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Metabolic coupling, between mito-
chondria in cancer cells and catab-

olism in stromal fibroblasts, promotes 
tumor growth, recurrence, metastasis, 
and predicts anticancer drug resistance. 
Catabolic fibroblasts donate the neces-
sary fuels (such as L-lactate, ketones, 
glutamine, other amino acids, and fatty 
acids) to anabolic cancer cells, to metab-
olize via their TCA cycle and oxida-
tive phosphorylation (OXPHOS). This 
provides a simple mechanism by which 
metabolic energy and biomass are trans-
ferred from the host microenvironment 
to cancer cells. Recently, we showed that 
catabolic metabolism and “glycolytic 
reprogramming” in the tumor microen-
vironment are orchestrated by oncogene 
activation and inflammation, which 
originates in epithelial cancer cells. 
Oncogenes drive the onset of the cancer-
associated fibroblast phenotype in adja-
cent normal fibroblasts via paracrine 
oxidative stress. This oncogene-induced 
transition to malignancy is “mirrored” 
by a loss of caveolin-1 (Cav‑1) and an 
increase in MCT4 in adjacent stro-
mal fibroblasts, functionally reflect-
ing catabolic metabolism in the tumor 
microenvironment. Virtually identical 
findings were obtained using BRCA1-
deficient breast and ovarian cancer 
cells. Thus, oncogene activation (RAS, 
NFkB, TGF-β) and/or tumor suppres-
sor loss (BRCA1) have similar functional 
effects on adjacent stromal fibroblasts, 

initiating “metabolic symbiosis” and the 
cancer-associated fibroblast phenotype. 
New therapeutic strategies that meta-
bolically uncouple oxidative cancer cells 
from their glycolytic stroma or modulate 
oxidative stress could be used to target 
this lethal subtype of cancers. Targeting 
“fibroblast addiction” in primary and 
metastatic tumor cells may expose a 
critical Achilles’ heel, leading to disease 
regression in both sporadic and familial 
cancers.

Introduction

It is now well-established that 
(1) oncogene activation, and (2) aberrant 
growth factor signaling, are sufficient 
to mediate cell transformation, tumor 
growth, and metastasis. However, this 
highly simplified view of cancer does not 
mechanistically explain the essential role 
of the tumor stroma or the host cellular 
microenvironment.

Thus, a more integrated metabolic 
model of how cancer works will be 
required for us to invent new effective and 
non-toxic cancer therapies.1–11 Toward this 
end, here we will focus on the metabolic-
interface between cancer cells and their 
host microenvironment: cancer-associated 
fibroblasts or CAFs. We believe that cata-
bolic cancer-associated fibroblasts are a 
key metabolic “fuel source”, for enabling 
cancer cell propagation, survival, and sys-
temic dissemination, during metastasis.
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Metabolic Symbiosis:  
Implications for Personalized 
Medicine and Cancer Therapy

Recent studies directly show that can-
cer cells extract high-energy nutrients 
from cancer-associated fibroblasts or other 
normal adjacent cells, such as adipocytes, 
via oxidative stress.12-54 This “metabolic 
symbiosis” would be most essential during 
early tumorigenesis and later during can-
cer cell metastasis, when a blood supply is 
largely absent. We also have termed this 
type of symbiotic or parasitic relationship 
“two-compartment tumor metabolism” 
or “the reverse Warburg effect”.31,33,40,42-45 
During metabolic symbiosis, catabolic 
fibroblasts provide the necessary fuels 
(such as L-lactate, ketone bodies, gluta-
mine, other amino acids, and free fatty 
acids) to anabolic cancer cells, to metab-
olize via their TCA cycle and oxidative 
phosphorylation (OXPHOS). Energy 
transfer occurs via a stromal–epithelial 
“lactate shuttle” to efficiently move nutri-
ents from fibroblasts to tumor cells. To 

accomplish this energy transfer, fibroblasts 
excrete L-lactate and ketones using MCT4 
transporters.55,56 In contrast, tumor cells 
take up and re-purpose these fuels using 
MCT1 transporters.

