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HIV-infected individuals have poor responses to inactivated influenza vaccines. To evaluate the potential role of 
regulatory T (Treg) and B cells (Breg), we analyzed their correlation with humoral and cell-mediated immune (CMI) 
responses to pandemic influenza (pH1N1) monovalent vaccine in HIV-infected children and youth. Seventy-four HIV-
infected, 4- to 25-y old participants in a 2-dose pH1N1 vaccine study had circulating and pH1N1-stimulated Treg and Breg 
measured by flow cytometry at baseline, post-dose 1 and post-dose 2. Concomitantly, CMI was measured by ELISPOT 
and flow cytometry; and antibodies by hemagglutination inhibition (HAI). At baseline, most of the participants had 
pH1N1-specific IFNγ ELISPOT responses, whose magnitude positively correlated with the baseline pH1N1, but not with 
seasonal H1N1 HAI titers. pH1N1-specific IFNγ ELISPOT responses did not change post-dose 1 and significantly decreased 
post-dose 2. In contrast, circulating CD4+CD25+% and CD4+FOXP3+% Treg increased after vaccination. The decrease in 
IFNγ ELISPOT results was marginally associated with higher pH1N1-specific CD19+FOXP3+ and CD4+TGFβ+% Breg and 
Treg, respectively. In contrast, increases in HAI titers post-dose 1 were associated with significantly higher circulating 
CD19+CD25+% post-dose 1, whereas increases in IFNγ ELISPOT results post-dose 1 were associated with higher 
circulating CD4+/C8+CD25+FOXP3+%. In conclusion, in HIV-infected children and youth, influenza-specific Treg and 
Breg may contribute to poor responses to vaccination. However, robust humoral and CMI responses to vaccination may 
result in increased circulating Treg and/or Breg, establishing a feed-back mechanism.
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received seasonal influenza (sH1N1) vaccine ≥ 2 weeks before 
the pH1N1 monovalent. The race, ethnicity and HIV disease 
characteristics were similar across age groups and between the 
subjects included in these advanced immunology analyses and 
the parent study subjects.

Kinetics of pH1N1-specific ELISPOT results in response 
to vaccination. After exclusion of samples with low viability or 
insufficient number of cells, 59 of 68 subjects with baseline data 
had positive IFNγ ELISPOT results for pH1N1 defined by ≥ 
50 spot forming cells (SFC)/106 Peripheral blood mononuclear 
cells (PBMC). There were no significant differences in baseline 
IFNγ ELISPOT results by age at enrollment. pH1N1 IFNγ 
ELISPOT results remained unchanged from baseline to post-
dose 1 with median [interquartile range (IQR)] of 317 (117, 673) 
and 363 (123, 622), respectively, but significantly decreased to 
261 (78, 525) post-dose 2 (p = 0.03; Fig.  1A). Granzyme B 
(GrB) SFC at baseline had a median (IQR) of 35 (0, 220) and 
did not significantly change after vaccination (Fig. 1B). IFNγ 
or GrB ELISPOT responses to phytohemagglutinin (PHA) 
did not significantly change from baseline to post-dose 1 or 2 
(Fig. 1C and D). Candida IFNγ ELISPOT responses tended to 
decrease between baseline and post-dose 2 (p = 0.08; Fig. 1E).

There was a positive correlation of the magnitude of baseline 
IFNγ ELISPOT results with the pH1N1 baseline HAI titers (rho 
= 0.29; p = 0.02; Fig. 2A), but not with the sH1N1 baseline titers 
(rho = 0.04; p = 0.74; not depicted). The association of pH1N1 
IFNγ ELISPOT results with pH1N1 antibody titers continued 
post-dose 1 (rho = 0.25, p = 0.04; Fig. 2B), but not post-dose 2 
(rho = 0.01; p = 0.94; Fig. 2C).

Baseline GrB ELISPOT responses to pH1N1 also correlated 
with baseline pH1N1 HAI titers (rho = 0.34, p = 0.01; not 
depicted), but not with sH1N1 titers (rho = -0.03, p = 0.81; 
not depicted). GrB ELISPOT responses post-dose 1 or 2 did 
not correlate with concomitant pH1N1 antibody titers (rho of 
0.08 and 0.07, respectively; p of 0.52 and 0.59, respectively; not 
depicted). GrB and IFNγ ELISPOT did not significantly cor-
relate at baseline (rho = 0.19, p = 0.13), but were correlated post-
dose 1 and 2 (rho = 0.31, p = 0.01 and rho = 0.40, p = 0.002, 
respectively).

