-dihedral angles γ are first expressed as functions
of the virtual-bond angles θ , as given by Eq. (18):

γi[θ ] = p

r + q θ2
i

≡ u

1 + v θ2
i

, (18)

with u = p/r and v = q/r . By inserting Eq. (18) into Eq. (16),
the virtual-bond-dihedral angles γ are eliminated and a sys-
tem of equations (19) for the motion of the virtual-bond an-
gles θ is obtained:

θi+1 = 2θi − θi−1 + dV [θ ]

dθ2
i

θi (i = 1, . . . , N ), (19)

where θ0 = θN + 1 = 0 and

V [θ ] = p

r + q θ2
+ 2(1 − λm2)θ2 + λ θ4, (20)

where the structure of the generalized DNLS equation with a
double-well potential that describes discrete symmetry, that
has been spontaneously broken,15, 16 is recognized.6–10 The
kink solution to Eq. (19) can be constructed numerically by
following the iterative procedure of Ref. 7. But its explicit
form, until now, has not been found in terms of elementary
functions. However, an excellent approximation is obtained
by naively discretizing the heteroclinic standing wave solu-
tion to the continuum nonlinear Schrödinger equation6–10

θi = b exp [σ1(i − s)] + a exp [−σ2(i − s)]

exp [σ1(i − s)] + exp [−σ2(i − s)]
. (21)

Here s is a parameter that determines the center of the
solution. The a, b ∈ [0, π ] mod(2π ) are parameters which de-
termine the amplitude of the variation of θ and the asymmetry
of the inflection regions; they correspond to the two minima
of the potential energy contribution V [θ ] in Eq. (20). The θ

angle profile given by Eq. (21) is like a localized domain wall,
which describes the boundary between two neighboring min-
ima of the potential energy.15, 16 The parameters σ 1 and σ 2

are related to the inverse of the range of the kink. It is notable
that, in the case of proteins, the values of a, b are determined
entirely by the adjacent helices and strands. Far away from
the center of the kink we have (see Figure 6)

θi →
{

b mod (2π ) i > s

a mod (2π ) i < s

FIG. 6. Top: The potential of mean force (PMF) of θ . Bottom: The kink
[Eq. (21)] is the boundary between two neighboring local minima s = a and
s = b of the PMF.

and, according to Eqs. (11) and (12), the asymptotic values

θi ≈ π/2 or − π/2 and θi ≈ 1 or 1 − π

correspond to the α-helix or β-strand, respectively. A kink
corresponding to a loop connecting two α-helices in the helix-
turn-helix motif is illustrated in Figure 7. It should be noted
that, in the case of proteins, negative values of θ i are related
to positive values of θ i by Eq. (9). Moreover, in the case of
proteins, to satisfy the monotonic character of the profile of
Eq. (21), the experimentally measured values of θ i have to
vary monotonically along the amino-acid sequence. Other-
wise, a multiple of 2π is added to the experimental values.
This does not affect the backbone geometry because θ i

′s are
defined mod (2π ).

Finally, only σ 1 and σ 2 are intrinsically specific param-
eters for a given loop in Eq. (21). But they specify only the
length of the loop, not its shape which is determined by the
functional form of Eq. (21) and, as in the case of a and b of
Eq. (21), they are combinations of the parameters in Eq. (20).

The corresponding virtual-torsion angles γ i, i = 1, 2,
. . . , N − 3, are evaluated in terms of the bond angles using
Eq. (18). In Eq. (18) for the virtual-torsion angles, there are

FIG. 7. Top: Schematic sketches of the profiles of angles θ (left) and γ

(right) along the chain. Bottom: The solutions of the generalized DNLS equa-
tion are the modular building blocks of folded proteins. They correspond to
super-secondary structures such as right-handed-α-helix-loop-right-handed-
α-helix (strand-loop-strand).
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only two independent parameters u and v. As a consequence,
the profile of γ i is determined entirely by the profile of θ i, and
on the structure of the adjacent regular secondary structures.

It has been shown9 that most protein loop structures from
the PDB (over 92% of them) can be described in terms of the
explicit profile Eq. (21) in combination with Eq. (18) along
with the parameters of these equations, as the elemental mod-
ular components, with a root-mean-square-deviation (RMSD)
precision which is better than 0.6 Å. This is strong support for
the proposal6, 7, 9, 10 that the kink correctly describes the pro-
tein structures in the PDB.

At present, we do not consider the kinks in terms of
protein-structure prediction but as a convenient tool to de-
scribe protein structure. As mentioned in the Introduction,
we have already proved that loop geometries of the protein
structures present in the PDB can be described in terms of
200 sets of the parameters of the DNLSE.10 Nevertheless, in
our earlier work10 we have also demonstrated that, using the
kink parameters extracted from the experimental structure of a
protein, its folding can be simulated.

Kink analysis seems to handle the description of the con-
formations that do not occur in the PDB. In our earlier work,48

we studied the AICD/Fe65 complex by means of kink analy-
sis (in that paper referred to as soliton analysis) and coarse-
grained simulations with UNRES. The kinks in the AICD part
of the complex, when propagated according to the solution of
the DNLSE, resulted either in the formation of the compact
structure (favorable for the single components) or even more
unfavorable partially extended structure that could be amyloid
precursor.