Here, we discuss the use of 3 new clin-
ical biomarkers of metabolic symbiosis 
for predicting patient outcome in human 
breast cancers and other types of can-
cer. These 3 biomarkers include MCT1, 
MCT4, and Caveolin-1. Moreover, we 
highlight recent advances showing that 
metabolic symbiosis can be modeled 
in vitro using a co-culture system. By 
employing this approach, it becomes 
apparent that oncogenes drive the onset 
of metabolic symbiosis by re-program-
ming energy metabolism in the tumor 
microenvironment, via paracrine oxida-
tive stress.

These findings have important impli-
cations for achieving the goals of person-
alized medicine and for designing more 
effective approaches to anticancer therapy, 
with a focus on new, highly selective meta-
bolic inhibitors.

Stromal Caveolin-1:  
A Biosensor of Autophagy  

in the Tumor Microenvironment

An absence or loss of stromal caveo-
lin-1 (Cav-1) immunostaining is a new 
biomarker of poor clinical outcome in 
many different types of cancers, such 
as breast tumors and DCIS, gastric and 
prostate carcinomas, as well as in meta-
static melanoma lesions.57-68 In breast 
cancer patients, a loss or stromal Cav-1 is 
specifically linked to tumor recurrence, 
metastasis, drug-resistance, and overall 
poor survival (Fig.  1). More specifically, 
oxidative stress in cancer-associated fibro-
blasts leads to the lysosomal/autophagic 
digestion of Cav-1.30 As such, a reduc-
tion or absence of Cav-1 is a sensitive 
biomarker of oxidative stress, autophagy/
mitophagy, and aerobic glycolysis, in the 
tumor stroma.22,34

Importantly, the prognostic value of 
stromal Cav-1 in breast cancer patients 
has now been independently validated in 
7 different countries worldwide.57-68

Figure 1. Kaplan–Meier analysis of overall survival, using stromal Cav-1 and mct4 to predict clinical outcome. (A) TMA containing a cohort of 185 triple-
negative breast cancer patients, with over 20 y of clinical follow-up data, was subjected to immunostaining with antibodies directed against Cav-1 and 
MCT4. Then, the expression levels of these two protein biomarkers were scored in the tumor stroma. Note that loss of Cav-1 and overexpression of MCT4 
are strictly associated with poor clinical outcome. In contrast, patients with high stromal Cav-1 and absent MCT4 show >90% survival at >20 years post-
diagnosis. Reproduced, with permission, from reference 70.
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Figure  2. Epithelial oncogenes induce the 
cancer-associated fibroblast phenotype, 
in adjacent normal fibroblasts. Cav-1 and 
MCT4 as stromal biomarkers. (A) HaCaT cells 
(control [CTRL] vs. Ras-transformed [RAS]) 
were co-cultured with stromal fibroblasts. 
Then, the expression of Cav-1 and MCT4 was 
monitored by immunostaining. Note that 
Ras-transformed HaCaT cells specifically 
downregulate Cav-1 and upregulate MCT4 in 
adjacent fibroblasts, effectively functioning 
as reporters of the transition to malignancy 
in cancer cells. E, epithelia. (B) HaCaT cells 
(CTRL and RAS) were also cultured alone for 
comparison. Note that MCT4 is upregulated 
in Ras-transformed cells when they are cul-
tured alone, but then downregulated when 
they are co-cultured with fibroblasts (as in A). 
Reproduced and modified, with permission, 
from reference 71.

Figure  3. Fibroblasts induce the expression 
of MCT1 in epithelial cancer cells to facilitate 
metabolic symbiosis. HaCaT–Ras cells were 
cultured alone (left) or co-cultured with fibro-
blasts (right) and then subjected to immunos-
taining with antibodies directed against MCT1. 
Note that co-culture with fibroblasts induces 
the expression of MCT1 in Ras-transformed 
epithelial cells. Thus, co-culture of Ras-
transformed cells with fibroblasts induces 
reciprocal metabolic reprogramming, lead-
ing to metabolic symbiosis. Reproduced and 
modified, with permission, from reference 71.