Kinetics of pH1N1-specific effector T cells (Teff) measured 
by flow cytometry. CD4+ and CD8+ Teff were character-
ized by IL2, TNFα, MIP1β and perforin production after 48 
h of in vitro stimulation with live pH1N1 or control. At base-
line, median (IQR) influenza-specific CD4+IL2+%, CD4+ 
MIP1β%, CD4+perforin+%, CD4+ TNFα+%, CD8+IL2+%, 
CD8+ MIP1β %, CD8+perforin+% and CD8+ TNFα+%, 
were 2.53 (1.52,4.12), 4.04 (2.57,7.38), 2.92 (1.35,5.29), 3.39 
(2.04,6.70), 2.75 (1.60,5.35), 4.89 (2.50,7.33), 3.95 (2.65,7.08) 
and 3.42 (2.24,5.79). Corresponding numbers after the first 
dose of vaccine were 2.43 (1.28,3.92), 4.86 (2.11,9.10), 3.41 
(1.98,5.75), 3.70 (2.20,6.83), 2.86 (1.36,5.29), 4.95 (2.12,8.21), 
4.49 (2.58,7.17) and 3.38 (2.52,5.92); and after the second dose of 
vaccine 2.39 (1.51,4.37), 3.94 (1.95,6.59), 3.66 (1.80,5.45), 3.79 
(1.87,6.42), 2.80 (1.64,4.22), 4.09 (2.05,7.84), 4.33 (2.40,6.80) 
and 3.67 (2.06,5.11). There were no significant changes in any of 
the Teff subsets after vaccination.

Introduction

HIV-infected individuals generally mount poor responses to 
influenza vaccines.1-5 In a study of the pandemic influenza 
(pH1N1) vaccine in HIV-infected children, adolescents and 
youth, P1088, we established that even after two doses with 
increased antigen content, antibody responses measured by hem-
agglutination inhibition (HAI) were lower than those described 
in age-matched historical controls receiving standard immuniza-
tion regimens.6 In P1088, low HAI titers in response to pH1N1 
vaccine correlated with low CD4 cell counts, which is in agree-
ment with what has been typically found in vaccine studies in 
HIV-infected individuals, i.e., that advanced HIV disease, low 
CD4 cell counts and high plasma HIV viral loads (VL) are 
risk factors for decreased humoral or CMI responses to vac-
cines. However, the mechanism(s) responsible for the decreased 
immune responses to vaccines in the context of HIV infection 
is/are not known.

HIV-infected individuals have increased frequencies of regu-
latory T cells (Treg).7-9 Treg characteristically suppress CMI and 
can be identified by a series of markers, including high expression 
of CD25, FOXP3, IL10 and TGFβ.10-12 High Treg frequencies 
have been associated with the progression of HIV infection and 
with the development of opportunistic infections.7,13,14 The effect 
of Treg on responses to vaccines has not been extensively stud-
ied. Similarly, there is a dearth of information on the effect of 
regulatory B cells (Breg) on immune responses of HIV-infected 
individuals. Several subsets of Breg were identified in immune 
competent hosts and were characterized by high expression of 
the IL2 receptor CD25 and/or by production of the regulatory 
mediator IL10.15,16

Protection against influenza infection is mediated both by 
antibodies and CMI.17-21 While neutralizing antibodies are able 
to prevent infection, CMI is particularly important in the clear-
ance of infected cells.22,23 The live-attenuated influenza vaccine 
(LAIV), which confers superior protection against disease in 
children compared with the trivalent inactivated vaccine (TIV), 
generates robust CMI, but lower humoral responses than TIV,17 
underscoring the importance of CMI in protection against influ-
enza disease.

In this study, we describe the CMI, Treg and Breg responses 
of a cohort of HIV-infected children and youth and report the 
correlations of Treg and Breg frequencies with humoral and CMI 
responses to pH1N1.