C. Coarse-grained dynamics simulations

To study formation of the structures described by the
kink solution of Eq. (19) in proteins, canonical coarse-grained
dynamics simulations of the 10-55 fragment of protein A
were carried out with the UNRES package developed in
our laboratory24–28, 30–32 available at http://www.unres.pl. The
MD protocol described in our earlier work18, 23, 53 was used.
Sixteen parallel trajectories, started from complete right-
handed α-helical structures, were run at each of the fol-
lowing temperatures: T = 150, 200, 240, 250, 300, and
310 K. 20 000 000 steps were run for each trajectory with
the time step δt = 4.89 fs. This trajectory length corresponds
to 98.8 ns UNRES time, but because the time scale in UN-
RES/MD is distorted at least 1000 times compared to all-atom
MD with explicit water,23, 53 the effective duration of simula-
tions was about 0.1 ms. Constant temperature was maintained
with the use of the Berendsen thermostat54 with the coupling
parameter τ = 48.9 fs. The version of the UNRES force field
parameterized with the 1GAB training protein was used;27

this force field is good for simulating the structure and dy-
namics of α-helical proteins.27

III. RESULTS AND DISCUSSION

A. An analysis of the experimental structure
of protein A in terms of kinks

We carried out a detailed analysis of protein-loop for-
mation, using the N-terminal segment of the B-domain of

FIG. 8. On the left, the full PDB structure 1BDD, and on the right the 46-
residue segment substructure Gln10-Ala55 studied in detail. The dark grey
areas in the figure on the left are the unstructured N and C tails that have
been removed.

staphylococcal protein A as an example. Our analysis relies
on quite general, universal concepts and, consequently, it can
be argued that the results are generic. The 1BDD experimental
structure33 was taken as the reference. This is an average nu-
clear magnetic resonance (NMR) structure. Of the 60 residues
present in the experimental structure, a 46-residue fragment
(residues Gln10-Asn55 of the PDB structure) was selected,
after removing the unstructured N-terminal and C-terminal
residues. In Figure 8, both the full 1BDD backbone and the
46-residue Gln10–Ala55 are shown.

1. Kink structure of 1BDD

We start by resolving the kink structure of 1BDD, us-
ing the explicit profile given by Eq. (21). Variations of the
angles θ and γ along the chain are shown in Figure 9(a),
with the convention that the bond angle is always positive.
For the most part, the bond and torsion angles fluctuate in the

FIG. 9. The virtual-bond θ i (black) and torsion γ i (red) angle spectra of
1BDD. Figure 9(a) uses the convention that the bond angle is positive. In
Figure 9(b), we have introduced the Z2 transformation [Eq. (9)] to reveal the
kink content at the peaks.

http://www.unres.pl
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vicinity of the standard right-handed α-helical values
(θ ≈ π /2, γ ≈ 1). However, there are two regions, located
between Ile17–Asn24 and Gln33–Ala43, respectively, where
in particular the virtual-bond-dihedral angle γ i is subject to
large fluctuations.

In Figure 9(b) the discrete Z2 transformation [Eq. (9)]
was applied to the data in Figure 9(a), to resolve the kink con-
tent of the backbone: There is a putative conformation, de-
scribed by a combination of two kinks of Eq. (21) in succes-
sion, located in the segment between PDB Cα sites Ile17 and
Asn24. The putative first kink is centered between PDB Cα

sites Leu20 and Pro21, and the putative second kink is cen-
tered at Asn24–Glu25. Together, these two kinks constitute
the first loop structure of 1BDD. The second loop structure
consists of a single kink, which is centered between residues
Asp38 and Pro39.

The fact that a loop is described by two kinks tells us that
it consists of two half-turns, which form roughly an “open
rectangle with rounded edges” shape, as opposed to an ap-
proximate “U” shape created by one kink (see the blue plot in
Figure 9(b), in the region of Ile17–Asn24 and Gln33–Ala43,
respectively, and the structures corresponding to these regions
in Figure 10).

2. Kink profiles

We have confirmed [Figure 9(b)] that the interpretation
of 1BDD in terms of one kink pair and an isolated kink so-
lution of DNLS equation is correct, by fitting the profile to
the discretized form of Eqs. (21) and (18). The parameter val-
ues are listed in Table I. Equations (21) and (18) describe the
first kink with RMSD precision of 0.12 Å, the second kink
with RMSD precision 0.31 Å, and the third kink with RMSD
precision 0.47 Å. In Figure 10 the ensuing conformations,
interlaced with the PDB structure of protein A (1BDD) are
displayed. It can be concluded that the interpretation of pro-
tein A as a combination of three kinks is fully consistent with
Eqs. (18)–(21) that we have derived from the Helmholtz free
energy of Eq. (16).

3. Folding index

The (θ i, γ i) trajectories of the three kinks of 1BDD
in the stereographically projected hemisphere are shown in

FIG. 10. The kink representation for the two loops of protein A (red) inter-
laced with the 1BDD structure (green). On the left, the first two kinks, on
the right the third kink. The first kink covers sites Glu16-Asn22, the RMSD
from the experimental 1BDD structure being 0.12 Å. The second kink covers
sites Leu20-Asn29, the RMSD with respect to the experimental 1BDD struc-
ture being 0.31 Å. The third kink covers sites Gln33-Asn44, the RMSD from
1BDD being 0.47 Å.

TABLE I. Best parameter values for each of the three kinks in protein A.a

Note that the angular variables are dimensionless; thus, these parameters are
also dimensionless.

Parameter Kink-1 Kink-2 Kink-3

a − 33.0096 − 20.3583 − 45.5178
b 33.0784 20.346 45.4973
σ 1 2.2082 2.5755 2.9127
σ 2 2.2064 2.5837 2.9221
s 18.4962 22.1432 37.9139
u 976012.94 − 311747.469 − 5669135.02
v − 0.00098719 − 0.00158963 − 0.00021636

aIt should be noted that a, b are determined mod (2π).