Stromal MCT4: A Biosensor  
of Oxidative Stress, Glycolysis, 
and Mitochondrial Dysfunction

Similar to what we have previously 
observed for Cav-1, MCT4 is new marker 
of oxidative stress in tumor-associated 
fibroblasts.55,56 For example, in head and 
neck cancers, MCT4 is a specific marker 
of cancer-associated fibroblasts, but it does 
not label normal fibroblasts.69 Further-
more, in triple-negative breast cancers, 
stromal MCT4 expression is a strong pre-
dictor of poor clinical outcome.70 In this 
patient cohort, loss of stromal Cav-1 was 
directly correlated with elevated levels 
of stromal MCT4 expression and poor 
survival in triple-negative breast cancer 
(Fig. 1).70

Functionally, MCT4 mediates the cel-
lular export of L-lactate and ketones from 
glycolytic cells. Interestingly, MCT4 is 
highly upregulated under conditions of 
hypoxia and/or oxidative stress and is a 
HIF1-α target gene. Thus, MCT4 func-
tions as a new biomarker of oxidative 
stress, glycolysis, and mitochondrial dys-
function in the tumor microenvironment.

Epithelial MCT1: A Marker  
of Cell Proliferation, 

Mito chon drial Power, 
and Stemness

Previously, we have presented experi-
mental evidence that a “lactate shuttle” can 
also exist in human cancer tissues.45,55,56,69 
Under these conditions, tumor-associated 
stromal cells express MCT4 and release 
high-energy mitochondrial fuels (such 
as L-lactate and ketones) into the tumor 
stroma. In contrast, tumor cells upregu-
late MCT1, so they can efficiently import 
these mito-fuels to use as fuel in the TCA 
cycle and for OXPHOS in proliferative 
cancer cells. This form of metabolic-
coupling may then allow cancer cells to 
successfully engraft in pre-clinical animal 
models, by the metabolic rewiring of their 
microenvironment.

MCT1 is also a new biomarker of 
mitochondrial activity and mass, and its 
expression levels correlate with high pro-
liferation rates in vivo, as we have recently 
demonstrated.69 More specifically, Ki-67 
expression and MCT1 staining are directly 

linked in both normal mucosa, and head 
and neck cancer tissues. Also, Ki-67 and 
MCT1 are both well expressed in the basal 
stem cell compartment of normal mucosa, 
suggesting that MCT1 may be a new 
marker of “stemness” in epithelial cells.69

Exploring the Transition to  
Malignancy: Modeling Metabolic  

Symbiosis by Co-Culturing  
Normal and Oncogene-
Transformed Epithelial 
Cells with Fibroblasts

Recently, we employed a new cell sys-
tem, to study the potential metabolic 
consequence of oncogenic stress on the 
tumor microenvironment.71 For this pur-
pose, we used the HaCaT keratinocyte 

cell system, which consists of an isogenic 
set of “normal” and oncogenically trans-
formed epithelial cell lines. In this con-
text, the behavior of normal HaCaT cells 
was directly compared with transformed 
HaCaT cells, which harbor the overex-
pression of activated oncogenes, such as 
H-Ras (G12V) or NFkB (p65 subunit).

Briefly, normal and transformed 
HaCaT cells were co-cultured with immor-
talized human fibroblasts to determine the 
systemic effects of oncogenes on adjacent 
stromal cells. Metabolic parameters, such 
as ROS production/oxidative stress and 
glucose utilization, were quantitated using 
sensitive fluorescent probes. As a comple-
mentary approach, we also followed the 
expression of a panel of protein biomark-
ers, which reflect the onset of metabolic 
symbiosis (Cav-1, MCT4, and MCT1).71

Surprisingly, epithelial oncogene acti-
vation was indeed sufficient to trigger 
the cancer-associated fibroblasts pheno-
type, with a loss of stromal Cav-1 and the 
upregulation of stromal MCT4 expression 
(Fig.  2). These fibroblasts also showed 
increased ROS production and elevated 
glucose uptake, indicative of a shift toward 
glycolytic metabolism. Thus, we con-
cluded that oncogenes drive the metabolic 
reprogramming of cancer-associated fibro-
blasts via oxidative stress71 In accordance 
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Figure  4. Oncogenes drive oxidative stress and glycolysis in the tumor microenvironment. 
Summary illustrating that 2 divergent oncogenes (RAS and NFkB) use ROS production and cyto-
kines (inflammation) to induce oxidative stress and glycolysis in adjacent cancer-associated fibro-
blasts (“the reverse Warburg effect”). Thus, oncogenes act at a distance, to metabolically reprogram 
the tumor microenvironment.