Results

Demographic and other characteristics. Of the 74 P1088 sub-
jects who contributed samples for this study, one was excluded 
because pH1N1 infection occurred before completing the full 
schedule of immunizations. The 73 remaining subjects were 
proportionally distributed across age groups (Table 1). The 
mean (S.D.) CD4%, CD8% and plasma HIV RNA at base-
line were 34% (8.7%), 37% (12.9%) and 2.1 (0.8) log

10
 copies/

mL, respectively. Sixty-seven subjects (92%) were on HAART 
at enrollment. Approximately 26% of the subjects in each group 
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FOXP3- Teff and in some cases may evolve into Treg.26-28 Taken 
together, these data suggest that administration of pH1N1 vac-
cine to HIV-infected children and adolescents is associated with 
an increase of circulating activated and regulatory T cells.

Among the pH1N1-specific Treg subsets that we studied, we 
found decreases in CD8+TGFβ+% and CD8+FOXP3+% after 
the first dose of vaccine. There were no increases in Th1 responses 
that might have explained the relative decrease of the proportions 
of pH1N1-specific CD8+ Treg. Other CD8+ T-cell subsets that 
were not measured in this study, such as those characterized by 
the production of IL4, IL5, IL13, IL9, IL22 or IL17, might have 
increased after vaccination, thus explaining the relative decrease 
of Treg.

This study confirmed our previous findings29 that administra-
tion of influenza inactivated vaccines to HIV-infected children 
and youth was associated with a temporary decrease in Th1 CMI 
measured by IFNγ ELISPOT. In our previous study, we showed 
that HIV-infected children had a reduction of IFNγ ELISPOT 
responses to trivalent vaccine-homologous and heterologous 
influenza viruses and to phytohemagglutinin (PHA) at 28 d 
after vaccination. These responses, which were mostly derived 
from CD8+ cells, were partially recovered at 6 mo after vaccina-
tion.29 Here, we extended these findings to pH1N1 monovalent 
inactivated vaccine. A large efficacy study would be necessary to 
determine the clinical implications of the relative CMI decrease 
after vaccination. Nevertheless, this identifies a CMI response to 
vaccination that seems to be specific to HIV-infected individuals, 

Kinetics of Treg and Breg subsets after pH1N1 vacci-
nation. Circulating Treg and Breg were measured in freshly 
thawed unstimulated PBMC preparations and were character-
ized by FOXP3, CD25, IL10 and TGFβ expression on CD4+, 
CD8+ and CD19+ lymphocytes. Significant increases were 
noted in CD4+CD25+% and CD4+FOXP3+% after the first 
dose of vaccine compared with baseline (p of 0.04 and 0.008, 
respectively; Fig. 3A and B). After the second dose of vaccine, 
CD4+CD25+% continued significantly higher than baseline, 
but CD4+FOXP3+% did not. All other circulating Treg and 
Breg subsets remained unchanged at all time points.

pH1N1-specific Treg and Breg were also measured after 48 h 
in vitro stimulation with pH1N1 virus and control. There were 
significant decreases in CD8+FOXP3+% and CD8+TGFβ+% 
after the first dose of vaccine compared with baseline (p of 0.046 
and 0.02, respectively; Fig.  4A and B), but not after the sec-
ond dose of vaccine compared with baseline and not in other 
Treg or Breg subsets, including CD4+CD25+, CD4+FOXP3+, 
CD4+CD25+FOXP3+, CD4+TGFβ+, CD4+IL10+, 
CD8+CD25+, CD8+CD25+FOXP3+, CD8+IL10+, 
CD19+CD25+, CD19+FOXP3+, CD19+CD25+FOXP3+ and 
CD19+IL10+.

Correlation analyses of HAI and ELISPOT responses with 
Treg and Breg subsets. To understand the potential role of Treg 
and Breg in modulating responses to vaccines in HIV-infected 
children and youth, we performed correlation analyses of the 
Treg and Breg subsets with changes in HAI titers and in IFNγ 
ELISPOT results. We found trend negative correlations between 
changes in IFNγ ELISPOT results from baseline to post-dose 1 
and several pH1N1-stimulated Treg including CD19+FOXP3+% 
(rho = -0.25, p = 0.06; Fig. 5A) and CD4+TGFβ+% (rho = -0.22, 
p = 0.08; Fig.  5B). In contrast, we found unexpected positive 
correlations of unstimulated CD19+CD25+% with the increase 
in pH1N1 log

10
 HAI titers after the first dose of vaccine (rho = 

0.27, p = 0.02; Fig.  6A) and of CD4+CD25+FOXP3+% and 
CD8+CD25+FOXP3+% with IFNγ ELISPOT after the first 
dose of vaccine (rho = 0.24, p = 0.05 and rho = 0.28, p = 0.03, 
respectively; Fig. 6B and C).