Figures 11(a)–11(c). The putative first kink (Figure 11(a)) lo-
cated at Leu20–Pro21 rotates counterclockwise. But, since it
does not extend around the center, there is no contribution to
the folding index. The second putative kink at Asn24–Glu25
(Figure 11(b)) rotates clockwise around the center once, and
consequently it contributes −2 to the normalized folding
index defined by Eq. (14)47 (i.e., the loop makes one turn

FIG. 11. The folding index trajectories for the three loop structures of 1BDD
identified in Figure 8. The quality of the data of 1BDD is not optimal. But
it appears that in (a), a trajectory tries to go around the center once, in a
counterclockwise fashion. In (b) and (c), the circulation is once in a clockwise
direction. As a consequence, the kink contribution to the folding index of
fully folded protein A should be −2.
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around the north pole). Finally, for the Asp38-Pro39 region
(Figure 11(c)) the folding index is unstable. A tiny fluctuation
of the coordinates of Asp37 or Asp38 to avoid crossing the
center causes the normalized folding index either to vanish,
or acquire, the value +2. As a consequence, on average, the
value of the folding index vanishes.

Except for the second kink, the quality of the experimen-
tal structure is not good enough to eliminate the effect of fluc-
tuations in the folding index. But an inspection of Figure 11
proposes that the first kink located at Leu20–Pro21 should
have (integer part of) folding index equal to +2 as the vec-
tor field rotates once around in a counterclockwise direction.
Similarly the third kink should make a contribution of −2 to
the folding index, as the vector field makes one full clockwise
turn. Consequently, the three kinks should contribute a total
of

first
kink
+2

second
kink
−2

third
kink
−2=

whole
chain
−2

to the total folding index.
We note that, for the entire chain, including the flexible

portions near the N and C tails, we obtain

Indf (total) ≈ −1.

Thus, the portion of the chain adjacent to the tails that were
removed also appears to support (at least one) kinky structure.
But the experimental data are not very precise for determin-
ing the folding index structure. It should be reminded that the
experimental structure of protein A has been determined by
NMR as an ensemble of conformations,33 which makes the
folding index analysis unprecise.

B. UNRES analysis of kinks in the backbone
of protein A

We have made extensive simulations using the UNRES
energy function to study the folding patterns of protein A.
In the UNRES effective free-energy function, the effects of
water are taken into account implicitly; they are mainly in-
cluded in the potential of mean force of side chain–side chain
interactions.24 To eliminate noise as much as possible, we an-
alyzed trajectories simulated at T = 250 K; this value of tem-
perature was chosen as a compromise between reasonably fast
folding and small noise, after analysis of folding pathways at
T = 150 K, 240 K, 250 K, 260 K, 300 K, and 310 K. Al-
though the selected simulation temperature is low, the trajec-
tories simulated at physiological temperature are found to be
qualitatively similar to those at lower temperatures except that
the folding process takes longer. In particular, we have found
that various short duration oscillations and random thermal
fluctuations affect only the small-scale ruggedness of the en-
ergy landscape, with only very little if any relevance to the
folding process per se.

The qualitative features of the physical phenomena that
we describe in Secs. III B 1 and III B 2 are largely UNRES
temperature independent. Consequently we expect that our
observations capture the essential aspects of the folding pro-
cess, over a wide range of solvent environments. A movie has
been attached as a supplementary material;64 it shows both

the evolution of the (ungauged) backbone angles and the cor-
responding three-dimensional Cα structure.

1. Third kink

We start our analysis from the third kink which is located
at the Gln33–Ser42 segment. We use the conceptual analogy,
summarized in Figures 6 and 7, between the profile of the kink
and a right-handed-α-helix-loop-right-handed-α-helix super-
secondary structure. Accordingly, we are interested in study-
ing how the kink, that describes the loop by interpolating be-
tween the two pertinent local minima (a and b in Figure 6),
emerges from an initial conformation that is one of the two
local minima.

In the present case, a conformation in one of the two local
minima corresponds to helical geometry. Consequently, as an
initial conformation, we consider the segment Gln33–Ser42
in the right-handed α-helix conformation. We inquire how
this becomes deformed into the right-handed-α-helix-loop-
right-handed-α-helix conformation of protein A, i.e., how the
kink forms. In Figure 12, we show the initial conformation
(left) and the kink structure (right); the latter is taken from
the PDB. It should be noted that, instead of a monotonous
α-helical conformation, we could have started, alternatively,
e.g., from a monotonous β-strand or polyproline-II confor-
mation. At the level of the kinks, these latter two possible
starting conformations correspond to uniform values of the
bond angles which are different from a and b, respectively,
using the analogy in Figure 6. This would cause initial oscilla-
tions and inhomogeneities around the corresponding values a
and b. These are local fluctuations that are equally accounted
for by thermal noise and are not directly relevant to the kink
formation. A change in starting conformation introduces only
some transient initial fluctuations around the minimal energy
conformations, as shown schematically in Figure 13.