Figure  5. Diverse oncogenic stimuli induce 
the cancer-associated fibroblast phenotype 
via oxidative stress. Diagram illustrating that 
diverse oncogenic stimuli (RAS, NFkB, TGF-β, 
BRCA1 loss, ethanol exposure, ROS/hydro-
gen peroxide) all induce oxidative stress in 
the tumor microenvironment. This, in turn, 
promotes the catabolic cancer-associated 
fibroblast phenotype, resulting in a loss of 
Cav-1 and an increase in MCT4 expression. 
Treatment with N-acetyl-cysteine (NAC), a 
powerful antioxidant, is sufficient to reverse 
or prevent the cancer-associated fibroblast 
phenotype induced by these divergent onco-
genic stressors.

with this notion, treatment with N-acetyl-
cysteine (NAC), a powerful antioxidant, 
was sufficient to reverse or prevent the 
cancer-associated fibroblast phenotype 
induced by activated oncogenes.

Most importantly, these changes in 
metabolic parameters and protein bio-
markers were not induced by normal 
HaCaT cells. These findings provide the 
necessary proof-of-concept that stromal 
Cav-1 and MCT4 can be used as sensitive 
“biosensors”, to monitor the transition to 
malignancy, both in vitro and in vivo.71

In addition, under these conditions, 
MCT1 was selectively upregulated in epi-
thelial cancer cells, during co-culture with 
fibroblasts (Fig. 3). As such, it appears that 
oncogenes drive the establishment of a “lac-
tate shuttle” and metabolic symbiosis, to 
enable the anabolic growth of tumor cells.

Virtually identical results were 
obtained with 2 distinct onco-proteins 
(RAS and NFkB), directly showing that 
oxidative stress and inflammation con-
verge on the stromal compartment, lead-
ing to glycolytic metabolism in the tumor 
microenvironment (Fig. 4).

As a consequence of these findings, we 
should begin to consider stromal Cav-1 and 
MCT4 as new metabolic targets for drug 
development, as they are very specific bio-
markers of the catabolic tumor-associated 

fibroblast phenotype.71 Importantly, many 
diverse oncogenic stimuli (RAS, NFkB, 
TGF-β, loss of BRCA1, ethanol exposure, 
and ROS/hydrogen peroxide) all induce a 
common metabolic response in the tumor 
stroma,20,21,56,72,73 which then dramatically 
changes the expression levels of both Cav-1 
and MCT4 (Fig. 5). These studies directly 
support the “seed and soil” hypothesis, 
which was initially proposed over 100 
years ago now by Stephen Paget.74-77

BRCA1 Loss and the Transition to 
Malignancy: Modeling Meta bolic 

Symbiosis in Heredi tary 
Breast and Ovarian Cancers

BRCA1 is a tumor suppressor gene 
which has several key functions, such as 
DNA repair and transcriptional regula-
tion, as well as the modulation of cell cycle 
progression.78 Mutations in the BRCA1 
gene dramatically increases a woman’s 
risk for the development of both breast 
and ovarian cancers. More specifically, 
women carrying a BRCA1 mutant allele 
have a >60% lifetime risk of breast cancer 
and a >40% lifetime risk of ovarian can-
cer.79,80 BRCA1 mutations prevent pro-
tein production,81 and BRCA1-mutated 
breast cancers show an absence of nuclear 
expression, which is associated with a poor 

prognosis.82,83 Phenotypically, BRCA1-
deficient breast cancers are usually high-
grade, aggressive and triple-negative, 
based on gene expression studies and/or 
immunostaining of paraffin sections.84-86 
BRCA1 loss of expression also occurs 
commonly in sporadic breast cancers, 
secondary to epigenetic changes, and is 
often observed in triple-negative or basal-
like tumors.80,87-94 As a consequence, loss 
of BRCA1 protein function may also be a 
critical driver in both sporadic and famil-
ial breast cancers.95,96