Discussion

To our knowledge, this is the first study to systematically inves-
tigate Treg and Breg subsets after vaccination in a relatively large 
cohort of subjects (n = 73). We found an increase in circulat-
ing CD4+CD25+% and CD4+FOXP3+% after the first dose 
of vaccine. High expression of the CD25 IL2 receptor was one 
of the first described natural Treg characteristics. Natural Treg 
constitutively express CD25 in high abundance, which allows 
them to survive and proliferate in response to IL2 secretion.24 
However, activated Teff also upregulate their CD25 expres-
sion,25 such that the CD4+CD25+ population may represent a 
mixture of circulating Treg and activated Teff. In contrast, the 
expression of FOXP3 is more specific for Treg, since it regu-
lates Treg differentiation. Although FOXP3 may also be tran-
siently expressed by activated T cells, the FOXP3+ Teff display 
lower cytokine production and proliferation compared with 

Table 1. Demographics and HIV disease characteristics

4–8 y of 
age

9–17 y 
of age

18–24 y 
of age

Total

Total number of subjects 24 23 26 73

Gender

Female 14 (58%) 10 (43%) 14 (54%) 38 (52%)

Race and ethnicity

Black

Latino

14 (58%)

13 (54%)

14 (61%)

10 (43%)

15 (58%)

7 (27%)

43 (59%)

30 (41%)

Age (yrs)

Mean

Standard deviation

6

1.5

13

2

20

1.7

13

5.9

CD4 percent

Mean

Standard deviation

38

6.9

34

6.4

29

10.2

34

8.7

CD8 percent

Mean

Standard deviation

28

6.1

38

12.9

44

13

37

12.9

Log 10 RNA count

Mean

Standard deviation

1.8

0.5

1.8

0.3

2.5

1.1

2.1

0.8

Notes: The lower limit of detection varied among subjects depending 
on the assay used at the specific clinical research site; RNA values below 
the limit of detection were replaced with the lower limit of the assay 
(e.g., 18 cp/mL was replaced with 50 cp/mL for an assay with the limit of 
detection of 50 cp/mL).
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Figure 1. For figure legend, see page 961.
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Figure 1 (See opposite page). pH1N1 IFNγ (A), GrB (B), PHA IFNγ (C), GrB (D) and Candida IFNγ (E) ELISPOT responses to two double-doses of pH1N1 vac-
cine. PBMC, frozen and thawed to preserve viability, were rested overnight. ELISPOT assays were performed only on PBMC with viability ≥ 70% immedi-
ately after thawing and after resting. The assays used MabTech kits, live pH1N1 viral infection to promote stimulation of both CD4+ and CD8+ T cells, PHA 
mitogen and candida antigen controls. Results are presented as medians and IQRs. The number of subjects that contributed data at each time point are 
indicated on the graphs. Statistically significant differences assessed by Wilcoxon Matched Paired Signed Ranks test are shown on the graphs.

Figure 2. Correlations of pH1N1 IFNγ ELISPOT results with pHN1 at baseline (A), post dose 1 (B) and post dose 2 (C). Data were derived from 67, 67 and 
63 subjects in panels A, B and C, respectively. PBMC, frozen and thawed to preserve viability, were rested overnight. ELISPOT assays were performed 
only on PBMC with viability ≥ 70% both immediately after thawing and after resting. The assays used MabTech kits and live pH1N1 viral infection to 
promote stimulation of both CD4+ and CD8+ T cells. HAI titers were measured using pH1N1 antigens. Assays are described in detail in the methods 
section. The coefficients of correlation and p values shown on each graph were calculated using Spearman correlation test.
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with pH1N1, may have accounted for the high proportion of 
pH1N1-specific Treg.