In our extensive UNRES simulations we have found that,
typically, the transition between the two conformations in
Figure 12 takes place during a very short time period. In
Figure 14, it is shown how the free energy of the Gln33–
Ser42 segment, computed by using the UNRES effective en-
ergy function, which has the sense of a free energy,28 changes
when the transition takes place. The red horizontal dashed
lines in this figure correspond to the average UNRES energy

FIG. 12. The initial and final conformations for the third loop between Gln33
and Ser42. The initial conformation (right-handed α-helix) is like minimum
a or b in Figure 6, and the final conformation (third loop) is like the kink that
interpolates between a and b, in Figure 6. See the profile of bond angles γ i

in Figure 9.
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FIG. 13. The initial conformation in Figure 12 is a local minimum conforma-
tion while the kink, i.e., loop, forms between two such local minima (a and b).
If another initial conformation is chosen, for example, polyproline-II, these
correspond to unstable states such as conformation c shown in the figure.
This will cause initial conformation-specific embryonic fluctuations around
the local minimum. But, already during the very early stages of the folding
process, these random fluctuations become mingled with thermal fluctuations
and lose their relevance in guiding the folding process. In specifying the ini-
tial conformations in our simulations, we try to minimize transient random
effects.

averaged over “before” and “after” energy jump (from snap-
shot 1500 to snapshot 2000 and from snapshot 2001 to snap-
shot 3200, respectively). It can be seen that the free energy
over the putative kink region increases by about 7 kcal/mol,
when the kink forms. Because the UNRES energy of the chain
decreases during the progress of simulations, the unfavorable
free-energy change of 7 kcal/mol, that we observe when the
kink forms and the right-handed α-helix breaks to form a
right-handed α-helical hairpin, must be compensated by long-
range hydrophobic interactions between the side chains of the
two α-helices adjacent to the segment that turns into a loop;
however, the free energy increases by 7 kcal/mol before the
contacts are formed. The 7 kcal/mol value can thus be consid-
ered the free energy of kink formation. It can be noted that
7 kcal/mol is very close to the Gibbs free energy that is
released by cleaving a phosphate (Pi) unit from adenosine
triphosphate (ATP) at 1M concentration.55 The coupling of
ATP hydrolysis to a change of protein conformations is ob-

FIG. 14. The UNRES energy change during the formation of the second loop
(3rd kink) of protein A, in a generic UNRES simulation. The energy needed
to excite the kink is around 7 kcal/mol. The kink formation takes place very
rapidly, during a small number of UNRES steps.

served in molecular motors:56

ATP + H2O → ADP + Pi; �G ≈ −7.3 kcal/mol.

In a future investigation, we propose to clarify whether a con-
nection between kink formation and ATP hydrolysis actually
exists.

2. First and second kinks

As follows from Figures 9 and 11, the first and second
kinks are located very close to each other, namely, at Leu20–
Pro21 and at Asn24–Glu25, respectively; these will hereafter
be referred to as kink 1 and kink 2, respectively. As follows
from Figure 11, these two kinks have opposite contributions
to the folding index; the first is oriented counterclockwise,
while the second is oriented clockwise. It was found from
UNRES simulations that either kink 1 or kink 2 can be formed
first. The other kink then emerges close to the first one, and
slowly drifts away. Moreover, during the initial formation
stage, these kinks may form and then again disappear before
they become stabilized. The slow speed of the separation sug-
gests that there is a substantial Peierls-Nabarro barrier57, 58 for
the kinks to move. It should also be noted that kink 3 is practi-
cally stationary along the backbone, which is presumably due
to a Peierls-Nabarro barrier. On the other hand, kinks 1 and 2
fluctuate substantially; in particular their shape and their mu-
tual distances oscillate, even at very low temperatures. These
fluctuations are visualized in Figure 15, where diagrams of
the kinks in the stereographically projected (θ i, γ i) plane are
shown. The changes in the structure following kink formation
are shown in Figure 16.

FIG. 15. The trajectories of kink 1 (a) and kink 2 (b), drawn on the stere-
ographically projected (θ i, γ i) plane, at two different snapshots in the same
simulation. Both trajectories of (a) start at site Glu16. Snapshot 4206 ends
at Pro21 and snapshot 4410 ends at Asn22. Trajectories of (b) both end at
Gly30; in snapshot 4206, it starts at site Glu26 and in snapshot 4410 at site
Glu25. The snapshot values are shown only to indicate that the time differ-
ence is very short, and the fluctuations are rapid. A more precise determina-
tion of the time difference is not meaningful.
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FIG. 16. The initial and final conformations for the loop between Glu16 and
Gln27. The initial conformation (right-handed α-helix) is like minimum a
or b in Figure 6, and the final conformation is like a pair of kinks that each
interpolate between a and b, as a kink pair would in Figure 6. See the profile
of bond angles γ i in Figure 9(b).

The kink pairs depicted in Figure 15 both start at the same
site, namely Glu16. But at snapshot 4206(a), kink 1 ends one
site earlier, i.e., it is shorter. At snapshot 4410(a), the first kink
has become extended by one site, towards kink 2. Similarly,
the two kinks of pair 2 both end at Gly30. But the second kink
at 4410(b) starts one site earlier than the first kink at 4206(b).

It should be noted that the placement of kink 1 at snap-
shot 4206(a) compares well with the corresponding kink in
1BDD, shown in Figure 9(a); there, the first kink extends
between sites 17 and 21. However, the orientation is differ-
ent: In Figure 9(a) the kink rotates counterclockwise, while in
Figure 15(a) it rotates clockwise. Both kinks in Figure 15 are
moved away from the N terminus in comparison to the 1BDD
conformation. In Figure 15, these kinks both extend to site 30,
while in Figure 9(b), kink 1 terminates at site 26. Both kinks 1
and 2 in Figure 15 are also oriented counterclockwise, while
in the experimental 1BDD structure the orientation is oppo-
site, i.e., clockwise.