Recently, we studied the metabolic 
effects of BRCA1 loss of function on the 
tumor microenvironment.20 To recapitu-
late the tumor stroma, we developed a co-
culture model in vitro. Briefly, HCC.1937 
breast cancer cells, which harbor muta-
tions that completely inactivate BRCA1 
protein expression (BRCA1-null), were 
co-cultured with hTERT-immortalized 
stromal fibroblasts.20

Interestingly, HCC.1937 cells drive 
ROS production in adjacent fibroblasts, 
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and induce the cancer-associated fibroblast 
phenotype, with the stromal loss of Cav-1 
and MCT4 upregulation.20 Remarkably, 
this CAF phenotype was suppressed either 
by genetic replacement of the BRCA1 
gene in epithelial cancer cells, or by treat-
ment with powerful antioxidants, such as 
NAC (Fig. 6A).

Human breast cancer samples har-
boring BRCA1 mutations (9 out of 10 
examined) also showed a loss of stromal 
Cav-1 and the upregulation of MCT4, as 
well as striking mitochondrial staining 
with TOMM20, a marker of mitochon-
drial mass (Fig. 6B). Therefore, BRCA1 
loss of function drives ROS generation in 
both mammary epithelial cells and adja-
cent stromal fibroblasts. This paracrine 
oxidative stress then promotes the onset 
of a glycolytic stromal phenotype with 
metabolic symbiosis, which is reflected 
by decreased Cav-1 and increased MCT4 
expression.20

Quantitatively similar results were also 
obtained with the BRCA1-deficient ovar-
ian cancer cell line, namely UWB1.289 
cells.21 These BRCA1-null ovarian can-
cer cells produced large amounts of ROS. 
This, in turn, induced oxidative stress and 
catabolic metabolism in neighboring stro-
mal fibroblasts (glycolysis, autophagy, and 
mitophagy).21 These functional changes 
reflected the onset of the CAF-phenotype 
and were strictly associated with MCT4 
upregulation and Cav-1 loss of expression 
(Fig.  7A and B), which are markers of 
“metabolic symbiosis” within the tumor 
microenvironment. In these UWB fibro-
blast co-cultures, the CAF phenotype was 
suppressed by either genetic replacement 
of the BRCA1 gene in ovarian cancer 
cells, or by treatment with powerful anti-
oxidants, such as NAC.21

ROS production in BRCA1-null 
ovarian cancer cells also resulted in the 
paracrine induction of an inflammatory 
phenotype in adjacent cancer-associated 
fibroblasts, with the strong activation of 
an NFkB–luciferase reporter (Fig.  8).21 
ROS production and oxidative stress are 
known activators of NFkB, consistent 
with the idea that redox signaling pro-
motes an inflammatory phenotype, via 
the activation of innate immunity.

Taken together, these functional stud-
ies suggest that cancer prevention trials, 

with antioxidants and/or anti-inflamma-
tories, may be warranted in women with 
a genetic history of familial BRCA1 muta-
tions.20,21 This novel chemo-prevention 
approach would be expected to inhibit 
“metabolic symbiosis” in high-risk BRCA1 
patients and reverse the cancer-associated 
fibroblast phenotype, essentially cutting 
off the “fuel supply” to cancer cells during 
tumor initiation.

“Fibroblast Addiction”: A New 
Therapeutic Target for Can cer 
Therapy and the Pre ven tion 

of Drug Resistance

The desmoplastic tissue reaction, or 
fibroblast-overgrowth, is a generalized 
response to injury, but can also occur dur-
ing tumor initiation and metastasis. As 
such, the desmopastic reaction is a true 
wound-healing response. However, the 
exact role of desmoplasia or tissue fibrosis 
in tumor initiation and progression still 
remains unknown.