In contrast, subjects who gained pH1N1 IFNγ ELISPOT 
responses post-dose 1 compared with baseline also had increased 
proportions of circulating CD4+ and CD8+FOXP3+%. 
Furthermore, the increase in pH1N1 HAI titers post-dose 1 
positively correlated with circulating CD19+CD25+%. As men-
tioned above, some of the CD4+ and CD8+FOXP3+ cells might 
represent transient expression of FOXP3 in Teff and conversion of 
Teff into Treg. Likewise, the CD19+CD25+ cells may represent a 
mixture of regulatory and activated B cells. Taken together, these 
data suggest that robust antigenic stimulation by the pH1N1 vac-
cine that increase the proportions of Teff also increase circulating 
Treg and Breg. This finding is consistent with data suggesting 
that activated conventional T cells generate Treg in the periph-
ery.26,27 It also suggests that while T-cell activation is escalating, 
feed-back mechanisms meant to eventually quench the activation 

since it has not been observed in immunocompetent children or 
adults,30,31 and may be relevant to HIV immunopathogenesis.

To gain insight into the mechanism(s) that mediate the 
post-influenza vaccine CMI suppression, we investigated the 
association of IFNγ ELISPOT decreases after vaccination 
with pH1N1-specific Treg and Breg subsets. The loss in IFNγ 
ELISPOT responses after the first dose of the vaccine tended 
to occur in subjects with higher proportions of pH1N1-specific 
CD19+FOXP3+ and CD4+TGFβ+ cells after the first dose 
of vaccine. This suggests that in HIV-infected vaccine recipi-
ents, increased proportions of pH1N1-specific Treg and Breg 
in response to vaccination may contribute to the attenuation 
of pH1N1-specific Teff responses to the vaccine. Since many of 
the participants were exposed to pH1N1 at baseline, the Treg 
response to pH1N1 stimulation may have resulted from previ-
ous exposure to the virus. Alternatively, exposure to seasonal 
H1N1, which has approximately 70% T-cell epitope homology 

Figure 3. Kinetics of circulating CD4+CD25+ (B) and CD4+FOXP3+ (C) T cells after the two double-doses of pH1N1 vaccine. PBMC, frozen and thawed 
using procedures that preserve viability, were stained with mAbs anti-CD3, CD8, CD19, CD25 and FOXP3 and IL10 as described in the methods section. 
Panel A shows the gating strategy: (1) lymphocytes were identified by forward/side scatter; (2) CD4+ T cells were gated by expression of CD3 (CD3+) 
and lack of expression of CD8 (CD8-); (3) CD25+ and FOXP3+ CD4+ T cells were gated as shown. IL10 expression was gated using FOXP3 on one axis 
and IL10 on the other axis (not shown). CD8+ T cells were gated using expression of CD3 and CD8. B cells were gated as CD3-CD19+ (not shown). CD8+ 
T-cell and B-cell expression of CD25, FOXP3 and IL10 (not shown) were gated as described for CD4+ T cells. Panels B and C show only the lymphocyte 
subsets with significant changes over time. Results are presented as medians and IQRs. The number of subjects that contributed data at each time 
point are indicated on the graphs. Statistically significant differences assessed by Wilcoxon Matched Paired Signed Ranks test are shown on the graphs 
in panels B and C.
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are also initiated. Less is known about the genesis of Breg and 
further studies are needed in this area.

Influenza-specific GrB production was found to contribute sig-
nificantly to protection against disease in elderly individuals.32-34 
In this study, we found low frequencies of pH1N1-specific GrB-
producing T cells even in baseline pH1N1-seropositive individu-
als who, presumably, developed pH1N1-specific GrB producing 
cells in response to wild-type infection. This is in accordance 
with previous observations that T cells of HIV-infected individu-
als have decreased production and secretion of GrB in response to 
antigenic stimulation.35,36 Furthermore, there were no significant 
increases in GrB ELISPOT results after vaccination.

We found significant correlations of pH1N1 IFNγ and GrB 
ELISPOT results with pH1N1 HAI titers at baseline. The 
specificity of this association was further underscored by the 
lack of correlation between pH1N1 IFNγ and GrB ELISPOT 
results with sH1N1 titers. This finding was not unexpected, 
since 30% of the study participants had evidence at baseline of 
undiagnosed, previous infection with pH1N1. Significant cor-
relations of pH1N1 IFNγ with GrB ELISPOT responses were 
present post-dose 1 and 2, which was also expected considering 
that both assays measured Th1 type responses. There was also a 
significant correlation between pH1N1 IFNγ ELISPOT results 
and pH1N1 HAI titers after the first dose of vaccine. However, 
post-dose 2, there was a lack of correlation between pH1N1 
IFNγ ELISPOT results, which decreased compared with base-
line, and pH1N1 HAI titers, which increased compared with 
baseline.6 The post-dose 1 responses were primary responses in 
most subjects and the correlation of antibody and CMI could be 
viewed as evidence of the vaccine humoral and cellular immu-
nogenicity. The post-dose 2 responses were anamnestic and 
show the dissociation between antibody and CMI anamnestic 
responses to influenza immunization in HIV-infected children 
and adolescents.