In Figure 17(a), the variation of the UNRES energy of
the Asn22–Ile32 segment upon formation of the first kink in
a typical UNRES simulation is shown. The visible steps, in
which the energy changes by around 7 kcal/mol, corresponds
to creation and annihilation of the first kink, which can take
place a few times in a typical run before the loop settles down.
The smaller changes are due to the kink drifting (partially)
outside the window, towards the first kink. This can be seen
in Figure 17(b), in which the energy is computed over the sites
that separate these two kinks. The variation in the average en-
ergy in Figures 17(a) and 17(b) is relatively small, and clearly
slower than during the process of kink formation.

In Figure 18, the evolution of the average energy of kink
2 (between Glu16 and Glu27), over a longer period of time
than that covered by Figure 17, is shown. An initial forma-
tion of a kink pair near the eventual location of the sec-
ond kink can be observed. The first kink then drifts towards
the N-terminus, with stabilization of the second kink to-
wards its thermodynamic equilibrium with energy again about
7 kcal/mol. Finally, in Figure 19, a typical example of a sim-
ulation is shown, in which the first kink emerges and stabi-
lizes towards the equilibrium conformation, with energy again
about 7 kcal/mol. The energy is computed over a very nar-
row segment that covers the kink, and the second kink forms
outside of the segment in this particular example.

FIG. 17. (a) Energy change during formation of the second kink (sites
Asn22-Ile32) of protein A in a generic UNRES simulation. The fluctuations
in the average value of energy are consistently around 7 kcal/mol. The kink
formation takes place very rapidly during a small number of UNRES steps.
Between steps ≈ 620 and 800, the second kink drifts towards the first kink,
causing the energy to drop on average of about 3 kcal/mol. (b) The average
energy between the first two kinks increases by an amount that is comparable
to the decrease in average energy in (a). The change is due to oscillation in
the distance between the two kinks; the second one drifts towards the first
one, causing the energy to increase.

FIG. 18. The energy change between the initial and final conformations for
the loop between Glu16 and Gln27 (the region of the first and the second
kink). The initial conformation (right-handed α-helix) is like minimum a or
b in Figure 6, and the final conformation is like a pair of kinks that each
interpolate between a and b, as in Figure 6. See the profile of the virtual-
bond angles θ i in Figure 9(b).
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FIG. 19. The energy change between the initial and final conformations for
the loop between Glu16 and Leu20 (the region of the first kink). The ini-
tial conformation (right-handed α-helix) is like minimum a or b in Figure 6,
and the final conformation is like a pair of kinks that each interpolate be-
tween a and b, as in Figure 6. See the profile of the virtual-bond angles θ i in
Figure 9(b).

C. UNRES analysis of side-chains in protein A

According to Figure 5, the Cα· · · Cβ vector s [Eq. (15)] is
strongly slaved to the backbone geometry. Conversely, it may
be argued that the backbone is slaved to the side chains. In
fact, there appears to be a duality between the backbone and
the side chains, to the extent that the coordinates of either of
these two types of sites may be utilized to describe the folding.
Here, the kink (loop) formation is discussed in terms of side-
chain geometry, because it provides some visual advantages
over the backbone-based description.

It should be noted that the DNLS equation has a nat-
ural interpretation in terms of a (magnetic) spin-chain: The
variable γ i can be identified as the order parameter for mag-
netization in a two-state ferromagnet.59 Positive values of γ i

describe a “spin-up” state, while negative values correspond
to a “spin-down” state; the absolute value characterizes the
strength of the magnetization. The kink, Eq. (21), can be in-
terpreted as the continuum-chain limit of a (magnetic) Bloch
domain wall60 that interpolates between the two (ferromag-
netic) spin states. See Figure 20.

Using an energy-based procedure,61, 62 we converted the
coarse-grained trajectories to all-atom trajectories and then
computed the unit Cα· · · Cβ vectors s from Eq. (15). The

FIG. 20. The kink in Figure 6 is the boundary between the two minima a and
b. It can be interpreted as a continuum limit of a magnetic Bloch-type domain
wall that interpolates between spin-up state (a) and spin-down state (b). Here,
we show, as an example, the Bloch wall in the transversal O(2) spin model.

FIG. 21. Statistical distribution of Cβ directions during a generic UNRES
collapse simulation, in the backbone Frenet frames. The vectors s of Eq. (15)
are near parallel to their average values, during the entire collapse transition.

folding pathways were subsequently analyzed in terms of the
vectors s. A protein molecule can then be interpreted as a one-
dimensional spin chain akin that in Figure 20, with the sites
identified as the Cα atoms and the vectors s with Eq. (15).
Since these vectors can point in any direction in R3, this is
a variant of the O(3) Heisenberg spin chain59 rather than a
two-state Ising spin chain.59

We have investigated in detail how the direction of the
vector s of Eq. (15) evolves during the simulated formation of
the tertiary structure of protein A. A typical result is shown in
Figure 21. The initial conformation in this particular simula-
tion is a linear right-handed α-helix. We find that during the
entire collapse simulation, the vectors s of Eq. (15) along the
backbone are very strongly coupled to the backbone geom-
etry. The deviations from the background shown in Figure 5
(grey area in Figure 21) are minuscule, during the entire helix-
packing transition. This confirms that the direction vectors s
of Eq. (15) can indeed be used to describe the transformation
of the full-α-helical conformation of protein A into a native-
like conformation in UNRES simulations.