Our recent data suggest that the des-
moplastic reaction could actually help 
allow cancer cells to survive during onco-
gene activation and to overcome the cel-
lular stress associated with malignant 
transformation. For example, we and oth-
ers recently showed that catabolic fibro-
blasts inhibit oxidative stress in epithelial 
cancer cells.71,97 During metabolic sym-
biosis, cysteine (Cys) produced in stromal 
cells is transferred to cancer cells, where it 
is converted to glutathione (gamma-Glu-
Cys-Gly), a powerful antioxidant.97 This, 
in turn, functionally protects cancer cells 
against oncogenic stress,71 which would 
otherwise induce cell death, via various 
stress-related mechanism(s), including 
apoptosis, autophagy, and/or senescence 
(Fig. 9). Previous studies have also shown 
that this mechanism may confer drug 
resistance to anti-estrogens and other che-
motherapeutic agents, in epithelial cancer 
cells.23,24,31,33

These findings suggest that primary 
cancer cells are “addicted to fibroblasts” 

Figure 6. BRCA1-deficient breast cancer cells induce the cancer-associated fibroblast phenotype. 
(A) BRCA1-deficient HCC cells were co-cultured with hTERT-immortalized fibroblasts. Then, expres-
sion of Cav-1 and MCT4 was monitored by immunostaining. Note that HCC cells drive a loss of stro-
mal Cav-1 and the induction of stromal MCT4. Importantly, this CAF-phenotype was suppressed 
either by genetic replacement of the BRCA1 gene in the epithelial cancer cells, or by treatment with 
NAC, a powerful antioxidant. (B) Human breast cancer samples harboring BRCA1 mutations (9 out 
of 10 examined) also show a loss of stromal Cav-1 and the upregulation of MCT4, as well as strong 
mitochondrial staining with TOMM20, a marker of mitochondrial mass. For Cav-1 immunostaining, 
arrowheads point at blood vessels, which do not show a loss of Cav-1, in contrast to adjacent stro-
mal fibroblasts. Images from one representative patient are shown. Reproduced and modified, with 
permission, from reference 20.
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Figure 7. BRCA1-deficient ovarian cancer cells induce the cancer-associated fibroblast phenotype. (A) BRCA1-deficient UWB cells were co-cultured with 
hTERT-immortalized fibroblasts. Then, the expression of Cav-1 and MCT4 was monitored by immunostaining. Note that UWB cells drive a loss of stromal 
Cav-1 and the induction of stromal MCT4. (B) Importantly, this CAF-phenotype was suppressed by treatment with NAC, a powerful antioxidant. Genetic 
replacement of the BRCA1 gene in the epithelial cancer cells also suppressed the CAF-phenotype (not shown). Reproduced and modified, with permis-
sion, from reference 21.

Figure 8. BRCA1-deficient ovarian cancer cells induce an inflammatory phenotype in adjacent stromal fibroblasts. BRCA1-deficient UWB cells were 
co-cultured with NIH-3T3 fibroblasts, harboring an NFkB–luciferase reporter, to measure the activation of an inflammatory phenotype. Note that co-
culture with BRCA1-deficient UWB cells activates NFkB-mediated gene transcription, in adjacent stromal fibroblasts. Furthermore, this pro-inflammatory 
phenotype was rescued by recombinant expression of the wild-type BRCA1 gene in UWB cells. The basal state of NFkB activation in NIH-3T3 fibroblasts 
cultured alone is shown for comparison. Day 0 actually represents 24 h of co-culture. Reproduced and modified, with permission, from reference 21.

for their survival, and that separating 
them from stromal fibroblasts, may actu-
ally catalyze the death of cancer cells. 
These data could help explain why it is so 
difficult to generate new “immortal” can-
cer cell lines from patient samples, as one 

of the first steps involves the purification 
of epithelial cancer cells away from stro-
mal fibroblasts.98

Thus, new therapies could be devel-
oped to functionally target “fibro-
blast addiction”. If stromal cells are 

therapeutically targeted, then an expected 
result would be acute oncogene-induced 
stress in epithelial tumor cells, driving 
the starvation and/or death of cancer 
cells. This acute stress would likely result 
in tumor regression.
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Conclusions and 
Future Directions

In summary, we conclude that onco-
gene activation (RAS, NFkB, TGF-β) 
and/or tumor suppressor loss (BRCA1) 
both have very similar functional effects 
on adjacent stromal fibroblasts, driving the 
initiation of metabolic symbiosis and the 
cancer-associated fibroblast phenotype. As 
such, new therapeutic strategies that meta-
bolically uncouple oxidative cancer cells 
from their glycolytic stroma, could be used 
to target this “fibroblast addiction” in both 
primary and metastatic tumor cells.
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