Our study was limited by the fact that enrollment started 6 
mo into the pandemic, which resulted in a wild type infection 
rate of 30% at baseline. The rate of baseline seropositivity was 
within the range reported in other pH1N1 vaccine studies in 
HIV-infected individuals.37-40 Another potential limitation was 
the relatively homogeneous population with overall high CD4+ 
cell numbers and low HIV VL. However, in view of the recent 
recommendations to start antiretroviral therapy at progres-
sively higher CD4+ cell numbers, we expect the immune status 
of our study population to constitute a good representation of 
the immune status of HIV-infected children and youth in the 
near future. Our study was also limited by the fact that only 
the blood compartment was investigated. We did not perform 
mean fluorescence intensity analyses and used a limited panel 
of Treg and Teff markers. However, this study included a large 
number of subjects compared with the majority of mechanistic 
studies. Thus, our results can be considered representative for 
the responses to pH1N1 vaccine in HIV-infected children and 
adolescents. This was a hypothesis-driven, novel investigation of 
the kinetics of Treg and Breg and their potential role in shaping 
responses to vaccines.

Figure 4. Kinetics of pH1N1-stimulated CD8+FOXP3+ (A) and 
CD8+TGFβ+ (B) T cells after the two double-doses of pH1N1vaccine. 
PBMC with viability ≥ 70% were incubated for 48 h with medium control 
and with live pH1N1 virus to promote stimulation through both MHC 
class I and class II. After incubation cells were stained with mAb anti-
CD3, CD8, CD19, CD25, FOXP3 and IL10. Companion tubes were also 
stained with mAb anti-CD3, CD8, IL2, TNFα, MIP1β and TGFβ. The gating 
strategy (not shown) was similar to that described for freshly thawed, 
unstimulated PBMC (Fig. 3). The number of subjects that contributed 
data at each time point are indicated on the graphs. Results, depicted 
as medians and IQRs, are shown only for the lymphocyte populations 
with significant changes over time. Statistically significant differences 
assessed by Wilcoxon Matched Paired Signed Ranks test are shown on 
the graphs.
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In conclusion, some Treg subsets increase in the circulation 
after influenza immunization of HIV-infected children and ado-
lescents. These increases may occur in response to the antigenic 
stimulation provided by the immunogen, as they correlated with 
ELISPOT and HAI responses to the vaccine. pH1N1-specific 
Treg and Breg did not increase after vaccination. Nevertheless, 
higher pH1N1-specific Treg and Breg were associated with lower 
CMI responses to the vaccine. Further studies are warranted in 
other hosts that respond poorly to vaccines, such as transplant 
recipients and elderly individuals, to better understand the over-
all participation of regulatory mechanisms in responses to vac-
cines and to determine if Treg and Breg may be valuable targets 
for therapeutic interventions to improve immunogenicity of 
vaccines.

Methods and Materials

P1088 study design. Perinatally HIV-infected children and 
youth, aged ≥ 4 to < 25 y, were recruited from the International 
Maternal Pediatric and Adolescent Clinical Trials (IMPAACT) 
Network units in the US and Puerto Rico to participate in P1088. 
The study was approved by local IRBs. Legal guardians and/or 
subjects consented and/or assented to participate in this study. 
Subjects on stable ART for ≥ 90 d prior to entry received two 
30 μg doses of 2009 Novartis Influenza A (pH1N1) monova-
lent vaccine (Fluvirin®) separated by 21–28 d. Seasonal influenza 
vaccine administration was restricted to ≥ 2 weeks before enroll-
ment and to ≥ 2 weeks after the second pH1N1 dose. Blood for 
antibody and CMI assays was collected at baseline, 21–28 d post-
dose 1 and 10–14 d post-dose 2. For this study, 74 participants 
with complete sets of PBMC, approximately equally distributed 
among the three age groups, were selected.