As an illustrative example of our observations, in
Figure 22 the bond and torsion angles (θ and γ ) of kink 3 (the
second loop) are described, as they appear during a generic
UNRES run.

To describe kink formation in terms of the change of the
orientation of the Cβ atoms, the dihedral angles η defined by
Cβ

i · · · Cα
i · · · Cα

i+1 · · · Cβ

i+1 are utilized. These angles are com-
puted as those between the consecutive u vectors, each being
computed from the respective vector s by orthogonalization
to the transversal t vectors, as defined by Eqs. (22) and (23):

ui = si − (si · ti) ti
1 − (si · ti)2

, (22)

ηi,i+1 = sgn[ti · (ti × ti+1)] arccos (ui · ui+1). (23)

The dihedral angle η is the side-chain O(2) order param-
eter that will be utilized. For regular structures, the value of
η is constant along the chain; for example, for a right-handed
α-helix, η ≈ 0.75 (rad) and, for a β-strand, η ≈ π (rad). For
a single kink, the values of the angle η interpolate between
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FIG. 22. Values of θ and γ of a generic conformation during an UNRES
simulation, corresponding to the third kink (second loop) of 1BDD.

those that correspond to the adjacent regular structures, much
as in Figure 6.

In Figure 23(a), the vectors si are displayed along one
turn of the right-handed α-helix, and in Figure 23(b) the def-
inition of the angle η in terms of the vectors s of Eq. (15) is
illustrated.

In terms of the side-chain vectors, the loop region, the
backbone angles of which are plotted in Figure 22, has the
structures shown in Figures 24 and 25.

In these figures, the side-chain orientations of the
vectors of Eq. (15) between two consecutive sites i and i + 1,
in the projection to the plane which is normal to the tangent
vector ti that connects them are compared. In both the exper-
imental 1BDD structure and the UNRES simulated structure,
the side chains rotate once in the clockwise direction as the
kink is traversed starting from the Asp37–Asp38 bond, like
a Bloch domain wall in a magnetic spin chain. The previ-
ous bond (Lys36–Asp37) is in the α-helical state shown in
Figure 23 for both experimental and simulated structures.
In the UNRES-simulated structures, the side-chain rotation
reaches back to the α-helical position at the bond between

FIG. 23. (a) A right-handed α-helix with the vectors s [Eq. (15)], viewed
along the Cα · · · Cβ axis. (b) Two consecutive vectors s [Eq. (15)] along the
right-handed α-helix, viewed along the tangent vector ti that connects the
successive Cα atoms. The angle of their projection onto the plane, which is
normal to the vector ti is given by Eq. (23). The top of the vector si+1 is
colored blue in (b) to distinguish it from the top of the vector si.

FIG. 24. The side-chain structure of the second loop in the experimental
structure of 1BDD (left) and of the UNRES kink (right) (whose profile is
shown in Figure 22). The figures show the evolution of the relative torsional
angles [Eq. (23)], along the residue number. In both the experimental 1BDD
structure and the UNRES kink, the angles η prior to the Asp37-Asp38 bonds
are in the right-handed α-helical position, as shown in Figure 23(b).

Gln41 and Ser42, while in 1BDD the kink terminates in the
α-helical position between Ser42 and Ala43. In both cases,
the loop can be clearly interpreted as a Bloch domain wall
akin to the one shown in Figure 20.

In Figure 26, the time evolution of the angles of
Eqs. (23) during a generic UNRES run is shown for the six
bonds between Asp37 and Ala43. In the initial conformation,
the angles η are all close to the right-handed α-helical values
(0.75 rad). It can be observed that the transitions are abrupt,
taking place during a very small number of UNRES/MD
steps; it should be noted that strong fluctuations between val-
ues around ±π , that are seen in each of the figures, are due to
the 2π periodicity of the angular variable, whose fundamen-
tal range is η ∈ [−π , π ). It can also be noted that there are
only very few clearly identifiable equilibrium values for η, in
decreasing order

〈η〉 ≈ π, 2 , 1, −1, −2, (mod 2π ).

This is consistent with the kink structure of the side chain-
side chain interaction potential; it appears to have the func-
tional form akin to the torsion angle in the expression for the
conformational energy
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FIG. 25. Continuation of Figure 24, along the 1BDD and UNRES kink back-
bones. In the UNRES kink, the bond between Gln41 and Ser42 returns back
to the initial α-helical position, and in 1BDD, the kink is one step longer.
The green and blue colors are used to distinguish side chains that belong to
consecutive residues.

V (ηi,i+1) ∼
∑

a

Va cos(ηi,i+1 − ηa),

where Va is a torsional constant, and the loop is a kink con-
formation that forms the boundary between two neighboring
minima of the potential.

D. UNRES analysis of kink dynamics

We now turn to describe the mechanism that we have
identified as the cause of the kink formation, i.e., the transition
in which a local oscillation as in Figure 13 becomes converted
into a conformation shown in Figure 12. For this transition
to take place, the local oscillations such as those portrayed in
Figure 13, must exceed the threshold energy that enables them
to overcome the potential barrier between the minima a and
b. We have confirmed that these oscillations have a thermal
origin. For example, in our UNRES simulations at very low
temperatures (100 K), we observe that it takes a long time to
form a loop from an initial α-helical conformation (data not
shown). This is due to the presence of the energy barrier of
about 7 kcal/mol for the kinks to form, and at sufficiently low
temperatures the thermal oscillations are unable to exceed this
threshold value.

FIG. 26. ((a)–(f)) Time evolution of the angles ηi, i + 1 of Eq. (23) during a
generic UNRES simulation, over the location of the third kink.

1. Backbone lattice oscillations

The thermal oscillations cause localized bending and
twisting deformations in an α-helical segment. The α-helical
structure in a protein is stabilized by longitudinal hydrogen
bonds, and there are three parallel channels that run along
the helix. Each of the channels has the composition · · · H-N-
C=O· · · H-N-C=O· · · H-N-C=O· · · . The three channels can
vibrate due to the C=O stretching (amide I vibrations).

It should be noted that, although the whole channel of
H-N-C=O groups is treated as a single interaction site in
UNRES, and their atoms are not present explicitly, the inter-
nal motions of the peptide groups are included implicitly in
the UNRES energy function through the second- and higher-
order terms of the cumulant expansion for the potential of
mean force (restricted free energy) of polypeptide chains.26

The ensuing oscillations are quasiparticles that interact with
the phonons of the longitudinal displacements of the amino
acids. The three channels are also directly coupled to each
other, by nearest neighbor dipole-dipole interactions. There
are three different channels and, in addition to a longitudi-
nal compression, a generic backbone Cα-lattice displacement
also involves distortions such as bending and twisting of the
right-handed α-helix.

We have observed that, in UNRES simulations, wave-like
distortions of the Cα-lattice are constantly present. The waves
that we observe travel along the protein chain and with a very
high speed. The time it takes for a typical distortion to tra-
verse the entire backbone is no more than a few hundreds of
picoseconds, in UNRES time. In Figure 27, we show as an
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FIG. 27. An example of a bending deformation that proceeds along an initial
α-helical protein A conformation.

example how a thermally excited bending deformation
proceeds along a protein A chain in an α-helical initial con-
formation. In Figure 28, we show an example of a twisting
deformation that we have observed. On average, the deforma-
tion propagates 6.2 residues (forward or backward) per snap-
shot (1000 time steps at 4.89 fs UNRES time), which gives
0.030 ns UNRES propagation time from residue to residue.
However, because of elimination of fast-moving degrees of
freedom, the UNRES time scale is by about 3 orders of mag-
nitude faster compared to the all-atom time scale23, 53 and,
therefore, the deformation-propagation time can be estimated
to be about 30 ns. This value is by about an order of mag-
nitude greater than the rate of helix propagation in α-helical
peptides;63 however, our simulations were run at a low tem-
perature of T = 250 K to reduce the random motion that could
disturb the analysis of the kink structure.

In our interpretation, the lattice deformations that we
observe are propagating phonon waves due to amide vibra-
tions. Since UNRES is a reduced atom model, we are not
able to fully identify their detailed character. For a detailed
investigation of the deformations that we observe, all-atom
simulations would be necessary.

A movie that displays the propagation of the deforma-
tion of the virtual-bond and virtual-bond-dihedral angles dur-
ing the course of simulation is included in the supplementary
material.64

FIG. 28. Stereoview of an example of a twisting deformation along an initial
α-helical protein A conformation.

Finally, it is observed that the residues in the loop re-
gions are especially prone to hopping from one minimum of
the potential of mean force to the other one. Based on the dis-
cussion presented in Sec. III C, it can be concluded that inter-
actions between the neighboring side chains can trigger kink
formation, propagating it as a spin wave.

E. UNRES, principal component analysis

Principal component analysis, a covariance-matrix-based
mathematical technique, is an effective method for extracting
important motions from molecular dynamics trajectories.65–68

PCA rotates the Cartesian or internal coordinate space to a
new space with new coordinates, PCs, a few of which are suf-
ficient to describe a large part of the fluctuations of a protein.
Here, structural fluctuations of θ and γ angles [mean-square-
fluctuations (MSF)] can be decomposed into collective modes
by PCA.44, 66–68 The modes have “frequencies” and directions
corresponding to the eigenvalues and eigenvectors of the co-
variance matrix. The modes with the largest eigenvalues (λi)
correspond to the modes which contribute the most to the
structural fluctuations of the protein. The contribution of each
angle (θn and γ n) to a mode i is called the influence, ν i, n.

The kinks describe loops, which are flexible, and con-
sequently the kinks certainly correspond to principal modes.
But the exact correspondence is not known. In particular, one
might inquire whether PCA is sensitive enough for identi-
fying, and possibly analyzing, kinks in the background of
generic motions? A good demonstration of this is the movie
(see the supplementary material64), which illustrates the evo-
lution of the backbone angles. The peaks which appeared
along the backbone angles in the course of time coincide with
the peaks that appeared in the principal modes calculated at
the corresponding time intervals.

MD trajectories of protein A were analyzed by PCA.
The results are displayed in Figure 29 as the contributions
of the two main principal modes (with the largest eigenval-
ues) to the MSF along the θ and γ angles for different tra-
jectory windows. It can be seen that the peaks in the con-
tributions appear exactly in the regions where the kinks are
located. There are three peaks in the initial time window
(Figures 29(a) and 29(b)), the middle of which reflects the
traveling kink structure, which is visualized in Figure 27. Af-
ter 4890 ps UNRES time (Figures 29(c) and 29(d)), only two
peaks appear which correspond to the stabilization of a folded
structure. The bands in Figure 29, corresponding to the contri-
bution from the variation of the virtual-bond angles θ , are uni-
modal, while those corresponding to the contributions from
the γ angles have finer structure; this is similar to the shapes
of the kink profiles in the θ and γ angles of the experimental
1BDD structure (Figure 9).