Antibody measurements. Sera were prepared at the clini-
cal site laboratories, stored at ≤ -20°C and shipped on dry ice 
or in liquid nitrogen containers to the testing laboratory at the 
University of Colorado Anschutz Medical Campus. pH1N1 and 
sH1N1 antibodies were measured by HAI assay using previously 
described methods1 with a titer range of 1:10 to 1:1280. Sera with 
titers < 1:10 and > 1:1280 were arbitrarily ascribed values of 1:5 
and 1:1280, respectively. Seroresponse was defined as having a ≥ 
4-fold rise in HAI titers following vaccination as compared with 
baseline HAI. A titer ≥ 1:40 was considered protective.

IFNγ and GrB ELISPOT assays. PBMC were cryopre-
served at the site laboratories according to a standardized pro-
tocol (http://www.hanc.info/labs/Pages/SOPs.aspx), stored at ≤ 
-150°C and shipped in liquid nitrogen containers to the testing 
lab at University of Colorado Anschutz Medical Campus. Cells 
were thawed slowly as previously described.41 ELISPOT assays 
were performed using commercial ELISpotPlus kits (MabTech) 
as per manufacturer’s instructions with modifications. To opti-
mize detection of responses in HIV-infected individuals we used 
500,000 PBMC per well. Thawed PBMC were allowed to sit 
overnight and resuspended at 106 PBMC/mL, in RPMI 1640 
with glutamine (Gibco), 10% human AB serum (Gibco), 1% 
penicillin and streptomycin and 1% Hepes buffer. PBMC prep-
arations with viability ≥ 70%, as measured by flow cytometry 

Figure 5. Correlations of pH1N1-stimulated IFNγ ELISPOT results 
after the first immunization with CD19+FOXP3+ % Breg (A) and 
CD4+TGFβ+% Treg (B) after the first immunization. Data were derived 
from 63 and 66 participants in panels A and B, respectively. PBMC, 
frozen and thawed to preserve viability, were rested overnight. ELISPOT 
assays were performed only on PBMC with viability ≥ 70% immediately 
after thawing and after resting. The assays used MabTech kits and live 
pH1N1 viral infection to promote stimulation of both CD4+ and CD8+ T 
cells. Flow cytometric assays were also performed on PBMC with viabil-
ity ≥ 70%. Cells were incubated with pH1N1 live virus or medium control 
for 48 h after which they were stained as described in the methods 
section. The x axes represent the difference between baseline and post-
dose 1 IFNγ ELISPOT results. The coefficients of correlation and p values 
shown on each graph were calculated using Spearman correlation test.
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by the viability ≥ 70.41-43 Cells were stimulated in duplicate 
wells with 2 TCID

50
/PBMC of A/California/7/2009 Pandemic 

X-179A H1N1 Influenza virus (generous gift of Dr. A Klimov at 

using the Guava easyCyte 8HT instrument (Millipore), were 
used in these assays. Although viability < 70% may decrease the 
results of functional assays, assay results are stable and unaffected 

Figure 6. Correlations of pH1N1 antibody titers and of IFNγ ELISPOT results with circulating CD19+CD25+% B cells, CD4+CD25+FOXP3+% and 
CD8+CD25+FOXP3+% Treg after the first immunization. Data were derived from 72, 66 and 66 participants in panels A–C, respectively. The x axes 
represent the difference between baseline and post-dose 1 pH1N1 HAI (A) or IFNγ ELISPOT (B and C). HAI antibody titers to pH1N1 were measured 
as described in the methods section. PBMC, frozen and thawed to preserve viability, were rested overnight. ELISPOT assays were performed only on 
PBMC with viability ≥ 70% both immediately after thawing and after resting. The assays used MabTech kits and live pH1N1 viral infection to promote 
stimulation of both CD4+ and CD8+ T cells. For flow cytometric analysis of circulating B and T cells, freshly thawed PBMC with adequate viability were 
stained with mAbs anti-CD3, CD8, CD19, CD25 and FOXP3 and IL10 as described in the methods section. The graphs depict only the correlations that 
reached statistical significance using the Spearman correlation test. Correlation coefficients and p values are shown on the graph.
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