It should be noted that MD simulations, in the presented
work, were started from the full right-handed α-helix. The
principal modes do not exhibit any peaks in kink regions un-
til loops form (not shown). This is because the first princi-
pal modes capture the largest fluctuations, which do not come
from helices. Once loops are formed (consequently the kinks),
which are more flexible and characterized with fluctuations
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FIG. 29. Contributions (νi, n, λi) of principal mode 1 (black) and mode 2 (red) to the mean-square fluctuations along the θ ((a), (c), and (e)) and γ ((b), (d), and
(f)) angles, respectively, in the time windows from 0 to 4.89 ns ((a) and (b)), 4.89 to 9.78 ns ((c) and (d)), and from 9.78 to 14.67 ns ((e) and (f)).

greater than those in the helices, the peaks start to appear in
principal modes in kink regions.

It is remarkable that the shapes of the contributions of the
principal modes to mean square fluctuations along θ and γ

angles resemble those of the squares of the derivatives of the
kink profiles. This feature probably arises since the contribu-
tions plotted in Figure 29 are variances of the respective θ or
γ angles along a given principal component. Following error
propagation rules, the variance of a composite quantity is pro-
portional to the square of the derivative of a quantity. There-
fore, the more an angle varies along the chain, the greater are
its fluctuations.

IV. CONCLUSIONS

The folding pathway of the N-terminal segment of the
B-domain of staphylococcal protein A has been simu-
lated in this work with the coarse-grained UNRES force
field.24–28, 30–32 The analysis demonstrates that the description
of protein structure in terms of kinks of the DNLS equation
proposed in our earlier work6, 7, 9 can be applied to the descrip-
tion of protein folding pathways and energetics. Intuitively,
this feature of protein structure and dynamics is seen to result
from the approximate bimodal character of the local potential
of mean force of polypeptide chains in backbone virtual-bond
angles θ (Figure 6). This can be seen both in the statistic of
the PDB (Figure 4; see also Ref. 25) and from the potential
of mean force calculated from ab initio energy surfaces of
terminally blocked amino-acid residues.69

The present kink structure is, in particular, useful in
representing chain-reversal structure which seems to be cru-

cial in initiating nucleation sites, which then enable the forma-
tion of long-range contacts between side chains.70, 71 For pro-
tein A, the kinks are located in the regions between residues
Glu16-Asn22, Leu20-Asn29, and Gln33-Asn44, respectively.
The trajectories that were analyzed in this work had been
started from a full-α-helical conformation but this starting
point had been selected to focus the observation on loop for-
mation instead of on the formation of α-helices from random
structure. Moreover, transitions from a long right-handed
α helix to a helical hairpin structure is part of functionally
important motions of many proteins; e.g., the transition from
an open to a closed (substrate-binding) conformation of
Hsp70 chaperones;72–74 it also constitutes a part of folding of
many proteins such as, e.g., the engrailed homeodomain.75

Kink analysis enables us to realize the importance of
local interactions, specifically the bimodal character of the
potential of mean force in virtual-bond angles θ , as the driv-
ing force of folding. The Landau Hamiltonian used in this
study and in the studies reported in our earlier work6–10, 48

does not contain any long-range terms. Still, it was usable to
simulate folding pathways in our earlier studies10 in a Gō-like
manner, using kink parameters derived from the experimental
structure of the protein under study. In this regard, the kinks
can provide a prediction of local collective motions without
MD simulations, while PCA requires MD simulations for this.
Moreover, we learned from our current study that the bimodal
character of the potentials in the virtual-bond angles θ makes
the system jump from state to state, causing conformational
transitions.

A remarkable observation made during this study is that
the creation of a kink in a full-α-helical protein segment
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consistently involves a local free energy increase of about
7 kcal/mol. Surprisingly, this is a value which is very close to
the dissociation of a phosphate residue from ATP. However,
it remains to be clarified in future work, whether the obser-
vation, that the energy for the initiation of helix bending in
protein A is equal to the elementary energy supply from ATP
hydrolysis, is accidental.

Even though bimodality of the potential of mean force
in backbone virtual-bond valence angles characterizes all
amino-acid residues, some of them are more prone to change
their local conformational state. The analysis presented in
Sec. III C suggests that the interactions between neighbor-
ing side chains or the side chains and adjacent backbone sites
trigger the jump from one local minimum to another one.
This process is similar to the formation of a Bloch domain
wall in magnetic spin chains. It should be noted that, apart
from kink initiation, we also observe very fast-moving wave-
like phonon propagation along the chain (Figure 27). For a
detailed investigation of these wave-like structures, all-atom
simulations should be performed.

Finally, a principal-component analysis of the folding
trajectories of protein A in Sec. III E has shown that the
principal modes appear to be clearly correlated with kink
formation. As expected, the largest contributions to the
most significant principal modes arise from loop regions
(Figure 29), and the shapes of the plots of the principal
modes along the chain resembles the directional derivative
of the solution of the DNLSE (cf. Sec. III E). But the strong
correlation observed here between PCA and kink formation
is somewhat unexpected. This observation suggests that kinks
can be used to describe principal motions of proteins without
having to resort to a posteriori essential dynamics. This line
of research is now being followed in our laboratory.
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Network (IC MAN) in Gdańsk, (d) our 624-processor Be-
owulf cluster at the Baker Laboratory of Chemistry, Cornell
University, and (e) our 184-processor Beowulf cluster at the
Faculty of Chemistry, University of Gdańsk.
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